* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Document
Dialogue Concerning the Two Chief World Systems wikipedia , lookup
Astronomical unit wikipedia , lookup
International Ultraviolet Explorer wikipedia , lookup
Dyson sphere wikipedia , lookup
Aries (constellation) wikipedia , lookup
Star of Bethlehem wikipedia , lookup
Corona Borealis wikipedia , lookup
Canis Minor wikipedia , lookup
Observational astronomy wikipedia , lookup
Auriga (constellation) wikipedia , lookup
Corona Australis wikipedia , lookup
Star catalogue wikipedia , lookup
Cassiopeia (constellation) wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Canis Major wikipedia , lookup
Cygnus (constellation) wikipedia , lookup
Stellar kinematics wikipedia , lookup
Astronomical spectroscopy wikipedia , lookup
Perseus (constellation) wikipedia , lookup
Stellar evolution wikipedia , lookup
Star formation wikipedia , lookup
Aquarius (constellation) wikipedia , lookup
Cosmic distance ladder wikipedia , lookup
Stars … how I wonder what you are. 9 Goals • Stars are Suns. • Are they: – – – – – Near? Far? Brighter? Dimmer? Hotter? Cooler? Heavier? Lighter? Larger? Smaller? • What categories can we place them in? 9 Concept Test • If Star A has a parallax of 2 arcseconds, and Star B has a parallax of 0.25 arcseconds: a. Star A is closer to us than Star B. Both are farther from us than 1 pc. b. Star A is closer to us than Star B. Both are closer to us than 1 pc. c. Star A is closer to us than 1 pc. Star B is farther than 1 pc. d. Star B is closer to us than 1 pc. Star A is farther than 1 pc. e. Star B is closer to us than Star A. Both are farther away than 1 pc. 9 Distances 1 Distance (in parsecs) parallax (in arcsec) • Closest star: Proxima Centauri parallax = 0.76 arcsec Distance = 1.3 pc or 4.3 lightyears 9 Terms • Brightness = How intense is the light I see from where I am. – Magnitude is numerical term for this. • Luminosity = how much light is the thing really giving off. 9 Magnitude Scale • The SMALLER the number the BRIGHTER the star! – Every difference of 1 magnitude = 2.5x brighter or dimmer. – Difference of 2 magnitudes = 2.5x2.5 = 6.3x brighter or dimmer 9 Magnitude vs. Brightness Mag. Difference 1 Factors of 2.5 2.51 = 2.5 Brightness Diff. 2.5 2 2.52 = 2.5 X 2.5 6.3 3 2.53 = 2.5 X 2.5 X 2.5 16 4 2.54 = 2.5 X 2.5 X 2.5 X 2.5 40 5 2.55 = 2.5 X 2.5 X 2.5 X 2.5 X 2.5 100 6 2.56 = 2.5 X 2.5 X 2.5 X 2.5 X 2.5 X 2.5 250 9 Star light, star bright • Sirius is magnitude -1.5 Polaris is magnitude 2.5 • Is Sirius really more luminous than Polaris? • No, Sirius is just closer. • Example: light bulbs. 9 Apparent and Absolute • Apparent Magnitude = brightness (magnitude) of a star as seen from Earth. m – Depends on star’s total energy radiated (Luminosity) and distance • Absolute Magnitude = brightness (magnitude) of a star as seen from a distance of 10 pc. M – Only depends on a star’s luminosity distance m M 5log 10 10pc 9 example distance m M 5log 10 10pc • Our Sun: – m = -26.8, – distance = 4.8 x 10-6 pc So: M = 4.8 • Polaris: – m = 2.5, – distance = 132 pc So: M = -3.1 • Polaris is 1500 times more luminous than the Sun! 9 Concept Test • Star Distance m A 5 pc 1.0 B 10 pc 2.5 C 20 pc -1.0 M The most likely absolute magnitudes (M) for each is: a. b. c. d. e. A = 2.5, B = -2.5, C = 2.5 A = 2.5, B = 2.5, C = -2.5 A = -2.5, B = 2.5, C = 2.5 A = 2.5, B = 2.5, C = 2.5 None of the above. 9 Stellar Temperatures Hot Stellar Spectra How hot are stars? • Thermal radiation and temperature. • Different stars have different colors, different stars are temperatures. • Different temp, different trace compositions Cool 9 Spectral Classification 9 Stellar Masses How massive are stars? • Kepler’s Laws – devised for the planets. • Apply to any object that orbits another object. • Kepler’s Third Law relates: – Period: “how long it takes to orbit something” – Semimajor axis: “how far you are away from that something” – Mass: “how much gravity is pulling you around in orbit” 3 a P M 2 • Where M is the Total Mass. • Can calculate the mass of stars this way. 9 Binary Stars • Most stars in the sky are in multiple systems. • Binaries, triplets, quadruplets, etc…. – Sirius – Alcor and Mizar – Tatooine • The Sun is in the minority by being single. 9 NPOI Observations of Mizar A (1 Ursa Majoris) 0.005 arcsec Orbital Phase: 000o Mizar, 88 light years distant, is the middle star in the handle of the Big Dipper. It was the first binary star system to be imaged with a telescope. Spectroscopic observations show periodic Doppler shifts in the spectra of Mizar A and B, indicating that they are each binary stars. But they were too close to be directly imaged - until 2 May 1996, when the NPOI produced the first image of Mizar A. That image was the highest angular resolution image ever made in optical astronomy. Since then, the NPOI has observed Mizar A in 23 different positions over half the binary orbit. These images have been combined here to make a movie of the orbit. As a reference point, one component has been fixed at the map center; in reality, the two stars are of comparable size and revolve about a common central position. 9 Stellar Masses How massive are stars? 3 a P M 2 • Most stars have masses calculated this way. • Find: – The more massive the star, the more luminous it is. – The more massive the star, the hotter it is. 9 Stellar Radii How big are stars? • We see stars have different luminosities and different temperatures. • Stars have different sizes. • If you know: 50 mas – Distance – Angular size • Learn real size. 9 Betelgeuse • Angular size = 50 mas • Parallax = 7.6 mas = 0.0076 arcsec • Apparent mag = 0.6 • Distance = 1/parallax = 132 pc • True size = distance * angular size = 1400 Rsol • Absolute Mag = m – 5log(d/10pc) = -5 – Our sun M ~5, Betelgeuse = 10,000x luminosity 9 Angular versus Linear Supergiants, Giants and Dwarfs 9 H-R Diagram • Can order the stars by: – Temperature (or spectral type) – Luminosity (or absolute magnitude). • And see where other qualities fall: – Mass – Radius 9 9 Luminosity Class • The roman numerals. • Stars at same temp can have different luminosities. • Corresponds to different classes: MS, giant, supergiant. I V III 9 Concept Test Which star is: 1. Hottest? 2. Coolest? 3. Faintest as seen from Earth? 4. Most luminous? Of Main Seq. Stars? 1. Most massive? 2. Most like the Sun? Star Spec Type m M A F0 V 0.0 0.0 B G2 V 10.0 4.4 C K5 III 0.0 -2.0 D F7 I -1.0 -5.0 E K3 V 5.0 6.5 9 Homework #9 • • • • For Friday 10th: Reread B16.1 – B16.5, Read B16.6 Redo Problem 21, correct mistakes, give reasons. 9