Download BIO 2006 CSO Boot Camp Session 4 : Project, Product or Company

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Advances in Nano Drugs for Cancer
Chemotherapy: Biopharmaceutical Trends
and Perspectives and Case Studies
Panayiotis P. Constantinides, Ph.D
Biopharmaceutical & Drug Delivery Consulting, LLC
Gurnee, Illinois, USA
[email protected]
Keynote Forum
3rd International Conference and Exhibition on
Pharmaceutics & Novel Drug Delivery Systems
April 8-10, Northbrook, Illinois
OUTLINE
• Biopharmaceutical Aspects of Anticancer Nano Drugs
–
–
–
–
Image-guided drug delivery and multifunctional nanoparticles
Nanoparticle targeting principles
Marketed drug products and in development
Formulation development, manufacturing, Toxicity/PK/ADME
• Case Studies
• A. Parenteral Nano drugs
– Nanoemulsions : paclitaxel
– Liposomes and polymeric micelles : phospho-Ibuprofen (NME)
• B. Oral Nano drugs
– SNEDDS : Tamoxifen
– Reverse Micelles : Leuprolide
• Conclusions and Future Perspectives
4/8/2013
BPDDC LLC www.bpddc.com
2
BIOPHARMACEUTICAL ASPECTS OF
ANTICANCER NANODRUGS
4/8/2013
BPDDC LLC www.bpddc.com
3
Non-invasively
assess drug site
accumulation
Monitor and quantify
drug release
Visualize
biodistribution in
real time
Image-guided
Drug Delivery
Analyze drug
distribution at
the target site
Predict drug
response
Evaluate drug
efficacy
longitudinally
Facilitate
triggered drug
release
Combine disease
diagnosis and therapy
Lammers, T. et al; Mol. Pharmaceutics 7 (6) : 1899-1912 (2010)
4/8/2013
BPDDC LLC www.bpddc.com
4
Morphology and Function of a Multifunctional Nanoparticle
R. Heskel, P.P. Constantinides and D. Sun, AAPS NewsMagazine, January 2012
D
C
+/–
E
A
F
B
(A)
(B)
(C)
(D)
(E)
(F)
Core: drug, magnetic (MRI), quantum dot (optical imaging)
Shell: drug/gene, lipid, polymer (intracellular targeting)
Polymeric Stabilizer: osmotic, entropic, steric
Biological (“Stealth”) Stabilizer: PEG
Surfactant Stabilizer: electrostatic, osmotic
Targeting Moiety: antibody, aptamer, ligand
4/8/2013
BPDDC LLC www.bpddc.com
5
Nanodimensions of Drug Delivery Nanoparticles
Mattheolabakis, G., Rigas B., and Constantinides, P.P. Nanomedicine (2012) 7: 1577-1590
The true nanorange is narrowly
defined as the 1-100 nm
particles.
Marketed injectable liposomal
(DaunoXome®, Doxil®) and
albumin-bound nanoparticles
(Abraxane®) anticancer drug
products, as well as the oral
NanoCrystal® drug products
(Rapamune®, EMEND®, TriCor®
145, Megace® ES and INVEGA®
SUSTENNA®) are within the
submicron range (100 – 1000 nm).
4/8/2013
BPDDC LLC www.bpddc.com
6
Drug Targeting
Active
Passive
• Liver and spleen
• Receptor- mediated
– Immunotargeting
• Antigenic sites on
pathogens
• Infected cells expressing
antigenic structures
• Tumor-associated
antigens
– Targeting Ligands
• EGF, Transferrin
• Folate, RGD
• VIP
4/8/2013
– Macrophage uptake
• Lysosomal enzyme
deficiencies
• Size-mediated
– EPR effect
• pH-mediated
– pH-responsive drug carriers
• Temperature-mediated
– Thermo-responsive drug
carriers
BPDDC LLC www.bpddc.com
7
Diverse Targeted Nanoparticles in Cancer in Preclinical
and Clinical Development
•
•
•
•
Carbon nanotubes
Quantum Dots
Nanoparticle-aptamer bioconjugates
Lipid-based nanocarriers
– Liposomes, nanoemulsions, micelles, solid lipid nanoparticles
and nanosuspensions
• Anti-angiogenic molecules in NPs
• Brain-targeted NPs
• Polymeric micelles
• Polymer-drug conjugates and immunoconjugates
• Combination of NPs with other physical and diagnostic methods
– radiotherapy, photodynamic therapy and ultrasound
– nanoshells and paramagnetic NPs
4/8/2013
BPDDC LLC www.bpddc.com
8
Nanoparticle Characterization : NCL/NCI Assay Cascade
http://ncl.cancer.gov/assay_cascade.asp
In Vitro:
Physicochemical:
–Pharmacology
–Size and Shape
–Blood contact
–Composition
properties
–Molecular weight
–Immune cell function
–Surface chemistry
–Cytotoxicity
–Identity
–Mechanistic
–Purity
toxicology
–Stability
–Sterility
–Solubility
In Vivo:
–ADME
–Safety
–Efficacy
Formulation and Process Considerations
• Lessons learned from the marketed nanoparticle drug
products (100 - 1000 nm) that can be applied to the 1-100
nm particles - what is truly new knowledge?
– New processing equipment and characterization methods
– No reference standards and specifications are available
• Need to develop and validate suitable methods and set
meaningful controls and drug product specifications
– establish reference standards for 1-100 nm nanoparticles
• Scale up and manufacturing challenges with acceptable
shelf-life of complex multifunctional nanoparticulate systems
4/8/2013
BPDDC LLC www.bpddc.com
10
Nanoparticle Manufacturing Methods
Homogenization
Top-Down
BULK
Energy
Milling
Cryogenic
Approaches
• Super-Critical Fluid
Technologies
• Spray Freezing into
Liquid
• Ultra-rapid Freezing
4/8/2013
Bottom-Up
NANOPARTICLES
Growth
Precipitation
Emulsion-Diffusion
SOLUTION
BPDDC LLC www.bpddc.com
11
Nanotoxicity : Why the Concern?
• Unusual physicochemical properties attributable to :
– Small size (surface area, size distribution)
• Particle Toxicity Rank (in general): (+) > (-) > (0) (net charge)
– Chemical composition (e.g., purity, crystallinity, electronic
properties)
– Surface structure (e.g., surface reactivity, surface groups,
inorganic or organic coatings)
– Solubility, shape and aggregation
• Opportunities for increased uptake and interaction with
biological tissues relative to bulk materials
• Need to establish nanotoxicity guidelines
• No specific regulations at the present time
– June 9, 2011 FDA Draft Guidance on regulated products involve
Nanotech applications
4/8/2013
BPDDC LLC www.bpddc.com
12
NP Toxicity on Human Lung Cancer A 549 Cells
Choi, S.J. et al; J. Inorg. Biochem. 103: 463-471 (2006)
Layered Metal Hydroxides
(hydrotalcite-type anionic clays)
2 x 104 cells were exposed to NPs (250 and 500 µg/ml) for 72 hrs and then
apoptotic cells were measured by annexin V-FITC (green) binging assay
4/8/2013
BPDDC LLC www.bpddc.com
13
Nanoparticle Pharmacokinetics
• Fate of particles upon administration
– Are all nanoparticles taken up by cells and cross
anatomical barriers ?
– What is their fate after cell uptake?
• Drug absorption, distribution, metabolism and
elimination (ADME):
– How is affected by size, surface composition and
charge of the particles?
• Biopharmaceutical and pharmacokinetic data:
– How to use it to optimize quality and performance of
nanoparticles?
4/8/2013
BPDDC LLC www.bpddc.com
14
Nanomaterial and Nanoparticle ADME Findings
Riviere, J. E. Wiley Wires/Nanomed, Vol 1. 26-34 (2009)
• Most nanomaterials (NMs) accumulate in the liver
– Depending on size and charge, can also accumulate in kidney
and other tissues
• Nanoparticles (NPs) with hydrodynamic radii < 5 - 6 nm
may be eliminated from the kidney
• All classes of NPs have extensive tissue retention
– Carbon based materials and quantum dots - toxicological
implications
• State of NMs once deposited in tissue largely unknown
• Comparisons within and across complex NMs difficult
4/8/2013
BPDDC LLC www.bpddc.com
15
PARENTERAL NANO DRUGS CASE STUDIES
4/8/2013
BPDDC LLC www.bpddc.com
16
Nanoemulsion Stability : TOCOSOL-Paclitaxel
Constantinides, P.P. et. al., Pharm. Res. 17, 175-182, 2000
TOCOSOL
Paclitaxel Loading : 9 mg/ml
Oil
(Vitamin E)
140
Volum e D istribution:
Relative Volume
99% Cumulative Distribution (nm)
Mean Droplet Diameter or
160
120
100
[D ] m ean 4°C
100
80
[D ] m ean 25°C
62 nm
60
40
[D ] 99% 4°C
20
0
10
100
1000
[D ] 99% 25°C
Particle Size (nm )
80
60
Tocophilic
Drug
(Paclitaxel)
Surfactants
(TPGS, P407)
40
0
5
10
15
20
25
30
O
T im e (m o n th s)
O
AcO
R
NH
O
OH
10
6
3'
Paclitaxel potency and levels of degradants were
within specifications throughout the stability study
1'
O
13
BPDDC LLC www.bpddc.com
4
1
OH
HO
R= C6H5, MW = 853
Solubility < 50 µg/ml
4/8/2013
15
O
OAc
O
17
O
Paclitaxel in Blood and Tumor Tissue
P.P. Constantinides, A. Tustian and D.R. Kessler, Adv. Drug Del. Rev. 56 (2004) 1243-1255
Single dose administration of 10 mg/kg to B16 MM-bearing mice
Blood
Tumor
TOCOSOL
Paclitaxel
Taxol®
TOCOSOL
Paclitaxel
Taxol®
8000
AUCTocosol-P = 2.2 AUC
Concentration (ng/g)
Concentration (ng/mL)
10000
8000
6000
4000
Taxol
6000
4000
2000
2000
0
0
0
10
20
30
40
0
Time (hr)
10
20
30
40
Time (hr)
Enhanced TOCOSOL nanoemulsion uptake by tumors due to EPR effect
4/8/2013
BPDDC LLC www.bpddc.com
18
Ibuprofen vs Phospho-Ibuprofen (MDC-917) : Physical
Properties and Cytotoxicity (Nie, T. et al; (2011) British J. Pharmacol.)
MDC : Medicon Pharmaceuticals
PEO-b-PLA diblock copolymer
Soy PC + DSPE-PEG
OH
O
Ibuprofen
209 ± 16 nm
O
O
O
O P
P-I
OCH2CH3
OCH2CH3
-15.5 ± 2.6 mV
Phospho-Ibuprofen
Partition coefficient (log P)
IC50, µM, range
(HT29,HCT116, SW480
colon cancer cell lines)
Cell uptake, nmol/mg
protein
4/8/2013
78 ± 8 nm ; -6.2 ± 0.6 mV
Ibuprofen
Phosphoibuprofen
3.75
5.43
748-1,554
28-104
0.1
18
BPDDC LLC www.bpddc.com
LIPOSOMES
200 nm
MICELLES
50 nm
19
In Vitro Cytotoxicity of P-I (MDC-917) Against
Colon Cancer Cell Lines (Nie, T. et al; (2011) British J. Pharmacol.)
A. Empty Nanocarriers
B. Nanocarrier-drug vs Free Drug
P-I
Micellar P-I
Liposomal P-I
200
B
IC50, µM 24- hr
150
100
50
0
SW480
4/8/2013
BPDDC LLC www.bpddc.com
HCT116
HT-29
20
Antitumor Activity of Liposomal P-I (MDC-917) in
Human Colon Cancer (SW 840)-Bearing Mice
(Nie, T. et al; (2011) British J. Pharmacol.)
0.8
Dose : 100 mg/kg/day i.p.
Control
#
Tumor Volume, mm3
P-I
#
*
(Mean ± SEM, n=20)
#
#
Tumor weight, g
600
Liposomal P-I
400
200
0.6
0.4
#
#
0.2
0
0
5
10
15
20
25
Treatment, days
0.0
Vehicle control
4/8/2013
BPDDC LLC www.bpddc.com
P-I
Liposomal P-I
21
ORAL NANO DRUGS CASE STUDIES
4/8/2013
BPDDC LLC www.bpddc.com
22
Tamoxifen Citrate
VAN Life Sciences Pvt Ltd, www.van.in
Log PO/W = 3.7, pH 7.0
BCS IV Molecule
• Oral anti-estrogen for breast cancer treatment
• Available as a Tablet and Oral Solution in a daily dose 10-20 mg;
chronic therapy (3-5 yrs)
• Hepatotoxicity is a major toxicity with TMX-Citrate therapy
• Poor oral bioavailability (20-30%); large inter-subject variability
• Intestinal P-gp substrate; First-pass metabolism (CYP34A)
• Use of CYP34A inhibitors improves bioavailability
• Use of lipid-based systems (SNEDDS, SLN/NLC) to
improve the oral BA of TMX
4/8/2013
BPDDC LLC www.bpddc.com
23
Pharmacokinetics of Tamoxifen in Fasted Rats
VAV Life Sciences, Pvt, Ltd, www.vav.in
Formulation
Cmax (ng/ml)
Tmax (h)
AUC0-∞(ng/ml-h)
t1/2 (h)
TMX-SNEDDS
680.12±55.54
2.0
9873.031
6.58
TMX citrate
solution
Commercial
formulation
275.54±25.34
2.0
2628.71
4.77
TMX base
75.33±12.34
4.0
1100.31
11.59
1 4-fold bioavailability enhancement compared to TMX-citrate and 9-fold
enhancement compared to TMX free base (TMX Dose : 10 mg/kg)
Formulation is physically and chemically stable at room temperature for
at least 6 months; Formulation is stable in simulated GI fluids for 8 hr.
4/8/2013
BPDDC LLC www.bpddc.com
24
Antitumor Efficacy in DMBA-Induced Breast-Tumor Bearing Rats
% Tumor Volume
VAV Life Sciences, Pvt, Ltd, www. vav.in
3 mg/kg every 3 days for 30 days
700
Control
600
Tamoxifen citrate
a***
Tamoxifen SMEDDS
SEDDS
500
400
**p< 0.01; *** p< 0.001
300
Mean ± SD, n=5
b***
a**
200
100
0
0
5
10
15
20
25
30
35
Days
4/8/2013
BPDDC LLC www.bpddc.com
25
Effect of Oral Tamoxifen on Liver Toxicity Markers
VAV Life Sciences, Pvt, Ltd, www.vav.in
(A)
80
a*
70
60
AST (IU/L)
(B)
b*
50
40
30
20
10
Control
a***
70
b***
60
ALT (IU/L)
80
50
40
30
20
10
0
Tmx-Citrate
0
Control
Tmx Citrate
Tmx SEDDS
Control
Tmx Citrate
Tmx SEDDS
hepato-toxicity markers (mean ± SD, n=6) of rats
treated with 3 mg/kg every 3 days for 30 days
Lipid Peroxidation (MDA)
nm/mg of protein
70
(C)
60
a***
50
Parenchymal
degeneration,
lymphocyte
infiltration,
and cell
apoptosis
b***
40
Tmx-SNEDDS
30
20
10
0
Control
Tmx Citrate
Tmx SEDDS
AST : Aspartate Transaminase
ALT : Alanine Transaminase
4/8/2013
Liver histopathology after 30-day
treatment
BPDDC LLC www.bpddc.com
26
Peroral Absorption of Leuprolide in Dogs in EC HGCs
Constantinides P.P. et al. 2002 AAPS Meeting and Exposition, Toronto, Canada
Formulation
n
Dose
mg/k
g
LPM EC (2X)
5
2.09
31277.2 ± 9413
199.2 ± 78.5
11.6 ± 3.7
LPM EC (4X)
6
1.04
16158.7 ± 3093
117.9 ± 20.3
11.4 ± 2.2
LPM EC (2X)
6
0.35
8563 ± 1535
81.5 ± 16.8
16.6 ± 3.4
LPM EC (2X)
3
0.35
6208 ± 2311
68.3 ± 24.4
13.8 ± 5.1
LPM EC (4X)
3
0.35
7488.3 ± 2609
39.2 ± 15.0
16.6 ± 5.8
AUC
(min*ng/ml)
Cmax
(ng/ml)
Bioavailability
(mean  SEM)
Leuprolide Plasma Concentration
(ng/ml, mean ± SEM)
400
EC : Enteric Coated; X is the number of layers of coating
applied: HGC : Hard Gelatin Capsule (LiCaps®)
Oral (i.d.) BA of Leurpolide from solution = 2.2 ± 0.2 (n=4)
350
300
250
200
Reverse Micelle
150
2.09
1.04
0.35
0.35
0.35
100
50
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
EC
EC
EC
EC
EC
(2X)
(4X)
(2X)
(2X)
(4X)
Solubility in
0.1 M acetate
buffer pH 5.1
> 30 mg/ml
Intestinal
permeability:
very low
Leuprolide (LHRH
analogue, MW = 1209)
p-Glu-His-Trp-SerTyr-D-Leu-Leu-ArgPro-NHC2H5
•
•
Prostate Cancer
•
Precocious Puberty
Endometriosis
0
0
100
200
300
400
500
600
Time (min)
4/8/2013
BPDDC LLC www.bpddc.com
27
Conclusions and Future Perspectives
• There have been significant and promising advances in drug
delivery NPs in cancer drug delivery and targeting.
• The most promising systems/approaches are those that
combine disease diagnosis with therapy (Nanotheranostics).
– Formulation development and manufacturing challenges
• Better understanding of the ADMET and PK of NPs is critical to
their progress from bench to clinic and commercialization
• Toxicity is dependent on the nature and composition of NPs
– In general, inorganic NPs are more toxic than organic ones
– Need to establish nanotoxicity guidelines
• Expanded use of parenteral and oral lipidic and/or polymeric
nanoparticles in cancer drug delivery for both poorly soluble and
water-soluble molecules/macromolecules.
4/8/2013
BPDDC LLC www.bpddc.com
28
Acknowledgements
• Nanoemulsions : TOCOSOL-Paclitaxel
– Karl Lambert, Alex Tustian, Dean Kessler, former R&D
associates at SONUS Pharmaceuticals
• Liposomes/Polymeric Micelles : Phospho-Ibuprofen
– Collaboration with Dr. Basil Rigas and laboratory staff,
Stony Brook University, Medical School, Division of
Cancer Prevention and Medicon Pharmaceuticals
• LPM™ (Reverse Micelles) : Leuprolide (DOR Biopharma)
– Andy Jang, Likan Liang, Dave Fast, Liangxiu He, former
R&D associates at DOR Biopharma
• Tamoxifen-SNEDDS
– Arun Kedia, General Manager of VAV Life Sciences Pvt,
Ltd, Mumbai, INDIA, a partnering company
4/8/2013
BPDDC LLC www.bpddc.com
29
ENABLED ANTICANCER DRUG PRODUCTS
THANK YOU !
LIPIDS/POLYMERS
ORGANIC/INORGANIC MATERIALS
4/8/2013
BPDDC LLC www.bpddc.com
FUNCTIONAL
NANOPARTICLES
30