Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ImmoRisk: Risikoabschätzung der zukünftigen Klimafolgen in der Immobilien- und Wohnungswirtschaft / Évaluation des risques des évolutions climatiques futures pour l’économie immobilière Research in Germany (DAAD): Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 Professor Dr. Sven Bienert MRICS REV Geschäftsführer, IRE│BS International Real Estate Business School, Universität Regensburg Increasingly, extreme weather events have historical dimensions. Overview of 2014/2015 extreme weather events (1/3) Tokyo‘s heaviest Snowfall in 45 years (Japan, February 2014) Midwest Coldwave affects 140 million Americans; ice load and power blackouts cost billions (U.S., January 2014) 49,3 °C in rural South Australia; lightning strikes cause more than 250 forest fires (Australia, January 2014) Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 2 Prof. Dr. Sven Bienert MRICS REV Increasingly, extreme weather events have historical dimensions. Overview of 2014 /2015 extreme weather events (2/3) The wettest winter in 250 years (United Kingdom, January 2014) Flooding causes landslide; 300 to 500 dead, 4000 homeless (Afghanistan, May 2014) Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 3 Prof. Dr. Sven Bienert MRICS REV Increasingly, extreme weather events have historical dimensions. Overview of 2014 /2015 extreme weather events (3/3) 31 Tote nach Sturzfluten (Oklahoma & Texas, Mai 2015) Hitzewelle mit 2.500 Toten (Indien, Mai 2015) Hitzewelle mit 2.000 Toten (Pakistan, Juni 2015) Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 4 Prof. Dr. Sven Bienert MRICS REV Downside Impacts of Climate Change Zunehmende Extremwetterereignisse / Évènements climatiques extrêmes augmetnent 1 Intensität / Intensité 2 Frequenz / Fréquence 3 Schäden / Dégâts Quelle: Münchner Rückversicherungs-Gesellschaft, 2013 Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 5 Prof. Dr. Sven Bienert MRICS REV Downside Impacts of Climate Change (Indirekte) Auswirkungen am Beispiel Kalifornien 2015 „California will run out of water within one year“ (NASA) Four-years drought and temperature records make California‘s water reserves drain New water saving regulation provides for annual cutbacks of up to 36 %. Fines of up to $10,000 for local water companies are legally enforced from July on Exemplary saving targets Montecito / Beverly Hills Palo Alto Santa Barbara minus 36 % minus 28 % minus 16 % … Properties are considered as a significant driver of water consumption While agricultural production must be ensured, especially real estate (existing and new buildings) as well as their outdoor facilities (watering, pools) are captured by the authorities. Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 6 Prof. Dr. Sven Bienert MRICS REV Downside Impacts of Climate Change (Indirekte) Auswirkungen am Beispiel Tirol 2014 Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 7 Prof. Dr. Sven Bienert MRICS REV Extreme weather events affecting property values Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 8 Prof. Dr. Sven Bienert MRICS REV Real Estate industry can address the risk Elements for the derivation of expected losses Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 9 Prof. Dr. Sven Bienert MRICS REV Climate data is getting more reliable Best practice - The ImmoRisk-Tool: Hazard data Emergence of global climate model GCM: Global vs. Regional climate models: GCM RCM (REMO-CLM) Source: www.southwestclimatechange.org (left), www.remo-rcm.de (right) Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 10 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Risk = Hazard * Vulnerability * Value Source: IRE|BS, 2013 Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 11 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Monetary Loss Risk = Median Margin of error Value Risk Hazard * Probability Damage Vulnerability * Hazard Value Vulnerability I.e. wind velocity Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 12 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Median Risk Margin of error = Hazard * Probability Vulnerability * Hazard Value I.e. wind velocity Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 13 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Median Risk Margin of error = Hazard * Probability Damage Vulnerability * Hazard Value Vulnerability I.e. wind velocity Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 14 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Monetary Loss Risk Median Margin of error Value = Hazard * Probability Damage Vulnerability * Hazard Value Vulnerability I.e. wind velocity Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 15 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Monetary Loss Risk = Median Margin of error Value Risk Hazard * Probability Damage Vulnerability * Hazard Value Vulnerability I.e. wind velocity Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 16 Prof. Dr. Sven Bienert MRICS REV Functional relationship of the variables Best practice - The ImmoRisk-Tool: General Risk Approach Risk Median Margin of error = Hazard Monetary Loss Annual expected loss = Risk * Vulnerability ML: Monetary Loss * P: Probability of occurence Value Probability Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 17 Prof. Dr. Sven Bienert MRICS REV ImmoRisk-Tool: http://xrl.us/immorisk Standort + Gebäude Risiko / Site + Immeuble Risque Step 1: Selection of location by Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 18 Drag‘n‘Drop and Address input Prof. Dr. Sven Bienert MRICS REV ImmoRisk-Tool: http://xrl.us/immorisk Standort + Gebäude Risiko / Site + Immeuble Risque Step 2: Building characteristics Vulnerability Value Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 19 Prof. Dr. Sven Bienert MRICS REV ImmoRisk-Tool: http://xrl.us/immorisk Risikosteckbrief / Résumé de risque Type Hazard Trend Storm: Flood: Hail: Heat: Heavy Precipitation: Annual Expected Loss* (Damage Ratio) Forest Fire: Storm Present 2021-2050 Lightning Strike: Excess Voltage: Flood Present 2050 Hazard: Hail Present (no prediction available yet) *rounded to the nearest tens Risk: Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 20 Prof. Dr. Sven Bienert MRICS REV IRE|BS Competence Center of Sustainable Real Estate Contact Prof. Dr. Sven Bienert MRICS IRE|BS Department of Real Estate Head of Department Competence Center of Sustainable Real Estate University of Regensburg Universitätsstraße 31 D-93040 Regensburg Tel.: +49 (0)941 943-6011 Fax: +49 (0) 941 943-816013 Mail: [email protected] Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 21 Prof. Dr. Sven Bienert MRICS REV Real Estate industry can address the risk New ULI Report: Extreme weather events and property values Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 22 Prof. Dr. Sven Bienert MRICS REV Extreme weather events affecting property values Source: IPCC and others Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 23 Prof. Dr. Sven Bienert MRICS REV Real Estate industry can address the risk Elements for the derivation of expected losses Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 24 Prof. Dr. Sven Bienert MRICS REV Real Estate industry can address the risk Elements for the derivation of expected losses Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 25 Prof. Dr. Sven Bienert MRICS REV Real Estate industry can address the risk Elements for the derivation of expected losses Stadt der Zukunft / La ville de demain, Paris, 19.11.2015 26 Prof. Dr. Sven Bienert MRICS REV