* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Unit 4: Excretion and Waste Management
Homeostasis wikipedia , lookup
Cell theory wikipedia , lookup
Cell (biology) wikipedia , lookup
Biochemistry wikipedia , lookup
Cell-penetrating peptide wikipedia , lookup
Developmental biology wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Organ-on-a-chip wikipedia , lookup
UNIT 4: EXCRETION AND WASTE MANAGEMENT Excretion and Waste Management  What would happen if you never threw out your garbage or leftover food?  Be as detailed and exact as possible  Specific to your house and family  Why do we sweat?  Why do we urinate? Waste Removal   One of the 7 life processes = removal of waste products produced by the cells of our bodies What are the waste products in the human body?  Brainstorm on a piece of paper  Compile your ideas into the following table on chart paper: Waste Product Origin Organ of Excretion Waste Products Waste Product Origin Organ of Excretion Ammonia Breakdown of amino acids in the liver Kidney Urea Conversion of ammonia in the liver Kidney CO2 Cellular respiration Lungs Water Cellular respiration Kidneys Mineral Salts Food and water Kidneys Lactic Acid Anaerobic cellular respiration Liver Liver Kidney Excretory System  Why is feces not included in the list of metabolic wastes?  Feces is not a product of cellular metabolism. It is a “leftover” after the body absorbs what nutrients it needs from the intestines   Brainstorm: the relationships between the excretory system and the respiratory system, and the digestive system. How might the excretory system be involved in homeostasis? Waste Products: Cellular Respiration  We obtain energy by converting complex organic compounds into simpler compounds.   BUT some of these simpler compounds can be harmful Carbon Dioxide Humans produce an average of 1kg per day!  If levels become too high = our blood becomes acidic     Leads to breakdown of enzymes, etc… Most is converted to bicarbonate ions (less harmful): HCO3- Lactic Acid Converted to pyruvate (aerobic respiration)  OR removed through conversion to glucose   Water Cellular Respiration Waste Products Waste Products: Metabolism   The large intestine removes toxic waste from the digestive system. The liver transforms these ingested toxins into soluble compounds that can be eliminated by the kidneys  Alcohol,  heavy metals (Fe, Al, Hg) The liver also transforms the hazardous products of protein breakdown to be eliminated by the kidneys Waste Products: Metabolism Why are proteins so harmful?  Fact: The average Canadian consumes more protein than is required to maintain tissues and promote cell growth.  Excess protein is often converted into carbohydrates  BUT proteins, unlike carbohydrates, contain nitrogen.  When amino acids (the protein building blocks) are broken down we get the by-product: ammonia Ammonia  Deamination = the breakdown of amino acids  occurs in the liver.  byproduct = ammonia (NH3)   BUT ammonia is extremely toxic - a buildup of as little as 0.005 mg is lethal! In the liver, two molecules of ammonia combine with another waste product, CO2, to form urea 3 Hydrogen atoms (H+) that can be donated to increase acidity This acidity makes it a useful agent for household cleaners Urea  Urea is 100 000 times less toxic than ammonia.  The blood can dissolve 33 mg of urea per 100 mL of blood. Excretion: Simple Organisms  For ALL organisms, getting wastes out of the cell is just as important as bringing in nutrients  Otherwise toxins would build up and the cell would soon die  In unicellular organisms and in primitive multicellular organisms (e.g. a sponge) every cell is in direct contact with the external environment  Therefore, wastes are released directly from the cell and water currents carry the waste away Excretion: Simple Organisms  BUT, unicellular organisms must regulate their internal fluids  More dissolved solutes then their freshwater surroundings  Therefore, these cells should draw in water, expand, and eventually burst  Fluid Regulation: a contractile vacuole expels excess water, preventing this swelling Excretion: Complex Organisms   Complex multicellular organisms are faced with the same problem but on a much bigger scale. Not every cell is in direct contact with the external environment  Therefore, wastes must be collected and temporarily stored  A secondary problem: our cells are so specialized that not every cell is designed to remove wastes  Wastes must be transported to cells that are capable of excretion The earthworm uses a series of tubules to remove wastes from the blood and body cavity. Cells lined with cilia surround a funnel-like structure (the nephrostome) and draw fluids from the body cavity into tiny tubules. The wastes are stored as urine and are released through small pores (nephridiopores) along the body wall. Malpighian tubules that run throughout the body cavity of an insect absorb wastes by diffusion. Wastes are released into the gut and eliminated with solid wastes from the anus. Human Excretory System  Major structures:  Kidneys  Liver  Large  Lungs  Skin Intestine Excretory System Structures Class Activity 1. Structure (how is it built, where is it in the body)  2. 3. 4. 5. Include a simple diagram Role (in terms of waste removal) One way in which it is related to one of the other structures in the excretory system One way in which it is related to digestive, respiratory, and circulatory system How it helps to maintain homeostasis (include one feedback loop/process)
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            