* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Population Ecology
Source–sink dynamics wikipedia , lookup
Two-child policy wikipedia , lookup
Storage effect wikipedia , lookup
Human overpopulation wikipedia , lookup
The Population Bomb wikipedia , lookup
World population wikipedia , lookup
Maximum sustainable yield wikipedia , lookup
POPULATION ECOLOGY Chapter 19 ECOLOGY Study of interactions of organisms with each other and the physical environment Can be divided into increasingly comprehensive levels: Organismal ecology Population ecology Community ecology Ecosystem ecology ORGANISMAL ECOLOGY Concerned with evolutionary adaptations Enable individual organisms to meet the challenges posed by their abiotic environments POPULATION ECOLOGY Concentrates mainly on factors that affect population density and growth COMMUNITY ECOLOGY Focuses on how interactions between species affect community structure and organization ECOSYSTEM ECOLOGY All abiotic factors in addition to the community of species in a certain area Focuses on energy flow and the cycling of chemicals among the various abiotic and biotic factors WHAT IS POPULATION ECOLOGY? Study of how members of a population interact with their environment Focuses on factors that influence a population’s: Size Growth rate Density Structure POPULATIONS Distribution Pattern of dispersal of individuals across an area Affected by availability of resources Limiting factors nonliving (abiotic) and living (biotic) components of an environment that support living organisms Environmental aspects that particularly determine where an organism lives Range Portion of the globe where the species can be found POPULATIONS Density Number of individuals per unit area How do we measure population density? impossible to count all individuals in a population estimated by indirect indicators number of bird nests INFLUENCES ON POPULATION Carrying capacity Number of individuals of a species that a particular environment can support PATTERNS OF DISPERSION…. way individuals are spaced within the population’s geographic range Three main models of dispersion: Clumped Uniform Random PATTERNS OF DISPERSION Clumped pattern of dispersion Individuals aggregate in patches PATTERNS OF DISPERSION Uniform pattern of dispersion Results from interactions among the individuals of a population PATTERNS OF DISPERSION Random pattern of dispersion Individuals are spaced in a patternless, unpredictable way COMPARISON OF SPECIES Survivorship Life history traits 1. SURVIVORSHIP Chance an individual in a population survives to various ages Represented graphically in a survivorship curve Plot of individuals surviving at each age in maximum life span Uses a percentage scale Can compare species with various life spans on same graph SURVIVORSHIP Type I survivorship curve Type II survivorship curve Most individuals survive until old age Decreases consistently over time Type III survivorship curve Most individuals die early 2. LIFE HISTORY Set of traits that affect the organisms: Reproduction Survival Key feature of a populations pattern of survivorship Key life history traits are: Age at first reproduction Frequency of reproduction Number of offspring Amount of parental care provided TYPES OF LIFE HISTORIES Organisms with an opportunistic life history: Take immediate advantage of favorable conditions Typically exhibit a Type III survivorship curve Organisms with an equilibrial life history: Reach sexual maturity slowly Produce few, well cared for offspring typically large-bodied and longer lived Typically exhibit a Type I survivorship curve occur in environments where population size is at or near carrying capacity POPULATION GROWTH MODELS Populations fluctuate Mathematical models to illustrate changes: Exponential population growth Logistic population growth POPULATION GROWTH MODELS 1. J-shaped Curve – Exponential Growth Lag phase: Growth is small because the population is small Exponential growth phase: Growth is accelerating, and the population is exhibiting its biotic potential POPULATION GROWTH MODELS 2. S-shaped Curve – Logistic Growth Lag phase: Growth is small because the population is small Exponential growth phase: Growth is accelerating, and the population is exhibiting its biotic potential Deceleration phase: Stable equilibrium phase: The rate of population growth slows down Little if any growth takes place because births and deaths are about equal. REGULATION OF POPULATION GROWTH 1. density-dependent factor Intraspecific competotion population-limiting factor effects intensify as the population increases in density Percentage of population affected does increase as density of population increases Includes: Accumulation of toxic wastes Limited food supply Limited territory Competition and predation 100 Survivors (%) 80 60 40 20 0 20 40 60 80 100 Density (beetles/0.5 g flour) (b) Decreasing survival rates with increasing density in a population of flour beetles 120 REGULATION OF POPULATION GROWTH 2. Density-independent factors population-limiting factors intensity is unrelated to population density Population of individuals killed remains same regardless of population size Includes abiotic factors such as: Fires Floods Storms Sudden decline Number of aphids Exponential growth Apr May Jun Jul Aug Sep Oct Nov Dec EFFECTS ON POPULATIONS INVASIVE SPECIES Non-native species that has spread far beyond the original point of introduction Causes environmental or economic damage by colonizing and dominating suitable habitats In United States, invasive species cost about $137 billion a year Invasive species typically exhibit an opportunistic life history pattern INVASIVE SPECIES Kudzu 1876 invasive Asian vine Covers about 12,000 square miles of the southeastern United States Has a range limited by cold winters Grows 60 feet per season! INVASIVE SPECIES Biological control intentional release of a natural enemy to attack a pest population used to manage an invasive species Does NOT always work!!! HUMAN POPULATION GROWTH Growing almost exponentially for centuries Based on the same parameters that affect other populations Birth rates Death rates HUMAN POPULATION GROWTH Approximately 225,000 people are added to the world’s population every day Approximately 82 million people are added to the world’s population every year Current doubling time is 56 years (length of time it takes for population size to double) More Developed Countries (MDC’s) versus Less Developed Countries (LDC’s) ESTIMATES OF POPULATION Age structure of a population Proportion of individuals in different age groups Can help predict the future growth of populations in different countries