* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Problems in Chapter 13
History of Solar System formation and evolution hypotheses wikipedia , lookup
Star of Bethlehem wikipedia , lookup
Formation and evolution of the Solar System wikipedia , lookup
Perseus (constellation) wikipedia , lookup
Dyson sphere wikipedia , lookup
Tropical year wikipedia , lookup
Alpha Centauri wikipedia , lookup
Corvus (constellation) wikipedia , lookup
Aquarius (constellation) wikipedia , lookup
Cosmic distance ladder wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Problems in Chapter 13 Worked out for Geology/Physics 360 An Illustration of Parallax using HNSKY Sirius Now (today) in March Sirius in Sept. 2010 (6 months later) Question: How would we find a closer star than Proxima Centauri? Problem 3. The Parallax of the red giant Betelgeuse is just barely measurable and has a value of about 0.005 arc seconds. What is its distance? Suppose the measurement is in error by + or โ 0.003 arc seconds. What limits can you set on its distance. Answer: p(Betelgeuse) = 0.005 arc seconds. Therefore its distance is d = 1/p = 200 pc. The error in this measurement is +/โ0.003", so we have to add and subtract this figure from the parallax angle to give the lower and upper limits to the distance estimate. d(pc) = 1/0.008 = 125 pc, the larger angle corresponds to the closer distance d(pc) = 1/0.002 = 500 pc, the smaller angle corresponds to the farther distance Problem 5. The star Rigel radiates most strongly at about 200 nm. What is its temperature? How does this compare to the Sun. ๐m for Rigel = 200 nm. Use Wienโs Law to find its temperature? T = 3 × 106 K nm / ๐m = 3 × 106 K nm / 200 nm = 15,000 K. This is much hotter than the surface of the Sun, which is about 6000 K. (2.5 times hotter). (Note that we have approximated the constant here as 3 x 106, it is closer to 2.9 x 106 Problem 6. The bright southern star Alpha Centauri radiates most strongly at about 500 nm. What is its temperature? How does this compare to the Sun. . Alpha Centauri has its peak radiation at 500 nm. Applying Wienโs Law, T = 3 × 106 K nm / 500 nm = 6000 K. The temperature of this star is approximately the same as our Sunโs, so Alpha Centauri has a similar spectral type to the Sun (G2). Problem 7. Arcturus is about ½ as hot as the sun but is about 100 times more luminous. What is its radius compared to the Sun. . For Arcturus, T = To/2, where To is the temperature of the Sun. L = 100Lo. To find the starโs radius, use the Stefan-Boltzmann Law, which relates a starโs luminosity, L, to its temperature, T, and radius, R. L = 4๐ซR2 ๐ T4 or LArc = 4๐ซR2Arc ๐ T4Arc and Lo = 4๐ซR2o ๐ T4o We want to find RArc in terms of Ro. 100 Lo = LArc = 4๐ซR2Arc ๐ T4Arc 100 (4๐ซR2o ๐T4o) = 4๐ซR2Arc ๐ T4Arc 100 (R2oT4o) = R2Arc T4Arc = R2Arc (To/2) 4 100 (R2oT4o) = R2Arc (T4o) / 24 100 (R2o) = R2Arc / 16 1600 (R2o) = R2Arc Therefore R Arc = (1600) 1/2 Ro = 40 Ro Arcturus is 40 times wider than the Sun.