Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 9 Analysis and Calculation of Sinusoidal Circuit Main content: 1 resistance and conductivity 2 Resistance Series-parallel Connection 3 Phase Graph Key point 4.analysis of Sinusoidal Steady State Circuit 5 power of Sinusoidal Steady State Circuit 6 Complex power 7 The transmission of maximal power nodus Key point 8 Series connection resonance Key point 9 .1 resistance and conductivity U U u Z I I i Z U u i I Ohm’s Law The magnitude of complex impedance U IZ complex impedance a + U – b I N0 U Z I u i The angle of complex impedance conclusion:the magnitude ofZ is the result which the rms value of total voltage divide the rms value total current,and the angle of Zis the result which total voltage’s angle minus total current’s angle 。 impedance 1 Z R jL jC 1 R j (L ) C R jX Z Z I U admittance U R L U L C Impedance Reactance X>0,Z is inductive triangle X<0,Z is capacitive X=0,Z is resistant Z 1 Y Z R U C N0 X L XC R Phasor equation: Phasor model: I jL 1 U jC U U R U L U C if I I0 (reference phasor R U R L U L U R IR U L I jL U C 1 UC I j C C U I R 1 j L C The relation between total voltage and total current Note: Z R j X L X C Z I is a complex number,not a phasor R U R L U L so it doesn’t have a dot at the top 。Z is only a operation implement in a equation U U IZ C In sinusoidal AC circuit,if the physics is expressed by phasor and component ‘s parameter is expressed by complex impedance ,the equations is similar to that of DC circuit. U C I Impedance triangle Voltage triangle Power triangle U S R U R L U L C U U C Q Z X L XC R U L U C U R N0 P I U R L U L C U R U C Assume R、L、C is identified, Whether is Circuit character identified? (impedance?inductance? capacitance?) Forbidden! 1 X L L 、 X C C ifω is different ,May come out : XL > XC ,or XL < XC , or XL =XC 。 9 .2 Resistance Series-parallel Connection (一)simple series connection circuit I i ui Z1 U i uo Z Z2 Z=Z1+Z2+… I U i Z1 Z2 U o U O Z2 U i uo Z1 Z 2 (二)Simple Parallel Connection Circuit i I i1 i2 ui Z1 Z2 I U i U i 1 1 1 Z Z1 Z 2 I2 Z1 Z2 Z I2 Z1 I Z1 Z 2 Example 9-2 If R1=10Ω, R2=1000 Ω , L=05H、C=10μF , US=100V, + ω=314 rad/s.Solve the sum of every U10 branch’s current I R1 L + U U S 10 - I1 C U 100 0 solution: S Z C R2 Z eq R1 jL 102.11 j132.13 Z C R2 U I S 0.652.3 Z eq I2 R2 U10 182.07 20.03 U U I 10 0.5769.97 I 10 0.18 20.03 1 2 ZC R2 9.3 Phase Graph of Circuit In series current is reference phasor,KVL In parallel voltage is reference phasor ,KCL I R U L C U R U L U C U L U L U C U C Voltage triangle U U R I First draw reference phasor I example 9-4 draw the phasor graph of example U L I1 U R1 + - I I2 R1 U S L + U10 - U S U10 I1 C I2 R2 9.4 Analysis of Sinusoidal Steady State Circuit Complemented example If:I1=10A、UAB =100V, I2 j10 C1 I A A I1 solve: A 、UO C2 B 5 j5 UO Two Solution: 1 Phase Operation By Virtue of Compound. 2.use phasor graph to solve solution 1:Phase Operation By Virtue of Compound I1 j10 C1 A I A I2 C2 5 j5 UO B If: I1=10A、 UAB =100V, solution: the number of A、UO Assume : U As reference phasor, namely: AB so: I 2 100 5 j5 U 100 0 V AB 10 2 45 A I1 1090 j10 A I I I 100 A The number of A 10A 1 2 I1 j10 C1 I A A I2 C2 If: I1=10A、 UAB =100V, B 5 j5 UO Solve: the number of A、UO I I I 100 A 1 2 U C1 I( j10) j100 V U o U C1 U AB 100 j100 100 2 45 V The number of UO 141V Solution 2:use phasor graph to solve I1 j10 C1 I If: I1=10A、 UAB =100V, A A solve:the number of A、UO B C2 I2 U o U C1 U AB 5 j5 UO assume:U AB 1000 V I1 10A 、lead 90° I 2 100 2 2 10 2A 5 5 I2 Lag U AB 45° UC1=I XC1=100V uC lag i 90° thus: I1 I I1 I2 45° U C1 I2 I U AB U O I=10 A、 UO =141V Complemented example: R1 is If : ie iL iR 2 L R2 C e is I m sin( t 1 ) e Em sin( t 2 ) R1、 R2、L、C solve:current of every branch R1 Original circuit is iL iR 2 L R2 C e jX c IL R1 Phasor model Is jX L IR 2 R2 Ie E solution一:node’s electric potential method A IL R1 Is jX L jX c IR 2 R2 References: Ie E Node’s equation: E jX C UA 1 1 1 jX L R2 jX C IS I I m S 1 2 E E m 2 2 jX L jL 1 jX C j C Solve the current of every branch from node’s electric potential: jX c A IL R1 Is jX L IR 2 R2 Ie E U I A i L L jX L U I A i R2 R2 R2 E U Ie A ie jX C Solution 二: Thevenin’s theorem A IL R1 Is jX L Ie U AB E S Ie E E B Solve: A Z R2 solve:current of every branch jX c Ie IR 2 jX c B Z jX L R2 E S IS(jX L IL、IR 2 R2 ) Conclusion :the solution steps of sinusoidal AC circuit 1、Draw phasor model graph according to initial circuit graph(stay circuit’s structure is changeless) R R 、 L jX L、 C jX C u U、 i I、 e E 2、write equations or draw phasor graph according to phasor model 3、use complex number or phasor graph to solve 4、transform the result to required form 9.5 Power of Sinusoidal Steady Circuit u 一. resistive circuit i 1 .instantaneous equation : 2. Rms value equation : 3. Phase equation u iR i u ωt U IR U I R I R U Power of Resistive Circuit 1. Instantaneous power p:instantaneous voltage multiply instantaneous current p u i Ri u / R 2 2 minuscule i 2 I sin ( t ) u i 2 U sin ( t ) u ωt Conclusion : p0 (consumed energy component) 1. pChange with time 2 2 p 3. Is proportional to u 、i 2. p ωt 2. average power( (active power) P :the average of the instantaneous power over one period 1 T 1 T P p dt u i dt T 0 T 0 1 T 2 2UI sin t dt capital T 0 1 T UI (1 cos 2 t )dt UI T 0 P U I 二.inductive circuit 1、 .instantaneous equation: 2 Rms value equation 3. Phase 3. equation di uL dt i 2 I sin ( t ) U IL U jl I u i 90 t IL i u L U I I Power of Inductance Circuit 1. Instantaneous power p : p i u 2UI sin t cost UI sin 2t u i i u i u i i t u u p + Transformati on of energy is reversible p <0 p >0 p >0 Store Energy + Extract energy p <0 t 2. average power P (real power) Instantaneous power p i u UI sin 2t 1 T 1 T P 0 p dt 0 U I sin ( 2t ) dt 0 T T Conclusion :in a purely inductive circuit,the average power is zone. It only exchange energy with source。 3. Reactive Power Q Q definition :A measure of the power associated with purely inductive circuit; instantaneous power。 the maximal value of Q U I I XL U 2 2 XL unit: (var) u 2 U sin ( t ) 三.capacitive circuit 1、 Instantaneous equation : i u 1 U I C 2 Rms value 3. Phase equation u 90 du iC dt U 1 jc i I I t U 1.Instantaneous power p Power of Conductance Circuit p i u U I sin 2t uu 2 U sin ( t ) i ωt i i u u p deliv er P<0 Extrac t energy P>0 absorb Store Energy i i u u deliver absorb 2 average power P p i u U I sin 2t P0 3. Reactive Power Q the maximal value of instantaneous power Q UI (Q is negative for capacitors) 四、 Calculation of Power of No Circuit 1. Instantaneous power i p u i p R p L pC 2. average power( real power) u 1 T P pdt T 0 1 T ( pR pL pC )dt T 0 2 PR U R I I R R uR L uL C uC N0 The relation among P、U、、 I : P URI U R U cos U L U C U U R P UI cos Total voltage Total current The angle between u and i COS ----- power factor 3. Reactive Power Q: In R、L、C series connection circuit ,storing energy component L、C do not consume energy but they can swallow and disgorge energy ,whose scale is expressed by reactive power Q 。 Q QL QC U L I ( U C I) (U L U C) I IU sin U L U C U U R 4Apparent Power S: In circuit the rms value of total voltage multiply the rms value of total current 。 S UI unit:VA、KVA notice: S=U I is used to measure to the maximal power provided by generator(rated voltage×rated current) 5. Power triangle: Real power P Reactive power Q Apparent Power S P UI cos Q UI sin S UI S Q P (help remember) The relation of power in circuit if i leading u ,(capacitive circuit) i u t UI sin + _ _ p + UI cos I Impedance triangle Voltage triangle Power triangle S U R U R L U L C U Q Z X L XC R U L U C U R P U C Judge Right Or Wrong in R-L-C series circuit U U R U L U C IR I X L X C ? Neglect the phase of U I R U L C U U R U L U C U R U L U L U L U C U C U U U R I Judge Right Or Wrong U IZ ? U、I Reflect sinusoid voltage or current, But complex impedance is a operational sign。 Z can not add “•” Judge Right Or Wrong in R-L-C sinusoidal AC circuit U I Z ? u i Z ? U I ? Z U I Z ? U I Z ? 9. 6 Compound Power U U u , I I I i j load _ S Q power is describer as complex number P UI cos( u i ) UI Re[e + U 一. Compound Power: +1 Re[Ue j u U P S U I * UI( u i ) UI UIcos jUIsin P jQ Ie j( u i ) - j i ] ] Re [U I* ] * I S UI* def Q UI sinφ Reactive Q unit: var Real power is conservation; reactive power is conservation; complex power is conservation Complex power is conservation ,but apparent power is not conservation S UI* (U 1 U 2 ) I * U I * U I* S S I + U _ 1 + U _ 1 + U 2 _ S UI S1 U1 I U U1 U 2 S S1 S 2 Complex power is expressed : 2 1 2 S2 U 2 I b S Sk k 1 * * 2 S U I Z I I I Z * * * * 2 * S U I U (UY ) UU Y U Y Increasing of Alternative Current Power and Power Factor Total current P UI cos Total voltage Power factor COS U L The angle between u and i The meaning of Increasing of Alternative Current Power and Power Factor : (1)make the best of the capacity of electric of source U U L U C I UR U C S=UI If S=1000KVA,and COS =0.4,P=400KW COS =0.9,P=900KW (2)reduce the energy loss and voltage Put out questions: Usually many loads is inductive and its Equivalent circuit and the phasor relation are as follows: i u R uR L uL U U L U R I Consume the real power: P = PR = UICOS When U、P is certain, Hope increase COS COS I The relation between power factor cosΦ and circuit parameter i u Z X L XC load R X L XC tg R 1 Note: cos is defined by the character of loads。 It relates to circuit parameter, frequency but do not relate to circuit voltage and current Example: 40W incandescent lamp P UI cos COS 1 P 40 I 0.182 A U 220 40W daylight lamp COS 0.5 P 40 I 0.364 A U cos 220 0.5 Require the capacity of generating and supplying-electric facility is large power station usually ask the user COS 0.85 or the users will be punished。 The power factor of usual circuit Purely resistive circuit Purely inductive circuit or purely capacitive circuits R-L-C series circuit electromotor none load full load daylight lamp (R-L-C series circuit) COS 1 ( 0) COS 0 ( 90) 0 COS 1 (90 90) COS 0.2 ~ 0.3 COS 0.7 ~ 0.9 COS 0.5 ~ 0.6 Principals of Increasing Power Factor Make sure initial loads’ state is constant , Namely :load voltage and real power is constant the measurement of increasing power factor : i Parallel capacitive R u L uR uL C Calculation of Parallel- Connection Capacity if initial circuit’s power factor is cos L, require to compensate cos L to cos , solve the parallel connection C ? (if U、P is certain) IC i R u L uR uL C U I IRL L Analysis Basis: in all course P、U are constant。 From the phasor diagram: IC I C I RL sin L I sin U P UIRL cos L P UI cos IC U XC U C I IRL L P P UC sin L sin U cos L U cos P P UC sin L sin U cos L U cos P C ( tg tg ) L 2 U i R u L uR uL C Node (1)after paralleling connection capacity ,initial loads’ state is constant , namely ,I1 and cos1 are constant; (2)total current I reduce,because IX reduce but IR is constant Which is better for compensating power factor to inductive or capacitive? IC U Lack of I IRL inductive( compensate I'C Excessive compensate C larger I U IC smaller) IRL Capacitive ( I'Clarger) Conclusion :when is the same ,if compensate to capacitive ,it requires the capacity of capacitance is large ,and it is not economical .so circuits usual work in lack of compensation state By paralleling capacitive to compensate,the real power of circuit is whether change? IC U I I2 R jX C jX L P UI cos I1L I < IRL <L U I IRL L And cos 、 I Through computing we know total power is constant。 qualitative illustration:the resistances in circuits do not change ,so consumed powers do not change。 what else ways to increase power factor except paralleling capacitance ? Before Compensate I U After compensate Whether can Series I C capacitance? R L U U RL L U RL U RL U U RL U R I U C I 0 If external voltage is constant ,load can not get rated work voltage and current。 Example. If:f=50Hz, U=380V, P=20kW, cos1=0.6(lagging)。Require increase power factor is 0.9 ,solve parallel capacitance C。 IC I + U _ solution: P=20kW cos1=0.6 C + U _ By cos φ1 0.6 conclude : φ1 53.13o By cos φ2 0.9 conclude : φ2 25.84o P C (tgφ 1 tgφ 2 ) 2 U 20 10 3 ( tg 53 . 13 tg 25 . 84 ) 2 314 380 375 F R I L C L 1 2 U I I L IC Supplement: Power Measurement i + u - * Average torque : * W Power instrument * i2 Voltage line Z * i1 R Current line U M K I cos K 'UI cos K ' P R measure:the measure of P = U’s measure I’s measurecos When measure,P、U、I must not exceed each measure。 I 9-7 Maximum Power Transmission Zi Zi= Ri + jXi, ZL= RL + jXL US I , I Zi ZL - ( Ri RL ) 2 ( X i X L ) 2 2 R U L S realpower P RLI 2 ( Ri RL ) 2 ( X i X L ) 2 P 0 X L P 0 RL ZL US US + RL and XLcan change at will The Conditions of making ZL get maximal power: Best Match RL= Ri Pmax ZL= Zi*,即 XL =-Xi U S2 4Ri supplement example 5 R 1 + uS(t) 5 – us (t ) 2 sin( 2t 45o ) V If : 2.5H C Hope R to get the maximal power ,solve C? Solution 1:Use thevenin’s theorem equivalent circuit: U S 1 45 o V 2.5 Z i + – Zi 1 US 2 j5 C + 1 – C Uoc 2.5 j5 2 j1Ω 2.5 j5 1/(j2C) = -j1 1 1, C 0.5 F 2C Supplement :Work Principal of Lamp Double metal electrode Fixed electrode filament Ballast L link Light tube + - Impose Line voltage on two electrode Generate splendent light and release electricity Double metal electrode is heated and get through circuit(L、filament、started electrode) Current Electrode eject a Temperature rise 800 C is large large of electron --1000 C Start up implement Release electricity end get through Double metal electrode get cold and cut off di ul l dt Ballast generate high voltage pulse Electrode shoot a large of electron, because of voltage pulse filament breakdown and release electricity Mercury atom impact with high energy electron and generate ultraviolet ray Ultraviolet ray irradiate fluorescent powder and generate visible light Sometimes use 9-8 Resonance of Series Connection Circuit Sometimes avoid In L、C circuit ,if the port voltage and current of circuit are in phase ,it is called resonance 。 Define resonance 一、 Resonance of Series Connection Circuit I R + j L U _ 1、the conditions of resonance: Z R j(ωL 1 ) R j( X L X C ) ωC R jX 1 jω C When ω0 1 LC ω 0 L 1 ,Circuit arise resonance 0C resonant angular frequency Fixed Frequency the condition of RLC series circuit arising resonance: (1). L C constant ,change w 。 w0 is decided by circuit parameter ;a RLC series connection circuit only have a correspondingw0 ; when frequency equal the resonance frequency ,circuit arise resonance。 (2). The voltage frequency is constant ,change ,L or C ( usually change C )。 Usually radios choose broadcasting station ,in essence choose different frequent single through changing c to make circuit arise resonance. 2、the feature of Resonance of RLC Series Connection Circuit: UL (1). U and I Are in the same phase UR (2). Input port Z is purely resistance 。 In circuit the value of |Z| is minimal。 I UC |Z| (3). current I have the maximal value I0=U/R (U is certain)。 R 0 O (4). LC series connection total voltage is zone U U 0, L I + C Electric source voltage is imposed on resistance UR=U0 U _ R + U R _ + UL _ + UC_ j L 1 jω C In Series resonance circuit ,inductive voltage and capacitive voltage is same in value ,but the direction is reverse .So series connection resonance is called Voltage Resonance When 0L=1/(0C )>>R , UL= UC >>U 。 UL UR I UC The phasor diagram in resonance circuit (5). power P=RI02=U2/R,resistance power is up to the maximal value。 Land C exchange energy ,loads and electric source do not exchange energy。 二、Characteristic Impedance and Quality Factor 1. characteristic impedance When arise resonance ,inductive reactance equal capacitive reactance 0 L 1 L units: 0C C do not relative to response frequency ,only is defined by circuit parameter。 2. quality factor Q ω0 L 1 1 Q R R ω0 RC R L C None units It is one of targets which illustration performance of circuit ,and it is decided by circuit parameter。 The meanings of quality factor Q : UL (a) The relation of voltage : Q ω 0 L ω 0 LI 0 R RI 0 U L0 U C 0 U U UR UC In resonance circuit Q is equal to the result that inductive voltage UL0(or capacitive voltageUC0) divide electric source voltage 。It show the multiple that voltage is magnified. UL0andUC0 are the external voltage Q multiples,if w0L=1/(w0C )>>R ,Q is high,L and C arise high voltage ,sometimes it can be useful ,but sometimes it should be avoided。 I Example : a radio C=150pF,L=250mH, R=20 L 1290 Ω C Q R 65 If a single voltage is 10mV , inductance voltage is 650mV ,what we need. In power system ,because electric source voltage is high ,and when arise resonance the overwhelm voltage breakdown insulater and destroy equipments .what should be avoid. Thought: How do the common radios choose broadcasting station? What’s that we choose broadcasting station in essence ? • Why some radios’ noise is large ,while some is small? • Why we can hear several broadcast of broadcasting stations? • What is the interruption that power system affect communication ? 三. Selectivity and general resonance curve (a) selectivity The current is large to resonance single ,while the current is small to other single .the capacity of choosing different single is called selectivity. I( ) |Z| R O 0 O 0 Supplement :example. R The circuit parameter of a radios: + u1 _ + u2 _ + u3 _ L=250H, R=20, C=150ph, L U1=U2= U3 =10V, 0=5.5106 rad/s, C f0=820 kHz. f (kHz) L 1 ωC X I=U/|Z| (A) beijing 820 CC 640 1290 1000 1290 0 I0=0.5 –1660 – 660 I1=0.0152 Economy of beijing 1026 1611 1034 577 I2=0.0173 I=U/|Z| (A) I0=0.5 I1=0.0152 I2=0.0173 I(f ) I2 I1 3.46% (Very small) 3.04% I0 I0 ∴receive the broadcast of beijing820kHz。 0 640 820 1200 f (kHz) Choose the single of 0 from several frequent single , namely selectivity。 The good or bad of selectivity is relative to resonance curve, the more pointed of resonance ,the better of selectivity 。 If LC id constant ,R is large,the curve is smooth, the selectivity is bad。 The affection which Q to selectivity :the change of R affects selectivity in essence Q affect selectivity。 (b) general resonance curve In order to compare with different resonance loop easily, we usually make current resonance curve’s abscissa and ordinate divide w0 and I(w0) respectively. I (ω) ω ω η , I (ω) ω0 I (ω0 ) I (ω) U / | Z | R I (ω0 ) U/R 1 2 2 R (ω L ) ωC 1 ω0 L ω ω0 2 1 1 ( ) R ω0 ω0 RC ω I (η ) I0 1 1 1 Q (η )2 2 η I (η ) I0 1 ωL 1 2 1 ( ) R ω RC 1 ω0 2 ω 1 (Q Q ) ω0 ω General Resonance Curve I (η ) I0 Q=0.5 0.707 Q=1 Q=10 0 1 1 2 o The larger Q,resonance curve is more pointed 。If leave the resonance point a little ,the curve will descend abruptly ,circuit has strong capability of restraining to non-resonance frequency current , so its selectivity is good。 So ,Q is a important target which illuminate the character of resonance circuit 。 at the place of I / I 0 1 / 2 0.707 draw a level which intersects with each resonace curve at two points whose abscissa is η1and η respective ly . I (η ) I0 ω1 η1 , ω0 ω2 η2 , ω0 ω2 ω1. 0.707 Q=0.5 Q=1 Q=10 0 1 1 2 ω2 ω1 Called BW (Band Width) * The frequent character of UL(ω ) and UC(ω) U U L (ω) ω LI ω L |Z| ω LU R 2 (ω L 1 ) 2 ωC QU 1 2 1 )2 Q ( 1 η2 η2 I U C (ω) ωC U 2 1 ω C R (ω L ) ωC QU 2 η 2 Q 2 (η 2 1) 2 UC(Cm) QU U U( ) UL( ) UC( ) UL( ): 0 Cm 1Lm =0, UL( )=0; 0<<0, UL( ) become large ; =0, UL( )= QU; > 0,current begin to become small,but the speech is slow. XL continue to become large ,UL still have the trend of becoming large ,but when UL( ) reach the maximal value ,then it begin to reduce 。 ,XL, UL()=U。 Similarly we can discuss UC( )。 Base on math analysis ,when = Cm,UC() reach maximal value;when = Lm,UL() reach maximal value 。 UC( Cm)=UL( Lm)。 ( the condition Q 1 / 2 ) ωcm ω0 1 1 ω0 2 2Q ωLm ω0 2Q 2 ω0 2 2Q 1 U C (ωcm ) U L (ωLm ) Lm• Cm = 0。 QU 1 1 2 4Q QU The higher Q,the more Lm and Cm is close to 0。 9. 9 Parallel- connection Resonance Circuit 一、similar G、C、L parallel connection circuit + IS U C G L _ R L C series connection Z R j(ωL 1 ) ωC ω0 1 LC G C L parallel connection Y G j(ωC 1 ) ωL ω0 1 LC R L C series connection G C L parallel connection |Z| |Y| R G O I( ) 0 O U( ) IS/G U/R 0 O 0 O IC UL UR U I IG IS U UC 0 IL R L C series connection Voltage resonance U L U C 0 G C L parallel connection IL IC 0 Current resonance IL( 0) =IC( 0) =QIS UL( 0)=UC ( 0)=QU ω0 L Q 1 1 L R ω0 RC R C ω0 C Q 1 1 G ω0 GL G C L deduce: U I L (ω0 ) I C (ω0 ) ω0 L Q 1 U ω0GL IS IS R ω0C 1 C G L G 二 、Inductance Loop Paralleled Connected Capacity In fact the preceding current resonance do not realize,because inductance loop exist resistance ,circuit become series and parallel connection circuit ,resonance phenomenon is complexity. Y jω C R C L 1 R jω L R ωL j ( ω C ) 2 2 2 2 R (ω L) R (ω L) G jB Arise resonance B=0, Solve ω0 ω0 L ω0 C 2 0 2 R (ω0 L) 1 ( R )2 LC L Is decided by circuit parameter。 Only under a certain condition ,circuit can arise resonance ,if the parameter is not appropriate it can not arise resonance 。 When circuit parameter is certain ,whether circuit can arise resonance by changing source frequency ? It is decided by the following conditions : 1 R 2 L when ( ) , R , Arise resonance LC L C L when R , Cann' t arise resonance , so ω0 is a imagiary number . C When circuit arise resonance ,the circuit is equal to a resistance: R (ω0 L) Z (ω0 ) R0 L R RC 2 2 Supplement: Resonance of Series-Parallel Connection Circuit Example: ( a) circuit can arise series connection resonance (X=0), also can arise parallel connection resonance (X=)。Solve the series-parallel connection resonance frequency by solving input impedance。 L3 L(a) 1 C To (a) circuit , L1 、 C2 parallel circuit , in low frequency it is inductive 。 With frequency becoming large , at a 1arise parallel connection resonance。 >1,the parallel part is capacitive ,at a 2 can arise series connection resonance with L3。 Quantitative analysis : jωL1 ( 1 ) L1 jωC 2 Z (ω ) jωL3 jωL3 2 1 ω L1C 2 1 jωL1 jωC 2 ω 3 L1 L3C 2 ω ( L1 L3 ) j ω 2 L1C 2 1 When Z( )=0,namely numerator =0: ω L1 L3 C 2 ω2 ( L1 L3 ) 0 3 2 ω2 0 ω2 (resign) L1 L3 L1L3C2 solution: (series connection resonance) L3 When Y( )=0,namely denominator=0,: ω12 L1C 2 1 0 ω1 1 L1C2 L1 (parallel connection resonance) So, 1< 2。 C2 To (b) circuit we can do similar qualitative analysis 。 L1 、 C2 parallel connection , at low frequency it is inductive 。 At 1it can arise series connection resonance with 。When >1,with the frequency becoming large ,parallel part become capacitive from inductive, At 2 arise resonance。 parallel connection C3 L1 C2 (b) jωL 1 1 jωC 2 Z (ω1 ) 1 jωC 3 jωL 1 jωC 1 jωC 2 1 ω 2 L1 (C 2 C 3 ) j ωC 3 (1 ω 2 L1 C 2 ) 1 3 jωL 1 1 ω 2 L1 C 2 C3 Respectively numerator =0、 denominator=0: L1 ω1 1 Series resonance L1 (C 2 C 3 ) ω2 1 L1C 2 ω1 ω2 Parallel resonance C2 Frequency Characteristic of Resistance Z ( )=jX( ) X( ) (a) O 1 2 2 X( ) (b) O 1 Supplement: Application of LC Series-Parallel Connection Circuit Compose kinds of passive filter circuit。 example: source u1(t),including two frequency 1、2 (1<2): u1(t) =u11(1)+u12(2) Require response u2(t) only include the voltage with 1。 How to come true? + u1(t) _ u2(t) by the following passive filter circuit to come true: C3 + u1(t) _ ω2 ω1 L1 C2 1 L1 C 2 1 L1 (C 2 C 3 ) R + u2(t) _ Parallel resonance,open circuit Series resonance,short circuit 1 single is added to loads directly 。 in the circuit 2 >1 ,filter high frequency, get low frequency。 Other Forms of Filter Circuit : L1 L3 C3 C1 L2 C2 band-pass filter L3 L1 C1 L2 C3 C2 band elimination filter Conclusion: Exercises of Sine Steady Circuit Requirements: 1.the basis concepts of sinusoid :three key factor of sinusoid、phase difference、waving and so. 2. complex impedance、complex admittance 3. quantitative computer:phasor method 4. qualitative analysis :phasor diagram 5. power computer:real power、reactive power、 apparent power、power factor 、complex power and so 一、 i + u – Circuit shown in the figure,if: Review u( t ) 10 sin( 400π t 60 ) V Z Z φ 1 i (t ) cos(400π t 150 ) A 2 200Hz, T=_______. 0.005s 400 rad/s, f=_____ (a) voltage source’s =_________ 7.07V (b) voltage’s rms value U=_______current’s rms value I=________. 0.5A 60 (c) voltage and current’s phase differenceu–i =_________. capacitive 14.14 60 (d) this load is ______, |Z|=_________, =_________. Compare to phase ,must change sinusoid into standard sinusoid: 1 1 i(t ) cos( 400πt 150 180 ) cos( 400πt 30 ) 2 2 1 1 sin( 400πt 30 90 ) sin( 400πt 120 ) A 2 2 = u–i=60º–120º= –60º 二、judge the result right or wrong ,if it is wrong ,please correct 。 1. I U (1) I R jω L j L + UL – + + U ( 2) I 2 R (ω L )2 (3) u uR uL 2 (6) P I 2 R 2. i + u – 2 R ( 4) U U U U (5) P R R (7)| Z| R 2 (L) 2 R UR – U – 2 L 2 If u( t ) 311 sin( t 45 )V , Ζ 2560 Ω so i u 311 sin( t 45) 12.44 sin(t 45 60)A Z 2560 311 45 o U 2 Z o I 8 . 8 15 A o Z 2560 i 8.8 2 sin(t 15 o ) A phsor=sinusoid 三、 is6 Circuit shown as follows ,write loop current equation and node’s voltage equation in phasor。 i1 + us1 – C2 L4 C3 is3 i3 i2 Loop method: R5 I 1 I S6 I 2 I S3 1 1 ( j j L4 R5 ) I 3 ( j j L4 ) I 1 C2 C2 ( j L4 R5 ) I 2 U S1 is6 Nodes methods U2 Un1 + C2 us1 – U3 L4 C3 is3 U 1 U S1 jC 2 U 1 ( jC 2 1 1 )U 2 U 3 I S3 jL4 jL4 1 1 1 U2 ( ) U 3 I S6 jL4 jL4 R5 R5 四、 40Ω 24Ω j18Ω I + + US U1 IR – j30Ω IC + – A U2 – j50Ω + U3 – If:A is 1.5A(rms value)。 solve:(1)US=? (2)solve circuit absorb P and Q solve:If IR 1.50 A U 2 I 2 90 j2A C So U 2 40 1.50 600 V j30 I I I 1.5 j 2 2.553.1 A R C U 1 (24 j18) I (24 j18) 2.553.1 7590 j75V U 3 ( j50) I ( j50) 2.553.1 125 36.9 100 j75V I 2.553.1 A 40Ω I + 24Ω j18Ω + U1 IR – A j30Ω IC US + – U2 – j50Ω + U3 – U S U 1 U 2 U 3 j75 60 100 j75 1600 V PA US I cos φ 160 2.5 0.6 240 W Pabsord 24I 2 40I R2 24 (2.5) 2 40 (1.5) 2 240 W Qabsord U S I sin φ 160 2.5 (0.8) 320 Var Qabsord 18I 2 30 I C2 50 I 2 18 (2.5) 2 30 22 50 (2.5) 2 320 Var Electric source release: S 160 2.5 53.1 240 j320VA 五、 I L + + US 1 – US 2 If : U S1 110 30 V, U S2 11030 V, L 1.5H, f 50Hz . Solve :the P and Q is released by two – source respectively。 U U 110 30 110 30 j110 solve: S1 S2 I 0.234 A jω L1 j314 1.5 j471 Voltage sourceUs1 P1release U S1I cos( 30 180 ) 110 0.234 (0.866) 22.3 W Q1releae U S1 I sin( 30 180 ) 110 0.234 0.5 12.9 Var Voltage Us2 P2 release U S2 I cos(30 180 ) 110 0.234 (0.866) 22.3 W Q2release U S 2 I sin( 30 180 ) 110 0.234 (0.5) 12.9 Var 六、 + I 1 A1 A2 U – A3 R2 I 3 I2 Solve :assumeZ3 =|Z3| 3 Z3 If : U=220V , f=50HZ , A1 is 4A, A2is 2A,A3is 3A,Z3is inductive load。solve:R2 、Z3。 so R2 U 220 110 Ω I2 2 Solve Z3. Solution 一:draw phase graph ,voltage is reference phasor Base on cos theorem : I2 U 42= 32+ 22–232cos 3 2 2 2 2 4 3 2 1 o 3 cos θ , θ 104 . 5 I3 4 242 4 I1 φ 3 180 o θ 180 o 144.5 o 75.5 o U 220 | Z 3 | 73.3 Ω, Z 3 73.375.5o Ω 18.4 j71Ω I3 3 Solve Z3 solution二:. U 220 | Z 3 | 73.3 Ω I3 3 If U 2200 V, So I2 20 A, I3 3 φ3 A, I1 I2 I 3 即 I1 4φ A 4φ 20 3 φ 3 4cos +j4sin =2+3cos 3–j3sin 3 Thus: 4cos =2+3cos 3 (1) 4sin =–3sin 3 (2) from (1)2+(2)2 :16 =(2+3cos 3)2+(–3sin 3)2 =4+12cos 3+9(cos 3)2+9(sin 3)2 = 4+12cos 3+9 3 1 cosφ 3 , φ 3 75.5o 12 4 Z 3 | Z 3 | 3 73.375.5 o Ω 18.4 j71Ω 七、 V1 I1 US * * W + + R jX 1 U 1 V + – A2 jX 2 – I2 A3 jX 3 I3 U 2 – In Analysis of Sinusoidal Steady State Circuit shown as follows ,if V is220V,V1 is 100 2 V,A2 is 30A,A3 is 20A ,W is 1000W(P)。solve R、X1、X2 、X3。 phase method,assume:U 2 U 2 0 V so: I2 j30A, I3 j20A, I1 I2 I3 j10A P I 1 R, R P / I 1 1000 / 10 2 10 Ω 2 2 V1 I1 * * US + + – + W V R U 1 jX 1 – A1 jX 2 I2 A2 jX 3 U2 can use phase graph U 2 I3 – U 1 100 2 If: Z1 R jX1 Z1 φ1 So Z 1 10 2 Ω I1 10 2 X1 2 2 2 X 1 Z 1 R (10 2 ) 10 10Ω φ 1 arctg 45 R I1 j10 10 90 A U 1 100 2 45 V U S U 1 U 2 100 j100 U 2 100 U 2 j100 U S2 (100 U 2 ) 2 100 2 , U 2 220 2 100 2 100 96V X 2 U 2 / I 2 96 / 30 3.2 Ω, X 3 U 2 / I 3 96 / 20 4.8 Ω V1 I1 * * US + W + + V – R U 1 jX 1 – A1 jX 2 I2 A2 jX 3 U 2 I3 – U S U 1 U 2 U 1 U R U X 1 I I I 1 2 3 U 2 I1 I3 U S I2 135° U R U 1 U X 1 U S2 U 22 U 12 2U 1U 2 cos 135 2 U 2 100 2 ( )U 2 (100 2 ) 2 220 2 0 2 U 22 200U 2 28400 0 , U 2 96V 2 2 (abandon negative value) • Assignments:9- 8. 10. 15. 24. 26 (A).28. 32 、38 Problems in homework:notice writing Judge Right Or Wrong in R-L-C series circuit,assume I I0 U U U U 2 R 2 L U I R X L X C 2 2 2 C ? ? U IR j X L X C ? Judge Right Or Wrong in R-L-C series circuit,assume I I0 U U U U 2 R 2 L U I R X L X C 2 2 2 C ? ? U IR j X L X C ? Judge right or wrong I0 I in R-L-C series circuit,assume X L XC 1 U L U C tg tg ? U R 1 ? U L UC 1 L C tg tg ? ? R UR 1