* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download History of IGM (C. Carilli)
Astrophysical X-ray source wikipedia , lookup
Cosmic distance ladder wikipedia , lookup
Rayleigh sky model wikipedia , lookup
Heliosphere wikipedia , lookup
Gravitational lens wikipedia , lookup
Cosmic microwave background wikipedia , lookup
Standard solar model wikipedia , lookup
ionized History of IGM C.Carilli (NRAO) Cool Univ Oct 2004 Neutral F(HI)=1 Epoch of Reionization (EoR) Ionized F(HI)=1e-5 • bench-mark in cosmic structure formation indicating the first luminous structures Gunn-Peterson effect Barkana and Loeb 2001 The Gunn-Peterson Effect z=5.80 z=5.82 z=5.99 z=6.28 Fast reionization at z=6.3 => opaque at l_obs<0.9mm f(HI) > 0.001 at z = 6.3 Neutral IGM evolution (Gnedin 2000): ‘Cosmic Phase transition’ at z=6 to 7 Log (HI fraction) Ionizing intensity Density Gas Temp 8 Mpc (comoving) Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM WMAP Large scale polarization of CMB (Kogut et al.) 20deg Thompson scattering at EoR t_e = 0.17 => F(HI) < 0.5 at z=17 Extended period of reionization: z=6 to 15? Near-edge of reionization: GP Effect Fairly Fast: • f(HI) > 1e-3 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) Fan et al. 2002 Recombination time vs. Hubble time z>8: t_rec < t_H Cen 2002 Stellar fusion produces 7e6eV/H atom, while reionization requires 13.6eV/H atom =>Need to process only 1e-5 of baryons through stars to reionize the universe Complex reionization example: Double reionization? (Cen 2002) ‘normal’ galaxies (>1e8M_sun) Pop III stars in ‘mini-halos’ (<1e7 M_sun) Limitations of current measurements: CMB polarization: -- t_e = Ln_es_e = integral measure through universe => allows many reionization scenarios Gunn-Peterson effect: -- t_Lya >>1 for f(HI)>0.001 -- High z universe is opaque to optical observers (l_obs<0.9 mm) The Cool Universe: m/cm/mm probes of the Epoch of Reionization and the 1st luminous objects 1. CMB large scale polarization 2. Objects within EoR – Molecular gas, dust, star formation 3. Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin Euro – Bertoldi, Cox, Menten, Omont, Beelen SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings Science with the Square Kilometer Array (NAR, Carilli & Rawlings) http://www.aoc.nrao.edu/~ccarilli/CHAPS.shtml IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol. VLA: uJy sens at 1.4 GHz VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol. Magic of (sub)mm L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8 High redshift QSOs SDSS + DPOSS: 700 at z > 4 30 at z > 5 9 at z > 6 M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun York et al 2001; Fan et al QSO host galaxies – M_BH – s relation • Most (all?) low z spheroidal galaxies have SMBH • M_BH = 0.002 M_bulge ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)? Luminous high z QSOs have massive host galaxies (1e12 M_sun) MAMBO surveys of z>2 DPSS+SDSS QSOs 1148+52 z=6.4 1e13L_sun 1048+46 z=6.2 Arp220 • 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN? L_FIR vs L’(CO) High-z sources 1e3 M_sun/yr Index=1 1e11 M_sun Index=1.7 M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) Telescope time: t(dust) = 1hr, t(CO) = 10hr Objects within EoR: QSO 1148+52 at z=6.4 •highest redshift quasar known •L_bol = 1e14 L_sun •central black hole: 1-5 x 109 Msun (Willot etal.) •clear Gunn Peterson trough (Fan etal.) 1148+52 z=6.42: MAMBO detection S_250 = 5.0 +/- 0.6 mJy => L_FIR = 1.2e13 L_sun, M_dust =7e8 M_sun 3’ + VLA Detection of Molecular Gas at z=6.419 46.6149 GHz CO 3-2 Off channels M(H_2) = 2e10 M_sun Size < 1.5” (image) IRAM Plateau de Bure confirmation n2 (6-5) (7-6) (3-2) • FWHM = 305 km/s • z = 6.419 +/- 0.001 • Tkin=100K, nH2=105cm-3 Typical of starburst nucleus VLA imaging of CO3-2 at 0.4” and 0.15” resolution rms=50uJy at 47GHz CO extended to NW by 1” (=5.5 kpc) tidal(?) feature Separation = 0.3” = 1.7 kpc T_B = 20K = T_B (starburst) Merging galaxies? Or Dissociation by QSO? 1148+5251: radio-FIR SED S_1.4= 55 +/- 12 uJy Beelen et al. T_D = 50 K 1048+46 Star forming galaxy characteristics: radio-FIR SED, L’_CO/FIR, CO excitation and T_B => Coeval starburst/AGN: SFR = 1000 M_sun/yr Stellar spheroid formation in few e7 yrs = e-folding time for SMBH => Coeval formation of galaxy/SMBH at z = 6.4 ? 1148+52: Masses •M(dust) = 7e8 M_sun •M(H_2) = 2e10 M_sun •M_dyn (r=2.5kpc) = 5e10 M_sun •M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun • Gas/dust = 30, typical of starburst • Dynamical vs. gas mass => baryon dominated? • Dynamical vs. ‘bulge’ mass => M – s breaks-down at high z? Cosmic (proper) time 1/16 T_univ = 0.87Gyr 1148+52: Timescales • Age of universe: 8.7e8 yr • C, O production (3e7 M_sun): 1e8 yr • Fe production (SNe Ia): few e8 yr (Maiolino, Freudling) • Dust formation: 1.4e9yr (AGB winds) => dust formed in high mass stars/SNR (Dunne 03; Maiolino 04)? => silicate grains? => Star formation started early (z > 10)? Cosmic Stromgren Sphere • Accurate redshift from CO: z=6.419+/0.001 Ly a, high ioniz. Lines: uncertainty >1000km/s (Dz=0.03) • Proximity effect: photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 •‘time bounded’ Stromgren sphere: R = 4.7 Mpc t_qso= 1e5 R^3 f(HI)= 1e7yrs Richards et al. 2002 SDSS QSOs Loeb & Rybicki 2000 Constraints on neutral fraction at z=6.4 GP => f(HI) > 0.001 If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short given fiducial lifetime, f_lt = 1e7 years? Probability arguments suggest: f(HI) > 0.1 at z=6.4 – much better limit than GP Wyithe and Loeb 2003 z>6 QSOs with MgII and/or CO redshifts (Walter et al, Willot et al., Maiolino et al., Iwamuro et al.) <Dz> = 0.08 => <R> = 4.4 Mpc Near-edge of reionization: GP + Cosmic Stromgren Spheres Very Fast? • f(HI) > 1e-1 at z >= 6.4 (0.87Gyr) • f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004) Gas and dust during the EoR • FIR luminous galaxy at z=6.42: 1e13 Lsun observe dust, gas, star formation, AGN • Merging(?) galaxy: Molecular gas mass = 2x1010 M_sun, M_dyn = 6e10 M_sun • Early enrichment of heavy elements and dust produced in the first stars => star formation commenced at 0.4 Gyr after the big bang • Coeval formation of SMBH + stars in earliest galaxies – break-down of M-s at high z? • Cosmic Stromgren sphere of 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4? J1048+4637: A second FIR-luminous QSO source at z=6.2 MAMBO 250 GHz VLA CO 3-2 S_250 = 3.0 +/- 0.4 mJy => L_FIR = 7.5e12 L_sun z(opt) z(MgII) S(CO 3-2) = 0.17 +/- 0.09 mJy EVLA correlator: 8GHz, 16000 channels VLA detections of HCN 1-0 emission n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3) z=4.7 z=6.4 index=1 Solomon et al z=2.58 70 uJy PKS 2322+1944 z=4.12: [CI] (492 GHz rest freq; Pety et al.) VLA CO2-1 PdBI => Solar Metalicity Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L_sun) cm: Star formation, AGN (sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN Redshifts for obscured/faint sources: wide band (16 - 32 GHz) spectrometers on LMT, GBT (Min Yun 04, Harris 04) L_FIR = 1e13 L_sun Studying the pristine IGM beyond the EOR: redshifted HI 21cm observations (100 – 200 MHz) with the Square Kilometer Array. ‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,… SKA goal: mJy at 200 MHz Large scale structure: density, f(HI), T_spin Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 100 (n/200 MHz)^2.6 K Highly ‘confused’: 3 sources/arcmin^2 with S_0.2 > 0.1 mJy Terrestrial interference 100 MHz z=13 200 MHz z=6 Global reionization signature in low frequency HI spectra (Gnedin & Shaver 2003) fast 21cm ‘deviations’ at 1e-4 wrt foreground double Spectral index deviations of 0.001 HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 DT_B(2’) = 10’s mK SKA rms(100hr) = 4mK LOFAR rms (1000hr) = 80mK 7.6 Power spectrum analysis Zaldarriaga + 2003 Z=10 129 MHz LOFAR SKA 2deg 1arcmin Cosmic Web after reionization = Ly alpha forest (d <= 10) 1422+23 z=3.62 Womble et al. 1996 N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2 Cosmic web before reionization: HI 21cm Forest (Carilli, Gnedin, Owen 2002) 20mJy Z=10 TCMB 1 + z 1/ 2 t 0.008( )( ) f HI (1 + d ) TS 10 • Mean optical depth (z = 10) = 1% = ‘Radio GunnPeterson effect’ • Narrow lines (t= few %, few km/s) = HI 21cm forest (d <= 10), 10/unit z at z=8 • Mini-halos (d >= 100) (Furlanetto & Loeb 2003) • Primordial disks: low cosmic density=0.001/unit z, but high opacity=> fainter radio sources -- GRBs? Radio sources beyond the EOR? • Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003) • Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy, out of 100 total (Carlli,Jarvis,Haiman) Z=8 GMRT 228 MHz search for HI21cm abs toward highest z radio galaxy, 0924-220 z=5.2 8GHz 1” Van Breugel et al. z(CO) 230Mhz Continuum point source = 0.55 Jy; rms/(40km/s chan) = 5 mJy ‘EoR Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, … MWA prototype (MIT/ANU) LOFAR (NL) PAST (CMU/China) VLA-VHF (CfA/NRAO) VLA-VHF: 180 – 200 MHz Prime focus X-dipole (CfA/NRAO – Greenhill et al) Leverage: existing telescopes, IF, correlator, operations First light: Q4, 2005 Main Experiment: Cosmic Stromgren spheres around z>6 SDSS QSOs (Wyithe & Loeb 2004) 20mK VLA-VHF 190MHz 250hrs 15’ 0.50+/-0.12 mJy VLA spectral/spatial resolution well matched to expected signal: 5’, 1000 km/s Radio astronomy – Probing the EoR •Study physics of the first luminous sources (limited to near-IR to radio wavelengths) •Currently limited to pathological systems (‘HLIRGs’) •EVLA, ALMA 10-100x sensitivity is critical to study normal galaxies •Low freq pathfinders: HI 21cm signatures of neutral IGM •SKA imaging of IGM z6.4 Other Experiments: power spectrum analysis, ‘HI 21cm forest’ Sensitivity per 0.8MHz channel: currently have 16 channels over 12.5 MHz Piggy-back on CSS experiment Centrally condensed uv coverage Challenges and ‘mitigation’: VLA-VHF CSS Ionospheric phase errors – higher freq (freq^-2); 4deg FoV; 1km B_max T_bg – higher freq (freq^-2.75) Confusion (in-beam) – spectral measurement (eg. Morales & Hewitt 2004); mJy point source removal w. A array; precise position and redshift Wide field problems – polarization, sidelobes, bandpass – all chromatic ? RFI – “interferometric excision” (but D array); consistently ‘clean’ times in monitor plots (but very insensitive measure) ? Proposed Cost and Timeline 100K in parts (CfA) + labor (CfA/NRAO) First tests (4 prototypes): Q1, Q2 2005 First experiments (100-200 hr): D array, Q4 2005 Large proposal (500 hr): D array, Q1 2007 System/Site characteristics Work hours First sidelobe = 15db Proposed band TV carrier Ionospheric phase errors: VLA 74MHz (Lane etal.) TIDs – ‘fuzz-out’ sources ‘Isoplanatic patch’ = few deg = few km Phase variation proportional to wavelength^2 SKA timeline •2004 Science case: “Science with the SKA” Carilli & Rawlings, New Astron. Rev. •2004-7 demonstrator development major external review (2006) submit funding proposals for a 5% demonstrator •2006 site selection: Australia, USA-SW, South Africa, China •2008 selection of technical design (may be a combination); start construction of 5% demonstrator on chosen site •2009 submit funding proposals for full array •2012 start construction •2020 complete construction Projected cost: 1 G$ (20% for low freq only) Weak correlation of L_FIR – M_B? •M_B > -26: 10% detected at 250 GHz mJy sensitivity •M_B < -26: 30% detected Thermal State of IGM at high z: Ly a Forest (Hui and Haiman 2003) White etal (2002): ‘superluminal’ ionization front Stromgren sphere expands at close to speed of light => obs Ly a photons emitted just after ionizing photons “Delay required to allow light to travel from source to the edge of the sphere is exactly compensated by the ‘speedup’ that results from that edge being closer to the observer” “Expansion law for the observed radius is exactly the same as the expansion law derived ignoring light-travel effects” Confusion by free-free emission during EOR (Oh & Mack 2003) Difficulty with (LSS) emission observations: confusion by foreground radio sources (di Matteo 2001) Beating confusion: exploiting the spectral domain (Morales & Hewitt 2004) Foreground: smooth continuum => cylindrical symmetry in Fourier space EoR HI: noise signal in frequency => spherical symmetry in Fourier space 1148+52: starburst+AGN? S_1.4= 55 +/- 12 uJy IRAS 2Jy sample (Yun+) 1048+46 1148+52 SFR(>5 M_sun) = 1400 M_sun/year => host spheroid formation in 5e7 yrs at z > 6? SMBH formation: n x 2.4e7 yr (Loeb, Wyithe,…) => Coeval formation of galaxy/SMBH at z>6? Gravitational Lensing? CO 3-2 double source, 0.3” separation => strong lensing? Keck near IR imaging: point source < 0.3” at K (Djorgovski) HST/ACS imaging: point source < 0.1” (White et al. 2004 (?)) Radio continuum: foreground radio sources, but no SDSS cluster z< 0.1 QSO spectrum => “proto-cluster” at z=5 (White et al. 2002)? 1148+5251 Cosmic Stromgren Sphere • Accurate redshift from CO: z=6.419+/0.001 Ly a, high ioniz. lines uncertainty >1000 km/s (Dz=0.03) • Proximity effect: photons leaking from 6.32<z<6.419 •‘time bounded’ Stromgren sphere: R = 4.7 Mpc White et al. 2003 z=6.32 t_qso= 1e5 R^3 f(HI) = 1e7yrs ALMA/EVLA/GBT redshift coverage for CO Epoch of Reionization VLA CO(3-2), PdBI CO 6-5, 7-6 in J1148+5251 @ z=6.42 Radio sources beyond the EOR? • Radio loud QSO fraction = 10% to z=5.8 (Petric + 2003) • Models => expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy (out of 100 total) 1.4e5 at z > 6 S_151 > 6mJy 2240 at z > 6 Carilli + 2002 Haiman & Hui 2004 1148+5251: Starburst + QSO at z=6.42? Starburst (double?) nucleus: size = few kpc around QSO Star formation rate => stellar spheroid formation in 5e7 yrs? SMBH formation: 1/e = few x10^7 yr (Loeb, Wyithe,…) => Coeval formation of galaxy/SMBH at z>6? Temperatures: Spin, CMB, Kinetic and the 21cm signal Dt = 10mK z = 11 z=7 Tozzi + 2002 T_s T_CMB T_K •Initially T_S= T_CMB •T_S = T_CMB => no signal •T_S couples to T_K via Lya scattering •T_S = T_K < T_CMB => Absorption against CMB •T_K = 0.026 (1+z)^2 (wo. heating) •T_CMB = 2.73 (1+z) •T_S > T_CMB => Emission Phase stability: Fast switching at the VLA 10km baseline rms = 10deg Structure formation: the Dark Matter perspective = Press-Schechter Formalism z M_2s T_vir M_sun K 0 1e14 3e7 5 3e10 3e5 10 6e7 8e3 GMRT 230 MHz 0924-220 z=5.2 channel 20 (229.60MHz) Cosmic Stromgren Surfaces: damping wing of Ly a line at sharp edge of sphere leads to apparently smaller sphere size (Mesinger & Haiman 2004) Dark matter: Analytic – “Press-Schechter Formalism” (Barkana & Loeb 2000 Rev Mod Phys) IGM/galaxy formation: Numerical simulations Structure formation: the Baryons Minihalos: • M_’Jeans’ = 1e4 M_sun (z=20) • H_2 cooling: 1e5 – 1e7 M_sun =>T_vir = 300 to 1e3 K • H_2 formation: Near UV dissociates, but soft Xray catalyze? • Form 100 M_sun stars (popIII)? • Totally disrupted by single SNe => self-distruct in 1e6 years Protogalaxies: H line cooling => T_vir > 1e4 K High redshift QSOs SDSS + DPOSS: Fan et al 2000 700 at z > 4 30 at z > 5 9 at z > 6 M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun Luminous “SDSS” QSOs: insufficient to reionization the universe z=10 lensed star forming galaxy? (Pello 2004) L_app= 4e11 L_sun + LBG dust correction (5x) => L_FIR = 2e12L_sun S_250 = 0.6 mJy => 4s ALMA detection in 1 minute! Expect 1 – 2 “normal” galaxies ALMA FoV at z>6 per in 10hrs Ly alpha emitting galaxies within EoR: near-IR observations (Hu, Taniguchi, Stanway, Bouwens, Yan, Dickinson…) z=6.56 1 arcmin^2 (H_AB = 27) 0.3 L*(z=3) SFR = few M_sun/year