* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Actuators for Robots
Three-phase electric power wikipedia , lookup
Mains electricity wikipedia , lookup
History of electric power transmission wikipedia , lookup
Opto-isolator wikipedia , lookup
Utility frequency wikipedia , lookup
Control theory wikipedia , lookup
Commutator (electric) wikipedia , lookup
Power engineering wikipedia , lookup
Alternating current wikipedia , lookup
Distributed control system wikipedia , lookup
Resilient control systems wikipedia , lookup
Rotary encoder wikipedia , lookup
Voltage optimisation wikipedia , lookup
Control system wikipedia , lookup
Electrification wikipedia , lookup
Electric machine wikipedia , lookup
Automation bias wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Electric motor wikipedia , lookup
Brushed DC electric motor wikipedia , lookup
Induction motor wikipedia , lookup
Brushless DC electric motor wikipedia , lookup
Actuators for Robots Actuators are used in order to produce mechanical movement in robots. Slides from Braunl and Jussi Suomela Jussi Suomela HUT/Automation 1 Actuators In this lecture we will present:  Motor and Encoder  H-Bridge  Pulse-Width-Modulation (PWM)  Servos  Other robotic actuators Actuator Types Electrical Hydraulic Pneumatic Others Jussi Suomela HUT/Automation 3 Actuators  Actuators can be built in may different ways, most prominently: – electrical motors – pneumatics and valves.  In this course we will only deal with electrical motors  In past we built pneumatic robots which you can still find in the lab. – We will build them again after purchasing air compressor  My first robot was very strong and it was hydraulic. It pissed hot oil at students in Warsaw. Servo System Servo is mechanism based on feedback control. The controlled quantity is mechanical. Jussi Suomela HUT/Automation 5 Servo Control of an Electrical Motor Jussi Suomela HUT/Automation 6 Properties of Servo  high maximum torque/force allows high (de)acceleration  high zero speed torque/force  high bandwidth provides accurate and fast control  works in all four quadrants  robustness Jussi Suomela HUT/Automation 7 Electrical Actuators  easy to control  from mW to MW  normally high velocities 1000 - 10000 rpm  several types  accurate servo control  ideal torque for driving  excellent efficiency  autonomous power system difficult Jussi Suomela HUT/Automation 8 Electric actuators •Mainly rotating but also linear ones are available •linear movement with gear or with real linear motor Electrical Actuator Types DC-motors brushless DC-motors asynchronous motors synchronous motors reluctance motors (stepper motors) Jussi Suomela HUT/Automation 10 DC-Motors simple, cheap easy to control 1W - 1kW can be overloaded brushes wear limited overloading on high speeds Jussi Suomela HUT/Automation 11 DC-motor control Controller + H-bridge PWM-control Speed control by controlling motor current=torque Efficient small components PID control H-Bridge H-Bridge Hardware Implementation with Microcontroller: 2 Digital output pins from microcontroller, [one at Gnd, one at Vcc] feed into a power amplifier Alternative: use only 1 digital output pin plus one inverter, then feed into a power amplifier Power Amplifier Brushless DC-Motors (pm synchronous motor)  no brushes  no wearing parts  high speeds  coils on cover => better cooling  excellent power/weight ratio  simple  needs both speed and angle feedback  more complicated controller  From small to medium power (10W – 50kW) Jussi Suomela HUT/Automation 18 Asynchronous Motors very simple, very popular in industry 0,5kW - 500kW More difficult to control (frequency) nowadays as accurate control as DC-motors In mobile machines also (5kW ) Jussi Suomela HUT/Automation 19 Structure of an Asynchronous motor Jussi Suomela HUT/Automation 20 Synchronous Motors usually big 100 kW - XXMW also small ones ~ brushless DC-motors from 50W to 100 kW controlled like as-motors (frequency) ships industry Mobile machines Jussi Suomela HUT/Automation 21 Stepper Motors Reluctance (Stepper) Motors angle control slow usually no feedback used accurate positioning with out feedback not servos easy to control Jussi Suomela HUT/Automation 23 Principle of Stepper Motor Jussi Suomela HUT/Automation 24 Stepper Motors  Stepper motors are another kind of motors that do not require feedback  A stepper motor can be incrementally driven, one step at a time, forward or backward  Stepper motor characteristics are: – Number of steps per revolution (e.g. 200 steps per revolution = 1.8° per step) – Max. number of steps per second (“stepping rate” = max speed)  Driving a stepper motor requires a 4 step switching sequence for full-step mode  Stepper motors can also be driven in 8 step switching sequence for half-step mode (higher resolution)  Step sequence can be very fast, the the resulting motion appears to be very smooth Stepper Motors  Advantages – No feedback hardware required  Disadvantages – No feedback (!) Often feedback is still required, e.g. for precision reasons, since a stepper motor can “lose” a step signal.  Requires 2 H-Bridges plus amplifiers instead of 1  Other – Driving software is different but not much more complicated – Some controllers (e.g. M68332) support stepper motors in firmware (TPU) Motor and Encoder Motor and Encoder  Motor speed determined by: supplied voltage  Motor direction determined by: polarity of supplied voltage  Difficult to generate analog power signal (1A ..10A) directly from microcontroller → external amplifier (pulse-width modulation) Motor and Encoder  Encoder disk is turned once for each rotor revolution  Encoder disk can be optical or magnetic  Single detector can determine speed  Dual detector can determine speed and direction  Using gears on motor shaft increases encoder accuracy Pulse-Width Modulation A/D converters are used for reading analog sensor signals Why not use D/A converter for motor control? – Too expensive (needs power circuitry) – Better do it by software, switching power on/off in intervals – This is called “Pulse-Width Modulation” or PWM Pulse-Width Modulation  How does this work? – We do not change the supplied voltage – Power is switched on/off at a certain pulse ratio matching the desired output power  Signal has very high frequency (e.g. 20kHz)  Motors are relatively slow to respond – The only thing that counts is the supplied power – ⇒ Integral (Summation)  Pulse-Width Ratio = ton / tperiod Servos Servos Servos  Terminology:  Do not confuse “servos” with “servo motors”  DC motors (brushed or brushless) are also sometimes also referred to as “servo motors”  See: http://www.theproductfinder.com/motors/bruser.htm  “So when does a motor become a servo motor? There are certain design criteria that are desired when building a servo motor, which enable the motor to more adequately handle the demands placed on a closed loop system.  First of all, servo systems need to rapidly respond to changes in speed and position, which require high acceleration and deceleration rates.  This calls for extremely high intermittent torque. Servos  As you may know, torque is related to current in the brushed servo motor.  So the designers need to keep in mind the ability of the motor to handle short bursts of very high current, which can be many times greater than the continuous current requirements.  Another key characteristic of the brushed servo motor is a high torque to inertia ratio.  This ratio is an important factor in determining motor responsiveness.  Further, servo motors need to respond to small changes in the control signal.  So the design requires reaction to small voltage variations.” Hydraulic Actuators linear movement big forces without gears actuators are simple in mobile machines Bad efficiency motor, pump, actuator combination is lighter than motor, generator, battery, motor & gear combination Jussi Suomela HUT/Automation 43 Hydraulic actuators Hydraulic motor Jussi Suomela HUT/Automation 45 Hydraulic Valves  servo valves – complicated structure, expensive – good control  proportional valves – simple, cheap – robust – more difficult to control  Digital hydraulics, new! – several fast on/off valves (2n) – digital control of the flow Jussi Suomela HUT/Automation 46 Servo Valve Jussi Suomela HUT/Automation 47 Proportional Valve Jussi Suomela HUT/Automation 48 Pneumatic Actuators like hydraulic except power from compressed air fast on/off type tasks big forces with elasticity no leak problems Jussi Suomela HUT/Automation 49 Other Actuators piezoelectric magnetic ultra sound SMA inertial Jussi Suomela HUT/Automation 50 Examples Arska Workpartner Shape Memory Alloy Robot Practically  In this class we will use only servos  In past we used DC motors with H-bridge, pneumatic actuators, nintinol wires and hydraulic actuators.  So far, if you want to build rather small robots and you want to concentrate on intelligence and sensing, RC servos are the best choice. Many new types arrive every year, from very small to big powerful ones. Look to internet.  We will learn about some new actuators if time will allow at the end of the class.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            