* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 14_Water Cooling System
Heat exchanger wikipedia , lookup
Thermal conduction wikipedia , lookup
Solar water heating wikipedia , lookup
Cogeneration wikipedia , lookup
Copper in heat exchangers wikipedia , lookup
Evaporative cooler wikipedia , lookup
Underfloor heating wikipedia , lookup
Radiator (engine cooling) wikipedia , lookup
Intercooler wikipedia , lookup
Cooling tower wikipedia , lookup
WATER COOLING SYSTEM LESSON FOURTEEN 1. HEAT SOURCES Burning of fuel Heat developed by compression of air Frictional heat 1. HEAT SOURCES Burning of fuel Heat developed by compression of air Frictional heat 2. HEAT DISTRIBUTION 1/3 = converted into useful work ( transferred into mechanical energy / BHP. 1/3 = lost as exhaust gases 1/3 = lost for cooling / absorbed by metallic walls of the combustion chamber. 1. HEAT SOURCES Burning of fuel Heat developed by compression of air Frictional heat 2. HEAT DISTRIBUTION 1/3 = converted into useful work ( transferred into mechanical energy / BHP. 1/3 = lost as exhaust gases 1/3 = lost for cooling / absorbed by metallic walls of the combustion chamber. 3. OVERHEATING Breakdown of L.O. film Loss in material strenght Excessive stresses due to unequal temperatures Faliure to maintain proper clearances between running parts. 4. COOLANTS Fresh water Luboil 4. COOLANTS Fresh water Luboil 5. COOLING WATER TEMPERATURE 5.1 The temperature should be kept as high as possible. 5.2 If to high, it will cause boiling of water and formation of scale deposits ( incrustration ) 5.3 If to low, it will lead to condensation of combustion gases on the liner surfaces. 5.3.1 Product of condensation may: contain acids causing corrosion cause so called cold sludge in the L.O. increasing wear in all moving parts 6. COOLING WATER TREATMENT & CONSEQUENCES If the cooling water is not properly treated, the closed cooling systems may undergo fouling, formation of deposits ( preventing or disturbing the heat transfer ). The deposit consists of loose sludge and solid particles. Removal: mechanically ( first brushed or rinsed off with water ) or chemically. Narrow spaces are chemically cleaned. Limestone deposits can be cleaned with acid solution. 6. COOLING WATER TREATMENT & CONSEQUENCES If the cooling water is not properly treated, the closed cooling systems may undergo fouling, formation of deposits ( preventing or disturbing the heat transfer ). The deposit consists of loose sludge and solid particles. Removal: mechanically ( first brushed or rinsed off with water ) or chemically. Narrow spaces are chemically cleaned. Limestone deposits can be cleaned with acid solution. 7. WATER COOLING SYSTEMS Large slow speed, two stroke engines have 2 separate closed cooling circuits. A header or expansion tank allows venting of the system. The header has connections from engine discharge & pump suction line. A heater is fitted with by pass to warm the engine when necessary. Cylinder jacket system Water → lower end of the jacket → cylinder cover → exhaust valve cages → turbocharger → turbine cooling spaces → air separator → main discharge. The piston cooling system Water → piston cooling tank → piston water cooler → piston cooling connections → return by gravity to supply tank