Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Interacting Bubbles 1 Outline I. Interaction of Oscillating Bubbles • Introduction & Relevance • Experimental apparatus and results • Mathematical model and computer simulations 2 I. Interaction of Oscillating Bubbles Acoustic forcing pA(t) Bubble pulsation Secondary waves Interaction forces r(t) p'1(x1,t) R1(t) x2 F12 R2(t) F21 x1 p'2(x2,t) pA(t) 3 Introduction – Degassing of the melt in microgravity – acoustic cavitation – ultrasonics degassing and medical ultrasonic diagnostics – bubble sonoluminescence 4 RELEVANCE to Microgravity De-gassing liquids and melts (NASA Microgravity: Crystal growth techniques) 5 RELEVANCE - others Prevention of erosion due to cavitation 6 Experimental set up Signal Generator Strobe light Levitator Imager Monitor Keypad Amplifier Hydrophone Processor Oscilloscope 7 ACOUSTIC LEVITATION zlev zmin zlev Buoyancy zmax Buoyancy FL FL Standing wave: Levitation force: p(z,t) = A sin 2z sin t 2 2 R0 3 A2 4z FL sin 3 Pz (1 q 2 ) 8 Acoustic levitator High-speed video images of bubbles interacting under acoustic forcing Forcing frequency f : 22.3-22.5 kHz Variables: R01, R02, A, d0, u0 Distilled Water Levitation Chamber Piezoelectric Ceramic Iron Base 9 PULSATION MODEL Harmonic Ri (t ) R0i [1 i cos(t i )] response Frequency qi f / f 0i / 0i ratio Pz Resonance 3k 2 2 3 2 3 0i R0i R0i frequency R0i 1/ 2 10 BUBBLE CLASSIFICATION Resonance size R0* Bubble types – A: Above resonance size, R0>R0* , q>1 – X: Close to resonance size, R0~R0* , q~1 – B: Below resonance size, R0<R0*, q<1 11 INTERACTION FORCE In phase ~0 (AA, BB pairs): Attraction Opposite phase ~ (AB pairs): Repulsion Phase shift ~/2 (XB,XA pairs): Longrange attraction, short-range repulsion F21 F12 2R R 3 01 3 02 12 (cos 12 ) r2 12 Harmonic response of a single bubble under pressure oscillation External pressure P(t ) PA A cos[t ] Linear Response of bubble shape R(t ) R0 (1 cos[t ] response amplitude A R02 ( 2 02 ) 2 4 2 2 phase difference arctan 2 2 02 PA :constant pressure (usually air pressure) R0: equilibrium size A : oscillatory pressure amplitude : radian frequency 0 : bubble natural frequency : damping 13 coefficient Damping of shape oscillation Viscous component v c: sound velocity in the liquid; : surface tension; Thermal component T 2 R02 : liquid viscosity; Im ( ): complex function; P 2 / R0 Im( ) 2R02 Acoustic component A 2 R0 2c Adapted from Brennen 14 Attracting bubbles 166 ms 88 ms 233 ms 112 ms 266 ms 120 ms 299 ms 128 ms 333 ms 136 ms 366 ms 15 Relative velocity of two attracting bubbles Experiment 10 R10= 0.4167 mm, R20= 0.4167 mm Az = 4.2 Kpa f = 22 kHz v0 = 12.5 mm/s at r0 =20 radii Drag model 8 v/ v0 Conservative Model 6 4 2 0 0 5 10 15 20 r /R 0 16 Outcome of attracting bubbles coalesce instantly (most cases for bubble with close sizes) coalesce with time lag attraction depletion of liquids (Ri/Rj>2) 65-70% collect and coexist (rare and only for big bubble size ratio) collapse 17 Investigation of coalesce lag (1) 14 instant coalesce 12 coalesce lag acceleration (x 102 mm/s 2) For equal size bubbles Az= 2.7 KPa f = 22.5 kHz R1=R2 0.5 mm v0=11.6 mm/s at r0=12 radii 10 8 6 4 2 0 0 2 4 6 8 10 12 r/R0 18 Investigation of coalesce lag (2) For bubble size ratio 2 time lag ( 15 sec - 45 sec) 12 2 acceleration (x10 mm/s ) 10 -2 8 6 4 2 0 0 2 4 6 8 10 12 14 16 r/R0 19 Near-resonance coupling model Condition cos ~ O (12); 2; 1/2 Assumption F12 (r ) 2 2 R13 R231 2 ( 2, i unchanged 1 (r ) 1 (1 K ) r Interaction force Coupling coefficient k 21 m k 21n ) r2 r3 2 R23 2 A coefficients m,n Phenomenon possible oscillation with stable equilibrium spacing requ sign of force may change during the motion m cos 1 2 n 21 2 cos 20 Two bubble oscillation 8 model experiment 6 separation (mm) Bubble sizes R1 = 0.161 mm R2 = 0.151 mm Acoustic parameter Az =1.26 KPa f = 20.5 kHz Motion pattern:oscillation T = 0.86 s amplitude = 3.15 mm 4 2 0 0 1 2 3 4 time (s) 21 Relative velocity versus time Repulsion is much violent than attraction the motion of two bubbles are generally symmetric highest velocity around 20 mm/s about 4-5 times as large as that in approach stage left bubble 20 right bubble 10 v (mm/s) 30 0 -10 -20 -30 0 1 2 3 4 t (s) 22 Relative velocity versus separation Model underpredict the velocity in repulsion stage out of balance position in levitation plane loss of spherical shape at small spacing model simplification 40 30 20 v (mm/s) 10 0 -10 -20 model experiment -30 -40 1 2 3 4 5 6 r (mm) 23 Force field for the resonant couple 10 repulsion force Force (x10-10 kg m/s 2) Equilibrium separation requ20 radii repulsion force have a sharper change in small spacing attraction force increase from requ with the increase of separation then decrease very slowly 8 attraction force 6 4 2 0 0 10 20 30 40 r/R0 24 Three Bubble Oscillation Condition R1=R20.133 mm R0 = 0.146 mm f = 22.5 kHz Az = 1.34 Kpa Model simplification x-symmetry bubble 0 motionless interaction between bubble 1 and bubble 2 ignored coupling coefficient 2 2 R131 k0 Az 25 History Location of the bubbles 6 right bubble r/R0 2 bound 3.64 - 4.8 radii frequency 16.6 Hz 0 bound 3.68-4.82 radii frequency 16.2 Hz 0.3 0.4 left bubble bound 3.58 - 4.6 radii frequency 16.5 Hz Model 0.2 6 model 5 r/R0 0.1 t (s) Left bubble 4 3 Right bubble model 5 4 3 2 0 0.1 0.2 0.3 0.4 t (s) 26 Other experimental observation A C Experiment A small bubble oscillate with big one and at the same time has angular motion Experiment B five bubbles aligned with oscillation, bubble in the middle shift position B Experiment C three bubbles in same levitation plane perform planar oscillation 27 Discussion System of more than two bubbles may display collective or evolution motion Two-dimensional is likely to happen with more than two bubble or given initial angular motion Group oscillation may not restricted to the condition for twobubble oscillation 28 Summary Non-resonant pair motion: attraction for R0>Rr force ~ a/r2, sign unchanged and not change conservative model drag force outcome of two attracting bubbles Resonant pair motion: possible oscillation force~ a/r2-b/r3, sign of force may change 1 changed with separation r two bubble oscillation repulsion violent than approach three bubble oscillation more bubbles and 2-D motion 29 BUBBLE CLOUD MODEL Interaction forces Fji Drag force Di Resultant Fi Velocity Vi n-1 rij Fij j Fji Di n i Fi Vi 2 3 1 30 BUBBLE CLOUD MODEL Equations of motion n dVi dri mi F ji Di ; Vi dt dt j 1 j i (cos ij i j ) 2 6 3 3 i j F ji 2 R0 si s j rij2 Di 6R0 k D f D (Re i ) si R0i / R0 31 BUBBLE CLOUD MODEL Coupling equations i (qi ) 2 i s (qi ) n j 1 j i s3j cos j rij A (qi ) j 2 R02 si2 2 i q 2 2 q 1 4 ( i qi 2 i 2 i 1,2, n 32 EVOLUTION PATTERNS Coalescence Dispersion Transition to equilibrium Vibration Combined patterns 33 CONCLUSIONS AND RECOMMENDATIONS Desired Effect Evolution Pattern(s) Range for Forcing Amplitude A Frequency Ratio q = f/f0 Liquid degassing Coalescence Large q 17 . q 1 q min 1 Uniform gas concentration Dispersion Moderate Regions of high/low concentration. No motion Equilibrium Small to moderate 1 q 17 . Bubbles vibration. Continuous stirring Vibration Moderate 1 q 17 . 34 Future work Multi-bubble dynamics Two dimensional motion of the bubbles Bubble behavior in various acoustic environment 35 History Location of the bubbles 20 Experiment 10 Experiment Drag Model Drag Model Conservative Model 16 8 12 r/ R0 r / R0 Conservative Model 6 8 4 4 2 0 0 0.2 0.4 t (s) set t=0 at r0=20 R0 0.6 0.8 0 0.02 0.04 0.06 0.08 0.1 0.12 t (s) set t=0 at r0=10 R0 36 Numerical solution for velocity and acceleration 120 4 100 acceleration (mm /s) 3 v (mm/s) 2 80 I 60 II III 40 20 2 I II III 1 0 -1 0 0 0.2 0.4 t (s) 0.6 0.8 0 0.2 0.4 0.6 0.8 t (s) 37 Secondary Bjerknes force & drag force 2nd Bjerknes force drag force 40 30 force ( x 10 -7 kg m/s 2) 50 20 10 0 0 0.2 0.4 0.6 0.8 time (s) 38 Velocity ratio 3 2 1 ave (r<=12 radii) .4 18 0 .6 16 0 .9 15 5 .0 7 12 .9 10 7 .7 2 9. 34 7. 57 6. 25 4. 87 3. 03 0 20 Ve / Vm 0.23 r/R0 Ratio of experimental velocity to the velocity of model prediction ratio approach 1 with the decrease of spacing high ratio in the large spacing caused by the pressure gradient in the levitation plane 39 Error Analysis 1.5 0. 98 1. 04 0.5 0 2 3 4 5 6 7 Experiments 8 average velocity ratio (Ve/Vm) Standard Deviation 1 0.99 0.15 2 0.99 0.18 3 1.31 0.23 4 1.16 0.23 5 1.11 0.34 6 1.25 0.25 7 1.14 0.21 8 1.09 0.24 9 1.22 0.37 10 1.17 0.36 11 1.04 0.26 12 0.98 0.26 1. 17 1. 22 1. 09 1. 14 1. 11 1. 16 1. 25 1. 31 0. 99 0. 99 velocity ratio (average) 1 1 r<10 radii Experiment 9 10 11 12 40 Boundary condition Parallel case for two attracting bubbles use image source to replace the rigid wall phase difference ignored (>>x) Physical condition Image geometry 41 Mathematical model The reflected force FR 2 21 2 R13 R23 cos 2 cos y2 Total force 1 2 FR 2 R R cos 2 [1 ] r (1 4 x 2 / r 2 )3 / 2 2 3 1 2 1 3 2 is the pressure reflection coefficient reflection angle =arccos (r/y) glass=2300 kg/m3 velocity in glass c = 5200 m/s x is the distance between bubble and boundary 42 Model prediction of relative velocities R1 = R2 = 0.45 mm 70 Az= 3 Kpa x= 2 mm x = 1mm ~ 20 mm v0 = 0 at r0 = 6 mm x= 5 mm 50 f = 22.5 kHz x= 1 mm 60 x=20 mm v (mm/s) 40 30 20 10 0 0.2 0.4 0.6 0.8 r/r0 43 Relative velocities in experiments Bubble sizes R1 = 0.455 mm R2 = 0.355 mm forcing amplitude Az = 2.55Kpa f = 22.5 kHz v0= 11 mm/s at r0=14 R1 experiment data 30 velocity (mm/s) model with b oundary model without b oundary 20 10 0 2 4 6 8 10 12 r/R0 44 Boundary effect compared between two experiments 35 with b oundary 30 without b oundary v (mm/s) 25 20 15 10 5 0 0 5 10 15 r/R0 45 Error Analysis (1) Cycle Experiment separation (mm) 1 upper lower amplitude error 2 upper lower amplitude error 3 upper lower amplitude error 4 upper lower amplitude error 1 5.357 2.536 2.821 13.5% 1.780 0.702 1.078 2.0% 3.000 1.320 1.680 18.0% 2.900 1.100 1.800 1.6% 2 4.714 2.286 2.428 25.5% 1.800 0.810 0.990 10.0% 3.375 1.356 2.019 1.5% 2.680 1.180 1.500 18.0% 3 4.857 2.25 2.607 20.0% 1.530 0.720 0.810 26.4% 3.333 1.425 1.908 6.9% 2.650 1.210 1.440 21.3% 4 4.786 2.286 2.500 23.3% 1.620 0.720 0.900 18.2% 2.970 1.300 1.670 18.5% 2.830 1.050 1.780 2.7% 5 Average 5.143 4.971 2.214 2.314 2.929 2.657 10.2% 18.5% 1.714 1.689 0.720 0.734 0.994 0.954 9.6% 13.2% / 3.170 / 1.350 / 1.819 / 11.3% / 2.765 / 1.135 / 1.630 / 10.9% 46 Error Analysis (2) Cycle Experiment time (s) 1 repulsion approach ratio total error 2 repulsion approach ratio total error 3 repulsion approach ratio total error 4 repulsion approach ratio total error 1 0.200 0.800 4.00 1.000 11.1% 0.032 0.104 3.25 0.136 6.6% 0.075 0.283 3.77 0.358 7.5% 0.079 0.183 2.32 0.262 7.7% 2 0.183 0.600 3.28 0.783 13.0% 0.032 0.128 4.00 0.160 9.9% 0.050 0.275 5.50 0.325 2.4% 0.083 0.221 2.66 0.304 7.0% 3 0.200 0.600 3.00 0.800 11.1% 0.032 0.096 3.00 0.128 12.1% 0.033 0.267 8.09 0.300 9.9% 0.050 0.200 4.00 0.250 12.0% 4 0.200 0.683 3.42 0.883 1.9% 0.032 0.112 3.50 0.144 1.1% 0.034 0.283 8.32 0.317 4.8% 0.067 0.233 3.48 0.300 5.6% 5 Average 0.150 0.187 0.680 0.673 4.53 3.60 0.830 0.859 7.8% 4.5% 0.040 0.034 0.104 0.109 2.60 3.24 0.144 0.142 1.1% 2.2% / 0.048 / 0.277 / 6.42 / 0.325 / 2.4% / 0.070 / 0.209 / 3.11 / 0.279 / 1.8% 47 Primary Bjerknes force General form F (r , t ) V (t )P(r , t ) Force in a stationary sound field k R A F sin[ 2k z ] z 3 0 2 3kP (1 2 / 02 ) z < >: time average P(r,t) : time-and-spacingvarying pressure field A : amplitude of the stationary wave kz=/c : wave number k : gas polytropic number sinusoidal pressure variation P (r , t ) P A sin[ k z] sin[ t ] z 48 Secondary pressure radiation Secondary wave emitted by the bubble p' (r , t ) 2 R03 r cos(t ) 1 2 12 22 1 21 2 cos O(1i 2j ) cos 4 Secondary Bjerknes force phase difference between two pulsation 1 2 F12 (r ) V2 (t )p1' (r , t ) 2 2 R13 R231 2 cos (1 , 2 , ) r2 Function F12(r) = F21(r) F<0, attraction F>0, repulsion 49 Experiment methods and procedures Experimental apparatus and set up Experimental methods Forcing amplitude on the levitation plane 50 Experimental methods Adjust the frequency and water level to make one full wave length of standing wave generated by the acoustic levitator Use high-speed camera to capture the motion of bubbles and measure the size/location of the bubble frame by frame using the movable reticle Balance the buoyancy force (FB=Fp) to obtain the forcing amplitude on the levitation plane Check the wave with oscilloscope and hydrophone 51 Forcing amplitude Buoyancy force FB 4 gR03 3 Primary Bjerknes force k z R03 A2 Fp sin[ 2k z z ] 3kP (1 2 / 02 ) Forcing Amplitude 4 gP (1 2 / 02) A sin[ 2k z z ] Forcing Amplitude on the levitation plane Az A sin[ k z z] 52 Experimental study and analysis of bubble dynamics Non-resonant bubble dynamics Conservative model and drag model Outcome of two attracting bubbles Boundary effects Resonant bubble interaction 2 bubble oscillation 3 bubble oscillation other observations 53 Mathematical models for non-resonant pair Virtual mass of each bubble Secondary Bjerknes force m 2 R03 3 3 F12 22 R103 R20 1 2 cos / r 2 D 4R0 uˆ Drag force Initial condition v=v0 at r=r0 54