Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
PowerPoint® Lecture Slides prepared by Vince Austin, Bluegrass Technical and Community College CHAPTER Elaine N. Marieb Katja Hoehn William A. Simmons Human Anatomy & Physiology SEVENTH EDITION 23 PART B The Digestive System: Mechanism Pharynx - know From the mouth, the oro- and laryngopharynx allow passage of: Food and fluids to the esophagus Air to the trachea Lined with stratified squamous epithelium and mucus glands Has two skeletal muscle layers Inner longitudinal Outer pharyngeal constrictors Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Esophagus - know Muscular tube going from the laryngopharynx to the stomach Travels through the mediastinum and pierces the diaphragm Joins the stomach at the cardiac orifice http://youtube.com/watch?v=1Om_qQl_SsQ Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Esophagus - understand Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Figure 23.12 Esophageal Characteristics - understand Esophageal mucosa – nonkeratinized stratified squamous epithelium The empty esophagus is folded longitudinally and flattens when food is present Glands secrete mucus as a bolus moves through the esophagus Muscularis changes from skeletal (superiorly) to smooth muscle (inferiorly) Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Deglutition (Swallowing) - know Coordinated activity of the tongue, soft palate, pharynx, esophagus, and 22 separate muscle groups Buccal phase – bolus is forced into the oropharynx Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Deglutition (Swallowing) - know Pharyngeal-esophageal phase – controlled by the medulla and lower pons All routes except into the digestive tract are sealed off Peristalsis moves food through the pharynx to the esophagus Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Deglutition (Swallowing) - understand Bolus of food Tongue Pharynx Epiglottis Glottis Trachea (a) Upper esophageal sphincter contracted Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Deglutition (Swallowing) - understand Uvula Bolus Epiglottis Esophagus (b) Upper esophageal sphincter relaxed Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Deglutition (Swallowing) - understand Bolus (c) Upper esophageal sphincter contracted Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Deglutition (Swallowing) - understand Relaxed muscles Bolus of food Longitudinal muscles contract, shortening passageway ahead of bolus Gastroesophageal sphincter closed (d) Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Circular muscles contract, constricting passageway and pushing bolus down Stomach Deglutition (Swallowing) - understand Relaxed muscles Gastroesophageal sphincter open (e) Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Bolus of food Tongue Uvula Pharynx Epiglottis Bolus Epiglottis Glottis Esophagus Trachea (a) Upper esophageal sphincter contracted summary Bolus (b) Upper esophageal sphincter relaxed Relaxed muscles Bolus of food Longitudinal muscles contract, shortening passageway ahead of bolus Gastroesophageal sphincter closed (d) Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings (c) Upper esophageal sphincter contracted Circular muscles contract, constricting passageway and pushing bolus down Stomach (e) Relaxed muscles Gastroesophageal sphincter open Stomach - know Chemical breakdown of proteins begins and food is converted to chyme Cardiac region – surrounds the cardiac orifice Fundus – dome-shaped region beneath the diaphragm Body – midportion of the stomach Pyloric region – made up of the antrum and canal which terminates at the pylorus The pylorus is continuous with the duodenum through the pyloric sphincter Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Stomach - know Greater curvature – entire extent of the convex lateral surface Lesser curvature – concave medial surface Lesser omentum – runs from the liver to the lesser curvature Greater omentum – drapes inferiorly from the greater curvature to the small intestine Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Stomach - know Nerve supply – sympathetic and parasympathetic fibers of the autonomic nervous system Blood supply – celiac trunk, and corresponding veins (part of the hepatic portal system) Normal stomach: http://youtube.com/watch?v=Ln09qihUi3g&feature=related Stomach ulcer: http://youtube.com/watch?v=kRwMAMe1IWY&feature=re lated Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings know Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Figure 23.14a Microscopic Anatomy of the Stomach - understand Muscularis – has an additional oblique layer that: Allows the stomach to churn, mix, and pummel food physically Breaks down food into smaller fragments Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of the Stomach - know Epithelial lining is composed of: Goblet cells that produce a coat of alkaline mucus The mucous surface layer traps a bicarbonaterich fluid beneath it Gastric pits contain gastric glands that secrete gastric juice, mucus, and gastrin Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of the Stomach - understand Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of the Stomach - understand Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Microscopic Anatomy of the Stomach - understand Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Glands of the Stomach Fundus and Body understand Gastric glands of the fundus and body have a variety of secretory cells Mucous neck cells – secrete acid mucus Parietal cells – secrete HCL and intrinsic factor Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Glands of the Stomach Fundus and Body - know Chief cells – produce pepsinogen Pepsinogen is activated to pepsin by: HCL in the stomach Pepsin itself via a positive feedback mechanism Enteroendocrine cells – secrete gastrin, histamine, endorphins, serotonin, cholecystokinin (CCK), and somatostatin into the lamina propria Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Stomach Lining - know The stomach is exposed to the harshest conditions in the digestive tract To keep from digesting itself, the stomach has a mucosal barrier with: A thick coat of bicarbonate-rich mucus on the stomach wall Epithelial cells that are joined by tight junctions Gastric glands that have cells impermeable to HCL Damaged epithelial cells are quickly replaced Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Digestion in the Stomach - know The stomach: Holds ingested food Degrades this food both physically and chemically Delivers chyme to the small intestine Enzymatically digests proteins with pepsin Secretes intrinsic factor required for absorption of vitamin B12 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Gastric Secretion - know Neural and hormonal mechanisms regulate the release of gastric juice Stimulatory and inhibitory events occur in three phases Cephalic (reflex) phase: prior to food entry Gastric phase: once food enters the stomach Intestinal phase: as partially digested food enters the duodenum Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Cephalic Phase - know Excitatory events include: Sight or thought of food Stimulation of taste or smell receptors Inhibitory events include: Loss of appetite or depression Decrease in stimulation of the parasympathetic division Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Gastric Phase - know Excitatory events include: Stomach distension Activation of stretch receptors (neural activation) Activation of chemoreceptors by peptides, caffeine, and rising pH Release of gastrin to the blood Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Gastric Phase - know Inhibitory events include: A pH lower than 2 Emotional upset that overrides the parasympathetic division Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Intestinal Phase - know Excitatory phase – low pH; partially digested food enters the duodenum and encourages gastric gland activity Inhibitory phase – distension of duodenum, presence of fatty, acidic, or hypertonic chyme, and/or irritants in the duodenum Initiates inhibition of local reflexes and vagal nuclei Closes the pyloric sphincter Releases enterogastrones that inhibit gastric secretion Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Release of Gastric Juice: Stimulatory Events summary Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Release of Gastric Juice: Inhibitory Events summary Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation and Mechanism of HCL Secretion - know HCL secretion is stimulated by ACh, histamine, and gastrin through second-messenger systems Release of hydrochloric acid: Is low if only one ligand binds to parietal cells Is high if all three ligands bind to parietal cells Antihistamines block H2 receptors and decrease HCl release Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation and Mechanism of HCl Secretion - detail Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Response of the Stomach to Filling - understand Stomach pressure remains constant until about 1L of food is ingested Relative unchanging pressure results from reflexmediated relaxation and plasticity Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Response of the Stomach to Filling - know Reflex-mediated events include: Receptive relaxation – as food travels in the esophagus, stomach muscles relax Adaptive relaxation – the stomach dilates in response to gastric filling Plasticity – intrinsic ability of smooth muscle to exhibit the stress-relaxation response Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Gastric Contractile Activity - understand Peristaltic waves move toward the pylorus at the rate of 3 per minute This basic electrical rhythm (BER) is initiated by pacemaker cells (cells of Cajal) Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Gastric Contractile Activity - know Most vigorous peristalsis and mixing occurs near the pylorus Chyme is either: Delivered in small amounts to the duodenum or Forced backward into the stomach for further mixing Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Gastric Contractile Activity - summary Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Gastric Emptying - understand Gastric emptying is regulated by: The neural enterogastric reflex Hormonal (enterogastrone) mechanisms These mechanisms inhibit gastric secretion and duodenal filling Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Gastric Emptying - know Carbohydrate-rich chyme quickly moves through the duodenum Fat-laden chyme is digested more slowly causing food to remain in the stomach longer Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Gastric Emptying - summary Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Small Intestine: Gross Anatomy - know Runs from pyloric sphincter to the ileocecal valve Has three subdivisions: duodenum, jejunum, and ileum Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Small Intestine: Gross Anatomy - know The bile duct and main pancreatic duct: Join the duodenum at the hepatopancreatic ampulla Are controlled by the sphincter of Oddi The jejunum extends from the duodenum to the ileum The ileum joins the large intestine at the ileocecal valve Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Small Intestine: Microscopic Anatomy - know Structural modifications of the small intestine wall increase surface area Plicae circulares: deep circular folds of the mucosa and submucosa Villi – fingerlike extensions of the mucosa Microvilli – tiny projections of absorptive mucosal cells’ plasma membranes http://youtube.com/watch?v=xu5jDCX2cHM Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Duodenum and Related Organs – be able to label Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Small Intestine: Microscopic Anatomy – be able to label Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Small Intestine: Histology of the Wall - understand The epithelium of the mucosa is made up of: Absorptive cells and goblet cells Enteroendocrine cells Interspersed T cells called intraepithelial lymphocytes (IELs) IELs immediately release cytokines upon encountering Ag Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Small Intestine: Histology of the Wall - know Cells of intestinal crypts secrete intestinal juice Peyer’s patches are found in the submucosa Brunner’s glands in the duodenum secrete alkaline mucus Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Intestinal Juice - know Secreted by intestinal glands in response to distension or irritation of the mucosa Slightly alkaline and isotonic with blood plasma Largely water, enzyme-poor, but contains mucus Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver - know The largest gland inside the body Superficially has four lobes – right, left, caudate, and quadrate The falciform ligament: Separates the right and left lobes anteriorly Suspends the liver from the diaphragm and anterior abdominal wall Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver - understand The ligamentum teres: Is a remnant of the fetal umbilical vein Runs along the free edge of the falciform ligament Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver: Associated Structures - know The lesser omentum anchors the liver to the stomach The hepatic blood vessels enter the liver at the porta hepatis The gallbladder rests in a recess on the inferior surface of the right lobe Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver: Associated Structures - know Bile leaves the liver via: Bile ducts, which fuse into the common hepatic duct The common hepatic duct, which fuses with the cystic duct These two ducts form the bile duct Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Gallbladder and Associated Ducts – be able to label http://youtube.com/watch?v=bNMsNHqxszc &feature=related Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver: Microscopic Anatomy - understand Hexagonal-shaped liver lobules are the structural and functional units of the liver Composed of hepatocyte (liver cell) plates radiating outward from a central vein Portal triads are found at each of the six corners of each liver lobule Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver: Microscopic Anatomy - understand Portal triads consist of a bile duct and Hepatic artery – supplies oxygen-rich blood to the liver Hepatic portal vein – carries venous blood with nutrients from digestive viscera Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver: Microscopic Anatomy - know Liver sinusoids – enlarged, leaky capillaries located between hepatic plates Kupffer cells – hepatic macrophages found in liver sinusoids Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Liver: Microscopic Anatomy - know Hepatocytes’ functions include: Production of bile Processing bloodborne nutrients Storage of fat-soluble vitamins Detoxification Secreted bile flows between hepatocytes toward the bile ducts in the portal triads Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Composition of Bile - know A yellow-green, alkaline solution containing bile salts, bile pigments, cholesterol, neutral fats, phospholipids, and electrolytes Bile salts are cholesterol derivatives that: Emulsify fat Facilitate fat and cholesterol absorption Help solubilize cholesterol Enterohepatic circulation recycles bile salts The chief bile pigment is bilirubin, a waste product of heme Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings The Gallbladder - know Thin-walled, green muscular sac on the ventral surface of the liver Stores and concentrates bile by absorbing its water and ions Releases bile via the cystic duct, which flows into the bile duct Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - know Acidic, fatty chyme causes the duodenum to release: Cholecystokinin (CCK) and secretin into the bloodstream Bile salts and secretin transported in blood stimulate the liver to produce bile Vagal stimulation causes weak contractions of the gallbladder Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - know Cholecystokinin causes: The gallbladder to contract The hepatopancreatic sphincter to relax As a result, bile enters the duodenum Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - understand 4 Vagal stimulation causes weak contractions of gallbladder 3 Bile salts and secretin transported via bloodstream stimulate liver to produce bile more rapidly 5 Cholecystokinin (via bloodstream) causes gallbladder to contract and hepatopancreatic sphincter to relax; bile enters duodenum 1 Acidic, fatty chyme entering duodenum causes release of cholecystokinin and secretin from duodenal wall enteroendocrine cells 2 Cholecystokinin and secretin enter the bloodstream 6 Bile salts reabsorbed into blood Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - understand 1 Acidic, fatty chyme entering duodenum causes release of cholecystokinin and secretin from duodenal wall enteroendocrine cells Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - understand 1 Acidic, fatty chyme entering duodenum causes release of cholecystokinin and secretin from duodenal wall enteroendocrine cells 2 Cholecystokinin and secretin enter the bloodstream Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - understand 3 Bile salts and secretin transported via bloodstream stimulate liver to produce bile more rapidly 1 Acidic, fatty chyme entering duodenum causes release of cholecystokinin and secretin from duodenal wall enteroendocrine cells 2 Cholecystokinin and secretin enter the bloodstream Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - understand 4 Vagal stimulation causes weak contractions of gallbladder 3 Bile salts and secretin transported via bloodstream stimulate liver to produce bile more rapidly 1 Acidic, fatty chyme entering duodenum causes release of cholecystokinin and secretin from duodenal wall enteroendocrine cells 2 Cholecystokinin and secretin enter the bloodstream Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Regulation of Bile Release - understand 4 Vagal stimulation causes weak contractions of gallbladder 5 Cholecystokinin (via bloodstream) causes gallbladder to contract and hepatopancreatic sphincter to relax; bile enters duodenum 1 Acidic, fatty chyme entering duodenum causes release of cholecystokinin and secretin from duodenal wall enteroendocrine cells 2 Cholecystokinin and secretin enter the bloodstream Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings 3 Bile salts and secretin transported via bloodstream stimulate liver to produce bile more rapidly Review http://youtube.com/watch?v=1nFwO9iU5Y&feature=related http://youtube.com/watch?v=LpaEWpYUdDQ Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Functions of the large intestine Reabsorb water and compact material into feces Absorb vitamins produced by bacteria Store fecal matter prior to defecation Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings The Large Intestine Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Figure 24.23a Figure 24.23 The Large Intestine Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Figure 24.23b, c The rectum Last portion of the digestive tract Terminates at the anal canal Internal and external anal sphincters Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Histology of the large intestine Absence of villi Presence of goblet cells Deep intestinal glands Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Physiology of the large intestine Reabsorption in the large intestine includes: Water Vitamins – K, biotin, and B5 Organic wastes – urobilinogens and sterobilinogens Bile salts Toxins Mass movements of material through colon and Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings The Defecation Reflex Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Figure 24.25 Processing and absorption of nutrients Disassembles organic food into smaller fragments Hydrolyzes carbohydrates, proteins, lipids and nucleic acids for absorption Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Carbohydrate digestion and absorption Begins in the mouth Salivary and pancreatic enzymes Brush border enzymes Disaccharides and trisaccharides Monosaccharides Absorption of monosaccharides occurs across the intestinal epithelia Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Lipid digestion and absorption Lipid digestion utilizes lingual and pancreatic lipases Bile salts improve chemical digestion by emulsifying lipid drops Lipid-bile salt complexes called micelles are formed Micelles diffuse into intestinal epithelia which release lipids into the blood as chylomicrons Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Protein digestion and absorption Low pH destroys tertiary and quaternary structure Enzymes used include pepsin, trypsin, chymotrypsin, and elastase Liberated amino acids are absorbed Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Absorption Water Ions Nearly all that is ingested is reabsorbed via osmosis Absorbed via diffusion, cotransport, and active transport Vitamins Water soluble vitamins are absorbed by diffusion Fat soluble vitamins are absorbed as part of micelles Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Digestive Secretion and Absorption of Water Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings