* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download DT3: RF On/Off Remote Control Technology
Remote control wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Microwave transmission wikipedia , lookup
Direction finding wikipedia , lookup
Spectrum analyzer wikipedia , lookup
Cellular repeater wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Broadcast television systems wikipedia , lookup
Audio power wikipedia , lookup
Analog television wikipedia , lookup
405-line television system wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Phase-locked loop wikipedia , lookup
Battle of the Beams wikipedia , lookup
Amateur radio repeater wikipedia , lookup
Regenerative circuit wikipedia , lookup
Power electronics wikipedia , lookup
Opto-isolator wikipedia , lookup
Telecommunication wikipedia , lookup
Rectiverter wikipedia , lookup
Tektronix analog oscilloscopes wikipedia , lookup
Superheterodyne receiver wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Index of electronics articles wikipedia , lookup
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods Radio Frequency Spans from 3kHz to 300GHz Advantage: Long Distance No stress on line-of-sight Disadvantage: Needs to be operated in accordance with the FCC Interference occurs between RF devices Remote Control using RF Remote Control: Wireless device used to operate audio, video and/or other electronic equipment using transmission. Car opener Garage Door Specifically for our project: Using RF as a remote control to power on/off a system. Selecting a frequency Spectrum Characteristics How “rich” is your signal Distance and environment Legal Considerations Licensed or unlicensed Allowed power output International regulations Generalizing the RF Spectrum Frequency Examples 3 Hz – 30 kHz Submarine Communications 30 kHz – 300 kHz RFID, Navigation Signals 300 kHz – 3 MHz AM Broadcasts 3 MHz – 30 MHz Amateur radio, RFID 30 MHz – 300 MHz FM Radio, Line of sight aircraft communication, Maritime Radio 300 MHz – 3 GHz Broadcast TV, Cell phones, WLAN, Bluetooth, GPS 3 GHz – 30 GHz WLAN, Backhaul Communications • Lower frequencies will go further and more easily penetrate obstacles • Higher frequencies have greater bandwidth Licensed Frequencies If a RF signal is considered “Mission Critical” a license should be considered Allows for sole use of that frequency Significant cost $19 Billion raised in 700 MHz auction Large Telecommunication providers Other options do exist in the unlicensed spectrum ISM Band Industrial, Scientific, and Medical bands A shared and unlicensed set of frequencies Must accept all interference received Transmission power regulations Usage regulations Regulations vary by country Max power output for 2.4 GHz: US: 30 dBm, before antenna. 36 dBm, with antenna. Europe: 20 dBm 900 MHz is unlicensed only in North and South America Frequency range 6.765–6.795 MHz 13.553–13.567 MHz 26.957–27.283 MHz 40.66–40.70 MHz 433.05–434.79 MHz 902–928 MHz 2.400–2.500 GHz 5.725–5.875 GHz 24–24.25 GHz 61–61.5 GHz 122–123 GHz 244–246 GHz ISM Congestion 900 MHz and 2.4 GHz ranges are extremely congested Urban areas will have higher congestion RF Detection RF detector monitors the output of an RF circuit and develops a dc output voltage. RF detectors are used primarily to measure and control RF power in wireless systems. In a receiver: Signal strength is a key factor in maintaining reliable communications. In a transmitter: The amount of power transmitted is critical because of regulatory guidelines. Main Applications of RF Detectors Transmitter output power measurement is the primary application. It is essential to know the RF output power. In many cases, the transmitter power is controlled automatically. As a result, the output power is measured and compared to a set point level in a feedback control circuit so power can be adjusted as required. Types of RF Detectors There are two basic types: 1. Logarithmic type 2. RMS type. The log type converts the input RF power into a dc voltage proportional to the log of the input, making the output directly related to decibels. The RMS detector creates a dc output proportional to the RMS value of the signal. General Criteria for Selecting RF Detectors The type of RF signal to be measured is the most important determining factor in the type of detector to use. Log type is best for: general power measurement and control applications pulsed RF signals RMS type is best for: those applications where then signal has a high crest factor or a widely varying crest factor *The crest factor is the ratio of the peak to RMS value of the signal. Binary Coding The process of coding pieces of information and are assigned the values of “0” or “1”. Examples of binary coding for: • Unique codes for different devices • Character strings to bit strings • Security Amplitude Shift Key Modulation (ASK) Most basic of shift key modulations. Binary form of AM Type of ASK On/Off Key Advantages v. Disadvantages of ASK WOO-HOO’s: Cheaper Conserves power with the case of OOK BOO’s: Susceptible to interference What is FSK ??? A frequency modulation scheme where digital information is transmitted through discrete frequency changes of a carrier wave. Two types are Minimum-shift keying (MSK) and Audio frequency-shift keying (AFSK). Common Applications of FSK Remote Metering Automatic Meter Reading (AMR) Car door openers/remote car starters. Garage door openers Advantages of FSK Rejects unwanted noise Better signal-to-noise ratio Automatic volume control Disadvantages of FSK Expensive High power consumption Slow data transmission Phase Shift Keying (PSK) A digital implementation of Phase Modulation (PM) Most forms of digital data transmission used a form of Phase Modulation Very high bitrate capabilities Unnecessarily complicated for most remote control applications Analog Signaling (Tone Signals) Information sent using analog tones within the voice band (20 Hz – 20 kHz) Tones detected or not detected, corresponding to binary ‘1’ or ‘0’ Tones of frequency ‘a’ corresponds to ‘1’, frequency ‘b’ corresponds to ‘0’ (AFSK) Can use any analog modulation technique and existing equipment Commonly used by amateur radio and emergency services Conclusion Frequency Selection RF Detection Types of Encoding Types of Modulation Questions?