* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Calc10_4
		                    
		                    
								Survey							
                            
		                
		                
                            
                            
								Document related concepts							
                        
                        
                    
						
						
							Transcript						
					
					10.4 Projectile Motion Fort Pulaski, GA Photo by Vickie Kelly, 2002 Greg Kelly, Hanford High School, Richland, Washington One early use of calculus was to study projectile motion. In this section we assume ideal projectile motion: Constant force of gravity in a downward direction Flat surface No air resistance (usually)  vo  We assume that the projectile is launched from the origin at time t =0 with initial velocity vo. Let vo  vo then vo   vo cos  i   vo sin   j The initial position is: ro  0i  0 j  0  vo  Newton’s second law of motion: f  ma 2 d r f m 2 dt Vertical acceleration  vo  Newton’s second law of motion: f  ma 2 d r f m 2 dt The force of gravity is: f  mg j Force is in the downward direction  vo  Newton’s second law of motion: f  ma 2 d r f m 2 dt The force of gravity is: f  mg j 2 d r m 2  mg j dt  vo  Newton’s second law of motion: f  ma 2 d r f m 2 dt The force of gravity is: f  mg j 2 d r m 2  mg j dt  2 d r  g j 2 dt Initial conditions: r  ro dr  vo dt when t  o dr   gt j  v o dt 1 2 r   gt j  vot  ro 2 1 2 r   gt j   vo cos  t i   vo sin   t j 0 2  1 2 r   gt j   vo cos   t i   vo sin   t j  0 2 Vector equation for ideal projectile motion: 1 2  r   vo cos   t i    vo sin   t  gt  j 2   1 2 r   gt j   vo cos   t i   vo sin   t j  0 2 Vector equation for ideal projectile motion: 1 2  r   vo cos   t i    vo sin   t  gt  j 2   Parametric equations for ideal projectile motion: x   vo cos   t 1 2 y   vo sin   t  gt 2  Example 1: A projectile is fired at 60o and 500 m/sec. Where will it be 10 seconds later? x  500  cos6010 x  2500 1 y  500sin 60 10   9.8 102 2 y  3840.13 The projectile will be 2.5 kilometers downrange and at an altitude of 3.84 kilometers. Note: The speed of sound is 331.29 meters/sec Or 741.1 miles/hr at sea level.  The maximum height of a projectile occurs when the vertical velocity equals zero. dy  vo sin   gt  0 dt vo sin   gt vo sin  t g time at maximum height  The maximum height of a projectile occurs when the vertical velocity equals zero. dy  vo sin   gt  0 dt vo sin   gt vo sin  t g We can substitute this expression into the formula for height to get the maximum height.  1 2 y   vo sin   t  gt 2 ymax vo sin  1  vo sin     vo sin    g  g 2  g  ymax   vo sin   g 2 vo sin     2 2 2g  1 2 y   vo sin   t  gt 2 ymax vo sin  1  vo sin     vo sin    g  g 2  g  2  vo sin    vo sin     2g 2g 2 ymax ymax vo sin     2g 2 2 2 maximum height  When the height is zero: time at launch: 1 2 0   vo sin   t  gt 2 1   0  t  vo sin   gt  2   t 0  When the height is zero: time at launch: t 0 1 2 0   vo sin   t  gt 2 1   0  t  vo sin   gt  2   1 vo sin   gt  0 2 1 vo sin   gt 2 time at impact (flight time) 2vo sin  t g  If we take the expression for flight time and substitute it into the equation for x, we can find the range. x  vo cos  t 2vo sin  x  vo cos   g If we take the expression for flight time and substitute it into the equation for x, we can find the range. x  vo cos  t 2vo sin  x  vo cos   g 2 vo x  2cos  sin   g 2 vo x sin  2  g Range  The range is maximum when sin  2  is maximum. sin  2   1 2  90o   45 o Range is maximum when the launch angle is 45o. 2 vo x sin  2  g Range  If we start with the parametric equations for projectile motion, we can eliminate t to get y as a function of x. x   vo cos  t x t vo cos  1 2 y   vo sin   t  gt 2 If we start with the parametric equations for projectile motion, we can eliminate t to get y as a function of x. x   vo cos  t 1 2 y   vo sin   t  gt 2 x x 1  x   t y   vo sin    g  vo cos  vo cos  2  vo cos   2 This simplifies to:   2 g y   2  x   tan   x 2  2vo cos   which is the equation of a parabola.  If we start somewhere besides the origin, the equations become: x  xo   vo cos  t 1 2 y  yo   vo sin   t  gt 2  Example 4: A baseball is hit from 3 feet above the ground with an initial velocity of 152 ft/sec at an angle of 20o from the horizontal. A gust of wind adds a component of -8.8 ft/sec in the horizontal direction to the initial velocity. The parametric equations become: x  152 cos 20  8.8  t o vo  y  3  152sin 20o  t  16t 2 yo 1 g 2  These equations can be graphed on the TI-89 to model the path of the ball: t2 Note that the calculator is in degrees.   Using the trace function: Max height about 45 ft Time about 3.3 sec Distance traveled about 442 ft  In real life, there are other forces on the object. The most obvious is air resistance. If the drag due to air resistance is proportional to the velocity: (Drag is in the opposite Fdrag  kv direction as velocity.) Equations for the motion of a projectile with linear drag force are given on page 546. You are not responsible for memorizing these formulas. p