Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2006 Fossil Discovery of Early Tetrapod “Tiktaalik” “missing link” from sea to land animals Evidence Supporting Evolution AP Biology Evidence for Evolution • Paleontology – fossils show change in a species • • over time Biogeography – Similar species are found in similar ecosystems around the world Morphology – Comparing structures – – Homologous structures – body parts with similar structure but possible different function. Shows common ancestry Analogous structures – similar structure develops in organisms that share a common ecosystem but not a common ancestry • Biochemical or Molecular AP Biology – Similarities in gene sequences, proteins, DNA Fossils Preserved remains of living things Paleontology is the study of the fossil record Most organisms do not leave a fossil after death Explains the “missing links” Sedimentation Fossils AP Biology As the organism decomposes the spaces will be filled with the minerals from the silt The Archaeopteryx Fossil Reptilian Features Forelimb has three functional fingers with grasping claws. Lacks the reductions and fusions present in other birds. Breastbone is small and lacks a keel. True teeth set in sockets in the jaws. The hind-limb girdle is typical of dinosaurs, although modified. Long, bony tail. AP Biology Avian Features Vertebrae are almost flatfaced. Impressions of feathers attached to the forelimb. Belly ribs. Incomplete fusion of the lower leg bones. Impressions of feathers attached to the tail. LEFT: Archaeopteryx lithographica Found in 1877 near Blumenberg, Germany How old is that fossil? Relative Dating Age of fossils based according to their location in strata Absolute Dating Age of fossils determined by analyzing the content of radioactive isotopes found in the fossil. Half-life: The length of time required for half of the radioactive elements to change into another stable element. Unaffected by temperature, light, pressure, etc. All radioactive isotopes have a dependable half life. Ex: C14 decays into N14 AP Biology Relative Dating AP Biology Absolute Dating How radioactive “naturally occurring” elements get inside an organism: A.K.A – Radiometric dating AP Biology Homologous Structures Anatomical evidence AP Biology Analogous structures Convergent Don’t be fooled by evolution their looks! Those tails Does fins this & mean & sleek they bodies have a are recent common ancestor? analogous structures! Solving a similar problem with a similar solution AP Biology Molecular Homology Human Macaque Dog Bird Frog Lamprey The sequence in DNA proteins Why &compare is a &molecular DNA proteins record of evolutionary across species? relationships. Comparative hemoglobin structure 8 0 32 45 67 125 10 20 30 40 50 60 70 80 90 100 110 120 Number of amino acid differences between hemoglobin (146 aa) of vertebrate species and that of humans AP Biology Vestigial organs Why would whales have pelvis & leg bones if they were always sea creatures? AP Biology These are remnants of structures that were functional in ancestral species Evolution evidence at the cellular level Domains: Archaea, Bacteria and Eukarya Elements conserved through all: DNA, RNA and many metabolic pathways. Eukaryotes – core features: Cytoskeleton Nucleus Membrane-bound organelles Linear chromosomes Endomembrane system AP Biology The Origin of Species Mom, Dad… There’s something you need to know… I’m a MAMMAL! AP Biology 2010-2011 Speciation • Changes in allele frequency are so great that a new species is formed • Can be slow and gradual or in “bursts” • Extinction rates can be rapid and then adaptive radiation follows when new habitats are available Correlation of speciation to food sources Seed eaters Flower eaters Insect eaters Rapid speciation: new species filling niches, because they inherited successful adaptations. AP Biology radiation Adaptive So…what is a species? • Population whose members can interbreed & produce viable, fertile offspring • Reproductively compatible Distinct species: songs & behaviors are different enough to prevent interbreeding Eastern Meadowlark Western Meadowlark How do new species originate? When two populations become reproductively isolated from each other. Speciation Modes: allopatric geographic separation “other country” sympatric still live in same area “same country” AP Biology Allopatric Speciation Physical/geographical separation of two populations Allele frequencies diverge After a length of time the two population are so different that they are considered different species If the barrier is removed interbreeding will still not occur due to pre/post zygotic isolation Sympatric Speciation Formation of a new species without geographic isolation. Causes: – Pre-zygotic barriers exist to mating – Polyploidy (only organism with an even number of chromosomes are fertile…speciation occurs quickly) – Hybridization: two different forms of a species mate in common ground (hybrid zone) and produce offspring with greater genetic diversity than the parents….eventually the hybrid diverges from both sets of parents Sympatric Speciation Gene flow has been reduced between flies that feed on different food varieties, even though they both live in the same geographic area. Pre-zygotic Isolation Sperm never gets a chance to meet egg •Geographic isolation: barriers prevent mating •Ecological isolation: different habitats in same region •Temporal isolation: different populations are fertile at different times •Behavior Isolation: they don’t recognize each other or the mating rituals •Mechanical isolation: morphological differences •Gamete Isolation: Sperm and egg do not recognize each other PRE-Zygotic barriers Obstacle to mating or to fertilization if mating occurs geographic isolation AP Biology behavioral isolation ecological isolation temporal isolation mechanical isolation gametic isolation Post Zygotic Isolation • Hybrid Inviability – the embryo cannot develop inside the mothers womb • Hybrid Sterility – Adult individuals can be produced BUT they are not fertile • Hybrid Breakdown – each successive generation has less fertility than the parental generation Evolutionary Time Scale • Microevolution – changing of allele frequencies in a population over time. • Macroevolution – patterns of change over geologic time. Determines phylogeny – Gradualism – species are always slowly evolving – Punctuated equilibrium – periods of massive evolution followed by periods with little to no evolution Patterns of Evolution • Divergent Evolution (adaptive radiation) • Convergent Evolution – AP Biology Two or more species that share a common environment but not a common ancestor evolve to be similar Is it a shark or a dolphin?? Coevolution Two or more species reciprocally affect each other’s evolution predator-prey disease & host competitive species mutualism pollinators & flowers AP Biology Mass Extinctions • At least 5 mass extinctions have occurred throughout history. • Possible causes: dramatic climate changes occurring after meteorite collisions and/or continents drift into new and different configurations. AP Biology