Download sfh2030

Document related concepts

Audio power wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Index of electronics articles wikipedia , lookup

Oscilloscope history wikipedia , lookup

TRIAC wikipedia , lookup

Test probe wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Regenerative circuit wikipedia , lookup

Multimeter wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Integrating ADC wikipedia , lookup

Radio transmitter design wikipedia , lookup

CMOS wikipedia , lookup

Ohm's law wikipedia , lookup

Transistor–transistor logic wikipedia , lookup

Surge protector wikipedia , lookup

Amplifier wikipedia , lookup

Power MOSFET wikipedia , lookup

Current source wikipedia , lookup

Negative-feedback amplifier wikipedia , lookup

Two-port network wikipedia , lookup

Wilson current mirror wikipedia , lookup

Power electronics wikipedia , lookup

Voltage regulator wikipedia , lookup

Schmitt trigger wikipedia , lookup

Valve audio amplifier technical specification wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Operational amplifier wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Current mirror wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Transcript
Module
e EEE
E536J2
2: Con
ntrol & Auttomattion
Mode
eling and
a siimula
ation of
o sen
nsors and circuits
c
R
R. Grossm
mann
Amp
plifiers
Senssors
ems
Syste
LTsp
pice
EEE536JJ2: Contrrol & Auto
omation
Tab
ble of con
ntents:
als of this courrse .........................................................................................................................................................3
Goa
Intro
oduction to LT
Tspice ....................................................................................................................................................4
0.2.1
Installatio
on ..........................................................................................................................................................4
0.2.2
Schemattic Capture .............................................................................................................................................5
0.2.3
Analysess .............................................................................................................................................................8
0.2.4
Waveform
m Viewer ...............................................................................................................................................9
1
Amplifier circuits .................................................................................................................................................................... 10
1.1
Idea
al op amp ..................................................................................................................................................................10
1.1.1
eristic ...................................................................................................................................................10
Characte
Compara
ator ......................................................................................................................................................10
1.1.2
Schmitt-T
Trigger .................................................................................................................................................11
1.1.3
plifiers ...................................................................................................................................................12
1.2
Clossed-loop amp
1.2.1
Negative
e feedback ............................................................................................................................................12
Non-inve
erting amplifierr / voltage follo
ower .........................................................................................................13
1.2.2
1.2.3
Inverting amplifier .............................................................................................................................................13
1.2.4
Differencce amplifier...........................................................................................................................................14
1.2.5
Instrume
entation ampliffier ..................................................................................................................................14
Simple model
m
....................................................................................................................................................15
1.2.6
1.3
Rea
al op amps ................................................................................................................................................................16
1.3.1
oltage and currents ..............................................................................................................................16
Offset vo
1.3.2
Non-linea
ar and limited output ............................................................................................................................18
1.3.3
Input/outtput impedanc
ce ....................................................................................................................................19
1.3.4
Limited bandwidth
b
............................................................................................................................................21
1.4
Actiive filters ...................................................................................................................................................................22
Filter syn
1.4.1
nthesis .................................................................................................................................................22
Controlle
er ..........................................................................................................................................................24
1.4.2
2
Sensors
..................................................................................................................................................................... 25
2.1
Classsification .................................................................................................................................................................25
2.2
Mod
deling sensor circuits ................................................................................................................................................25
2.2.1
D model .............................................................................................................................................25
Simple DC
2.2.2
Controllin
ng physical qu
uantities ..........................................................................................................................26
2.2.3
Dynamicc behaviour ...........................................................................................................................................27
2.3
Volttage sources .............................................................................................................................................................29
2.3.1
Lambda probe ..................................................................................................................................................29
2.3.2
Thermo couples
c
................................................................................................................................................30
2.4
Currrent sources .............................................................................................................................................................32
Photo dio
2.4.1
ode ......................................................................................................................................................32
Photo tra
ansistor ................................................................................................................................................35
2.4.2
Current sources
s
in LTs
spice...............................................................................................................................36
2.4.3
2.5
Ressistors .......................................................................................................................................................................37
NTC ..................................................................................................................................................................37
2.5.1
Gas senssor .......................................................................................................................................................38
2.5.2
2.5.3
Strain ga
auges ...................................................................................................................................................39
Evaluatio
on of resistanc
ce ...................................................................................................................................40
2.5.4
Wheatsto
one bridge ...........................................................................................................................................40
2.5.5
Bridge with
w difference amplifier ........................................................................................................................40
2.5.6
LTspice simulations
s
off resistive senssors .........................................................................................................41
2.5.7
Non-linea
ar resistors ..........................................................................................................................................43
2.5.8
2.6
Osccillators ......................................................................................................................................................................45
LC oscilla
2.6.1
ator ......................................................................................................................................................45
RC oscilllator .....................................................................................................................................................45
2.6.2
2.6.3
Timer IC 555 .....................................................................................................................................................46
3
Sensor syystems ..................................................................................................................................................................... 49
3.1
Indu
uctive proximity switch ..............................................................................................................................................49
3.2
Com
mplex Systems..........................................................................................................................................................52
Amplifierr circuits ...............................................................................................................................................52
3.2.1
Modulato
or .........................................................................................................................................................53
3.2.2
3.2.3
VCO (voltage-controlle
ed oscillator) ...................................................................................................................53
0.1
0.2
Appendix:
A
Data ssheets
Op am
mp LM741, Natio
onal Semicondu
uctor
Op am
mp AD8541, Ana
alog Devices
NTC M
MF58, Cantherm
m
NTC T
Thermistor, Vish
hay
Gas se
ensor TGS822, Figaro
Photo diode SFH203, Infineon
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
2
EEE536JJ2: Contrrol & Auto
omation
0.1
0 Goa
als of this cours
se
• Ana
alyze and
d understa
and op am
mp circuiits useful for senso
ors
• Lea
arn about limitation
ns of real op amps
s
• Sim
mulate com
mponents
s and sysstems in PSPICE
P
• Und
derstand important physica
al propertties of sen
nsors
• Ana
alyze data
a sheets and extra
act neces
ssary properties
• Builld useful models of
o sensorss and com
mponents
s
• Be w
wary of simulators
s
s
example:
e
real resisstor: a lott of physiics
•
•
•
•
•
well equa
ations
Maxw
intern
nal electrric field
curre
ent densitty
elect ro-magne
etic fields
s
verload, …
non-llinearity, noise, ov
id
deal resisstor (simp
ple mode
el):
:
advanced
a
d model:
C
R
Prof.
P
Dr.-Ing. Gro
oßmann
L
V
V3.0
3
EEE536JJ2: Contrrol & Auto
omation
0.2
0 Intro
oductio
on to LTspice
0.2.1
0
Insttallation
•
Downlo
oad LTspi
ice.zip; extract LT
TspiceIV.exe and folders lib
b und pro
ojects
•
Execute LTspiceIV.exe
•
Use acccessible in
nstallation folder, NO
OT “progr
ram files
s (x86)“ or system folders
NO!
OK!
You
Y should
d find the symbol
s
LTs
spice IV
V
on
o your de
esktop.
•
In the installation folder rep
place old fo
older lib with
w new (d
downloadeed and extrracted) lib
b.
It conta
ains European symbo
ols and add
ditional mo
odels.
•
Move the downloaded folde
er projec ts into the
e installatio
on folder
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
4
EEE536J2: Control & Automation
0.2.2 Schematic Capture
open new
schematic
wire
ground
other
components
(library)
components
R, C, L, diode
simulate
always define
ground!
Short-cuts:
F5
delete (!)
Ctrl-R
rotate
F7
move (w/o wires)
Ctrl-E
mirror
F8
drag (with wires)
Ctrl-G
toggle grid
Values:
femto
modifier f, F
pico
p, P
nano
n, N
micro
µ,
u, U
milli
m, M
kilo
k, K
Mega
meg,
MEG
Giga
g, G
Tera
t, T
Units: arbitrary units allowed after number/modifier (without space!)
Examples:
1.2k = 1200;
error:
1.2
Prof. Dr.-Ing. Großmann
k;
5
R=1megohm;
C=1f = 1femtoFarad (!)
V
V3.0
5
EEE536JJ2: Contrrol & Auto
omation
Sources:
S
•
sourcess of volta
age
and cu
urrent are
e located in
n the librarry
•
change
e behavior of source:
click rig
ght mouse button and
d
choose
e Advance
ed:
•
for PU
ULSE sourrces with Trise = 0 a
and Tfall
l = 0, LTsp
pice insertss values > 0!
if you need recta
angular pu
ulses, defin
ne very small values for Trise and Tfal
ll
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
6
EEE536JJ2: Contrrol & Auto
omation
Labels:
L
•
Add
d labels to
o nodes/wirres for eas
sier accesss
in WaveformViewer
SPICE
S
dire
ectives
in
nsert comm
mand liness and comm
ments into the netlist:
•
•
•
parame
eter definitions
special analyses
define models
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
7
EEE536JJ2: Contrrol & Auto
omation
0.2.3
0
Ana
alyses
.OP:
.
calcu
ulate opera
ating point (constant voltages & currents))
afterr .OP simu
ulation, poin
nt at a nod
de or current and view
w OP valuee in status bar
analyses
a
th
hat produce
e output fo
or WaveforrmViewer:
Transient
T
AC analyysis
DC sw
weep
simulate
s
tim
me intervall
sweep frrequencies
s for all
select
s
time resolution
n
with
w “step cceiling”
sources
sweepp source (v
voltage/
currennt)
DC ch aracteristic
cs only!
also neested sweeps
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
8
EEE536JJ2: Contrrol & Auto
omation
0.2.4
0
Wav
veform Viewer
V
Plot
P voltage
es, currentts and calc
culated qua
antities. Prrobe in Sch
hematicCappture:
•
•
•
click (le
eft) at a wirre to inspect its volta
age (cursor = measuring tip)
click an
nd drag to plot a volttage differrence
click on
n a pin or ALT-click
A
on
o a wire to
o see curre
ent (cursor = currentt clamp)
Or
O choose Add Trac
ce from Waveform
W
V
Viewer men
nu Plot Se
ettings ((shortcut CTRL-A)
C
an
nd
enter
e
an exxpression; e.g. “I(R1
1) * ( V (in) – V(n002)
V
)” yields power in R1.
R
See
S
Help topics → Waveform Arit
thmetics for availa
able functioons.
Change
C
ax
xis properrties (plotte
ed quantityy, limits, tic
cks, linear/llogarithmicc):
Click
C
left on
n axis (curssor = ruler)
Other
O
featu
ures:
•
•
cursor ((single and
d differentia
al): click on
n trace nam
me
FFT: me
enu View → FFT
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
9
EEE536JJ2: Contrrol & Auto
omation
1
Amplifier circuits
1.1
1 Idea
al op am
mp
1.1.1
1
Cha
aracteris
stic
operation
o
al amplifiier:
U+
U+
Uout
Δ in
ΔU
-10µV
U-
•
•
•
•
•
Uout
10µV
V
ΔU
Uin
U-
voltage
e amplifie
er
extrem
mely high gain (105 … 108)
no inpu
ut current
unlimitted outpu
ut current
limited output voltage
v
characterisstic for ga
ain g = 10
06
Δ
1.1.2
1
Com
mparatorr
very
v
smalll linear in
nput rang
ge, mostlyy
→ approxximately just 2 output state
es U+/- (su
upply)
Uin
U+
Uref
Uin
t
Uout
U-
check
c
if Uin > Uref
U+
Uout
t
U-
disadvan
d
ntage: noisy
n
sign
nals lead to “bounc
cing”
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
10
EEE536JJ2: Contrrol & Auto
omation
1.1.3
1
Sch
hmitt-Trig
gger
in
nverting ccomparator with 2 differentt thresholds, deriv
ved from the 2 outtput state
es:
U+
Uout
Uin
U-
U+ Uout
Uin
R1
R2
U1
Uref U2
U-
Uref
⋅
⋅
Uin
U2
U1
U+
t
Uout
Uout = U+
when Uin < U1
Uout = U-
when Uin > U2
t
U-
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
11
EEE536JJ2: Contrrol & Auto
omation
1.2
1 Clos
sed-loop ampliifiers
1.2.1
1
Neg
gative fee
edback
⋅
x +
e
y
g
⋅ 1
1
gR
fo
or
1
→ ∞:
∞
⋅
⋅
⋅
⋅
⋅ ;
⋅
⋅
1
1
⋅
→ 0
1
op
o amp w
with negattive feedb
back:
virtual shortcutt: Uin+ = UinUin
Uout
o
0V
Iout
R1
R2
only
o
nega
ative feed
dback yields stable
e output:
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
12
EEE536JJ2: Contrrol & Auto
omation
1.2.2
1
Non
n-invertin
ng ampliifier / volltage folllower
Uin
Uouut
R1
R2
Uin
age follow
wer:
volta
Uouut
1.2.3
1
Inve
erting am
mplifier
R
Iin
Uout
R
R1
Uout
Uin
U1
U2
U3
R1
R
R2
Uout
adde r:
⋅
R3
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
13
EEE536JJ2: Contrrol & Auto
omation
1.2.4
1
Diffference amplifier
a
r
combines
c
s inverting
g & non-inverting a
amplifiers
s
R1
R
UinUout
Uin+
⋅
R
R1
1.2.5
1
Insttrumenta
ation amplifier
Data
asheet
Texa
as Instrumentts INA118
8:
Δ
1
50 Ω
25kΩ
Ω
RG
25kΩ
Ω
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
14
EEE536JJ2: Contrrol & Auto
omation
1.2.6
1
Sim
mple mod
del
most
m
simu
ulation prrograms provide
p
a “gain blo
ock” and a “limiterr”:
LTspice
L
providess a voltage-controllled voltage source (compo
onent E):
It include
es a diffe
erential input and a gain.
If gain iss a numbe
er, the ou
utput is u nlimited.
You
Y may enter the
e gain as a table w
with pairs of values
s (Uin, Uoout):
With two pairss you get a linear
amplifier with limited output.
Tutorial
T
1
1: open--loop cha
aracteristiic of ideal op amp
Resource
R
e:
126
6_opamp_char.assc
Circuit
C
de
escription:
s
volttage sourrce, E_ta
able, load resistor 1kΩ, grou
und
Jobs:
J
DC
C sweep of
o voltage
e source; inspect output
o
vo
oltage
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
15
EEE536JJ2: Contrrol & Auto
omation
1.3
1 Real op am
mps
1.3.1
1
Offs
set volta
age and currents
c
U+
• characcteristic doesn’t pa
ass thru 0
(Uout = 0 for Uin = UOS ≈ µV…mV))
Uout
UOS
• due to operating point off input tra
ana In arre
sistorss input currents Ip and
not 0
ΔUin
U-
U+
Ip
:
Uout
Δ in
ΔU
(average) bias current (pA … nA
A)
:
offset current
c
((≈ 0)
In
U-
1.3.1.1
1
O
Offset mo
odel
• op amp
a
ampllifies offset voltage just like a signal
• bias currentss only pro
oblematic
if the
ey producce an inp
put voltage (passing
g thru a resistor)
Datashee
D
ets: uA74
41, AD8541: dete
ermine offfset volta
age/curre
ent
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
16
EEE536JJ2: Contrrol & Auto
omation
1.3.1.2
1
O
Offset com
mpensattion
non-inver
n
rting op amp:
Ip
UOS
Δ
Rsrc
1
⋅
⋅
‖
⋅
R1
Usrc
In
R2
ffor Ip ≈ In compens
sation of bias currrents if
‖
in
nverting o
op amp:
R
Rfb
In
Δ
Usrc
Ip
UOS
1
⋅
⋅
d to ground → ine
effective
Ip shorted
compens
sation of bias
b
curre
ents with a resisto
or
‖
betwe
een “+” in
nput and ground
offset
o
volttage com
mpensatio
on:
UOS
U0+
U0-
OS1
Rfb
f
add
a negative offse
et
Prof.
P
Dr.-Ing. Gro
oßmann
OS1
U0-
u
use offsett compensation pin
ailable)
ns (if ava
V
V3.0
17
EEE536JJ2: Contrrol & Auto
omation
1.3.2
1
Non
n-linear and
a
limitted outpu
ut
limite
ed
outpu
ut
Op
O amp iss no pow
wer plant!
output
o
is limited to supply volta
age range,
in
n most ca
ases even less:
0.5 … 1
U+
0.5 … 1
Δ in
ΔU
(“output vvoltage sw
wing”)
Uos
Only
O
for “rail-to-ra
ail” amps Uout rea
aches U±.
Non-linea
N
ar charactteristic is no probl em for fe
eedback as
a
lo
ong as
Uout
is sufficiently la
arge (
U-
non
nlinear
.
Simulatio
S
on: parameters of op amp
p uA741
Resource
R
e:
132
2_741_op
p.asc, 13
32_741_c
char.asc, 132_741
1_uu.asc,
132
2_ua741_
_offset.assc
Circuit
C
de
escription:
s
op amp “ua7
741” (“-“ input gro
ounded);
mmetric supply
s
“VD
DCSYM” (2 x 5V)
sym
sou
urce volta
age DC=0
0 to “+” in
nput; loa
ad resisto
or 1kΩ
Jobs:
J
• s
simulate operating
o
g point; de
etermine bias currrents
c
check
all currents:
c
how goo
od is the model?
m
• s
sweep DC
C source from -100 µV to +100
+
µV, step 1 µV
V
d
determine
e voltage offset (in
nput & output), outtput swing,
linearity, gain
g
• b
build non--inverting
g amplifier with AV = 10 (R1
1 = 9 kΩ, R2 = 1 kΩ)
k
s
sweep
-1 V to +1 V (step 1m
mV)
c
check
outtput volta ge offsett, linearity
y
• a
add sourc
ce voltage
e resistorr 100 kΩ, sweep a
again
o
output
volltage offsset?
c
compensa
ation how
w?
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
18
EEE536JJ2: Contrrol & Auto
omation
1.3.3
1
Inpu
ut/outpu
ut impeda
ance
Iout
Rout
Rsrc
s
Zin
Uin
Uout
U0
Usrrc
Rlooad
input impedance
e:
ou
utput res istance:
• sourrce is load
ded
• volta
age divide
er with so
ource res istance
→ Uin ≠ Usrc
• inputt capacita
ance dec
creases b
bandwidth
h
• voltage
e divider with
w load
• decrea
ases outp
put Uout
(→ Uoout ≠ U0)
⋅
determine
d
e Rout from
m loop eq
quation:
→
op
o amp w
with negattive feedb
back:
•
•
Uin
virtual shortcutt between
n inputs:
d C) inefffective
input impedancce (R and
virtual input impedance increase
ed:
I~ 0
~0
~
Uoutt
R1
RL
⋅
•
Iout
virtual output im
mpedanc
ce decrea
ased
R2
⋅
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
19
EEE536JJ2: Contrrol & Auto
omation
Simulatio
S
on: redu
uction of output
o
re sistance
Resource
R
e:
133
3_ua741_
_Rout.ascc
Circuit
C
de
escription:
s
non
n-inverting voltage
e amplifie
er, AV = 10
1
(reu
use 132_
_741_uu.a
asc)
load
d resistorr, enter “{{R}” as va
alue
add
d SPICE directive “.step pa
aram R lis
st 100 1kk 100”
Jobs:
J
• sim
mulate op
perating point (inc
cludes ste
epping off parametter R):
display
hint: in Wa
aveformV
Viewer D(
D ) is the
e derivativve of a qu
uantity)
(h
• ch
hange AV → ∞, de
etermine original
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
20
EEE536JJ2: Contrrol & Auto
omation
1.3.4
1
Lim
mited ban
ndwidth
1.3.4.1
1
D
Dynamic gain
open-loop
o
p gain g of
o op amp
p is frequ
uency-dep
pendent:
1
⋅
/2
exercise:
e
: determin
ne corner frequen
ncy
of
o uA741 .
1.3.4.2
1
C
Constant bandwid
dth-gain (BWG)
for effecttive feedb
condition
c
back:
corner
c
fre
equency
g0=10
10
depends
d
on
cons
stant abo
ove
0 :
AV(f)
5
10
of
→
4
3
100
10
0 ⋅
1
1
10 10
00 1k 10k
⋅
f/Hz
Simulatio
S
on: band
dwidth off op amp AD8541
Resource
R
e:
134
4_AD8541_bwg.a sc
Circuit
C
de
escription:
s
non
n-inverting voltage
e amplifie
er with AD
D8541
(po
ower supp
ply +5V a
and AGND
D)
input voltage
e: AC = 0
0.01 V an
nd DC = 0.01
0
V
Jobs:
J
rep
peat for ga
ain = 5 | 2
20 | 100 (dimensio
on feedba
ack resistors):
• simula
ate AC sw
weep for f = 10 Hz
z .. 10 MH
Hz (“10m
meg”)
• view output
o
volltage, dettermine bandwidth
b
h(3 dB de
ecay)
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
21
EEE536JJ2: Contrrol & Auto
omation
1.4
1 Actiive filterrs
1.4.1
1
Filte
er synthesis
Op
O amps increase
e gain and
d/or deco
ouple stag
ges:
U1
R1
Uinn
R2
U 1 C2
C1
R1
Uin
U2
C1
U2
RA
R2
C2
RB
Add
A Bode
e diagram
ms of decoupled sttages:
1
1
1
0.1
0
0.1
0.1
1
0
0.01
0..01
0.01
1
0.1
1
10 10
00
0.1
1
10 10
00
0
0.1
0
0
0
-45°
-4
45°
-45°
-90°
-9
90°
-90°
0.1
1
00
10 10
Prof.
P
Dr.-Ing. Gro
oßmann
0.1
1
00
10 10
V
V3.0
-180°
0
0.1
1
10 100
1
10 100
22
EEE536JJ2: Contrrol & Auto
omation
C2
Sallen-Ke
S
ey low pass
nd
(2 orderr):
Uin
R1
⋅
/
Uout
R3
C1
/
⋅
R2
⋅
⋅
⋅
R4
Simulatio
S
on: Activve filter
Resource
R
e:
141
1_actfilterr.asc
Circuit
C
de
escription:
s
build RC hig
gh pass ( R1 = 3.3k
kΩ, C1 = 4.7 µF)
d voltage follower with uA7
741and ±5
5V suppliies
add
add
d RC low pass (R2
2 = 3.3kΩ
Ω, C2 = 47 nF) + vvoltage fo
ollower
input ac volttage sourrce 1V
Jobs:
J
sim
mulate AC
C sweep for f = 1 Hz .. 10 kHz
view
w output voltage
com
mpare 3 dB-decay
d
ys with tim
me consta
ants
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
,
23
EEE536JJ2: Contrrol & Auto
omation
1.4.2
1
Con
ntroller
In controller theoryy, a PID controller
c
r consists
s of a proportional , an integ
gral and a
derivate
d
p
path:
source:
s
Wikip
pedia
im
mplemen
ntation with op am
mps:
RP
R1
R2
CI
RI
R3
R2
R2
RD
CD
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
24
EEE536JJ2: Contrrol & Auto
omation
2
Sen
nsors
2.1
2 Clas
ssificatiion
sensor:
s
transform
ms physica
al quantitty into ele
ectrical qu
uantity
physic
cal
quantity
sensor
(non-linea
ar)
d
differentia
al
equation
n
ellectrical
qu
uantity
sensors
s
e
exist for many
m
qua
antities, b ut outputt electrica
al quantitiies are lim
mited →
Classifica
C
ation by electrical
e
sensing:
s
•
•
•
•
•
•
voltage
curren
nt
resista
ance
capaccitance
inducttance
freque
ency
(Lambda probe, th
hermo cou
uple; active senso
ors)
(photo dio
ode/transistor)
(tthermisto
or, strain gauge)
(humidity sensor, p
proximity switch)
(proximity
y switch, L
LVDT)
(indirect fo
or L and C; countters)
2.2
2 Mod
deling sensor circuits
c
2.2.1
2
Sim
mple DC model
m
• model physical (input) quantity ass parame
eter (defin
ned in .P
PARAM dirrective)
• model sensor as
a elemen
nt V, I, R//C/L with expression as va lue
Tspice he
elp on “Waveform Arithmetiic”
see LT
• good fo
or DC sw
weep (.DC
C) or para
ameter sw
weep (.S
STEP)
example:
e
: force se
ensor
with
w voltage outpu
ut,
sensitivity
s
y = 5V/10
00N,
output
o
lim
mited to 0…5V
(with .ST
TEP comm
mand you
u
need
n
no a
additional .PARAM
M)
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
25
EEE536JJ2: Contrrol & Auto
omation
2.2.2
2
Con
ntrolling physica
al quantitties
• modell physical (input) quantity
q
a
as
voltage source
e
• modell sensor as
a contro
olled volta
age
source
e:
o E: with gain
n or tabled values
V: with arb
bitrary ex
xpression
n
o BV
• suitab
ble for tran
nsient, AC
C, DC an
nd parameter analysis
BV
B accep
pts expresssions inc
cluding:
• voltage
e from a node
n
to ground
g
(V
V(node))
• voltage
e between two nodes (V(n
node1,no
ode2))
• currentts (see Waveform
W
mViewer AddTraces dialo
og for ava
ailable cu
urrents)
• variablle time for
f transie
ent analyysis, varia
able freq
q and w fo
or AC analysis
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
26
EEE536JJ2: Contrrol & Auto
omation
2.2.3
2
Dyn
namic be
ehaviour
system
s
de
escription
n: (non-)linear ord
dinary diff
fferential equation (ODE)
in
n most ca
ases separable in (non-)lin
near static
c and line
ear time-d
dependen
nt part
physical
p
q
quantity
intermediate
e
quantity
y
y
x
outputt
quantity
y
u
y
x
(non-)llinear sta
atic
charracteristic
c
tim
me dependency
example:
e
: 1st orde
er ODE for a linea
ar force sensor:
⋅
t
consstant of th
he system
m,
: time
: static sen
nsitivity [V
V/N]
⋅
• final ou
utput
∞
t
⋅
0
• 95% off final vallue reach
hed
after 3 →
nse time
e
respon
F
F0
impulse rresponse:
8
U =
k F0
Uouut
≔3
τ
0
→
Fourier-/L
F
Laplace--Transform: repla
ace
⋅
⋅
Transfer
T
ffunction:
Prof.
P
Dr.-Ing. Gro
oßmann
1
V
V3.0
t
⋅ → ⋅, resp.:
1
⋅
95% of
o final
value
3τ
⋅
1
⋅
27
EEE536JJ2: Contrrol & Auto
omation
Sources
S
E and BV
V can mod
del a systtem given
n by its La
aplace tra
ansfer function;
E may be either a linear ga
ain or a ta
able or a LAPLACE
L
E expresssion:
BV
B can co
ombine non-linearr and dyn
namic beh
havior (fo
orce senssor: limite
ed output,,
delay
d
time
e constan
nt
0.1
1 , pulse d input fo
orce (Tper = 2 s)):
Active
A
filter based
d on BV with
w LAPL
LACE exp
pression:
lo
ow pass:
high
h
passs:
Prof.
P
Dr.-Ing. Gro
oßmann
⋅
⋅
⋅
V
V3.0
28
EEE536JJ2: Contrrol & Auto
omation
2.3
2 Volttage sou
urces
2.3.1
2
Lam
mbda pro
obe
e
exhaust
gas
air
0,8 V
UDiff
+
O
+
UDiff
0,45 V
O
ZrO2
0,2 V
λ
1
∶ response
r
time: tyyp. 1.5 s →
maassofair/
/14.7g
masssofgazolline/1g
= 0.5 s
model
m
witth tabled values and delay::
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
29
EEE536JJ2: Contrrol & Auto
omation
2.3.2
2
The
ermo cou
uples
Refference
jun
nction
U
Th
Mea
asurement
junction
metal A
different conductors
c
welded to
ogether
metal B
kn
nown
temp
perature
80
unknown
mperature
tem
∆T
Th
h
(ty
pe
E)
U [mV]
75
Ch
ro
me
l/C
on
sta
nt
an
70
65
60
pe
(ty
J)
e
an
yp
l (t
nt
e
a
st
lum
l/A
on
e
c
n/
rom
iro
Ch
55
50
45
40
K)
35
30
cop
pper/constan
ntan (type T)
25
)
ype R
um (t
i
in
t
la
ium/P
Rhod
%
3
1
pe S)
atinum
Pla
um (ty
n
ti
a
la
P
/
odium
0%Rh
-1
m
u
l tin
Pla
20
15
10
-200
5
ϑ [°C]
0
-5 0
200
400
600
800
0
1000
1200
1400
1600
180
00
-10
Δ
⋅Δ
⋅Δ
⋅Δ
⋯
tabled in specifiication IE
EC 584
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
30
EEE536JJ2: Contrrol & Auto
omation
model:
m
•
depends no
on-linearly
y upon te
emperatu
ure
→ source B
BV
• temperrature spread dela
ayed → in
nclude LAPLACE
L
expresssion in BV
V
•
can
n drive cu
urrents up to some
e mA → internal resistor
response
r
time
3⋅2
6 , in
nternal res
sistance = 10 Ω
simulatio
s
on: therm
mo couple
e with insttrumentattion amplifier
Resource
R
e:
232
2_thermo
ocp_ina11
18.asc
Circuit
C
de
escription:
s
cop
py thermo
o couple model above
add
d INA118 (symme
etric supply VDCSY
YM = ±5V
V,
low
wer right pin
p groun ded)
add
d RG for gain
g
≈ 100
0
Jobs:
J
DC
C sweep fo
or tempe
erature T = 0…500
0K
wattch outpu
ut voltage
e
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
31
EEE536JJ2: Contrrol & Auto
omation
2.4
2 Currrent sou
urces
2.4.1
2
Pho
oto diode
e
hf >> Wg
a Ge
spectral sensitivity of Si and
1
contakt
(anode)
hf > Wg
p
+
Ge
e
Si
+
0,5
+
n
+
human eye
0
400
contact (ccathode)
Produce
P
a constan
nt currentt
(under ne
egative bias):
600
80
00
1000 1200 140
00 1600 λ [nm]
Sola
ar cell = stand-alon
s
ne photo diode:
ID<0
ID<0
UD<0
UD>0
U0
⋅
1 dark currrent
⋅
photo currrent IF
ID
UD
-U
U0
EV=0
EV1
EV2
Datashee
D
et: SFH2
203
sola
ar
cell
p
photo
dio
ode
EV3
-U0/R
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
32
EEE536JJ2: Contrrol & Auto
omation
simulatio
s
on: solarr cell
Resource
R
e:
241
1_solar_c
cell.asc
Circuit
C
de
escription:
s
model solar cell as d iode BAS
S16 and
se biased
d)
parrallel current sourcce (revers
sup
pply V1: parallel
p
vo
oltage sou
urce
Jobs:
J
dettermine current vss. voltage characte
eristic of ssolar cell
for V1 ∈ [-2 V;
V +1 V] a
and
oto curren
nts 0 / 2
25 mA / 50 mA / 75
5 mA an d 100 mA
A
pho
simulatio
s
on: solarr cell matc
ching imp
pedance
Resource
R
e:
241
1_solar_c
cell_matcch.asc
Circuit
C
de
escription:
s
sola
ar cell (Iphoto = 100
0 mA; no supply vo
oltage!)
Jobs:
J
parrameter sweep
s
forr global parameter
p
r rload ∈ [1 Ω; 10
1 Ω]
parrallel load
d resistor (value in
n curly bra
ackets “{ rload}””)
disp
play power in load
d resistorr
find
d maximu
um and m
matching impedanc
i
ce
simulatio
s
on: photto diode
Resource
R
e:
241
1_photodiode.asc , 241_photodiode2.asc
Circuit
C
de
escription:
s
build circuit on right sside with
Jobs:
J
• photo dio
ode (use diode + I)
• op amp (supply
(
+
+5 V /
ground);
• feedback
k R = 5 kkΩ
1) se
earch data
asheet off SFH203
30 for
Prof.
P
Dr.-Ing. Gro
oßmann
•
•
•
reverse
e saturatio
on curren
nt
junction
n capacita
ance and
d
sensitiv
vity of pho
oto curren
nt to illum
mination S [A/lx]
V
V3.0
33
EEE536JJ2: Contrrol & Auto
omation
2) co
onfigure photo
p
currrent source (value
e = {S*Evv})
ad
dd directiv
ve .para
am S=…
rename dio
ode mode
el to mydiode, ad
dd SPICE
E directiv
ve:
model mydiode
m
)
.m
D(N=2 IS=… CJO=…)
sim
mulate ou
utput volttage vs. input illum
mination E
Ev = 1 lx .. 104 lx
(directive: .step d
dec param EV 1 10k 2
20)
3) re
eplace R with
w 1 MΩ
Ω, sweep photo current
c
fro
om 10 nA
A to 1 µA
co
ompare output with
h ideal ch
haracteris
stic
2.5
⋅
exxplain what happe
ened (hintt: bias currents)
4) re
eplace µA
A741 with
h AD8541 and com
mpare ag ain
simulatio
s
on: dynamics of photo
p
diod
de
Resource
R
e:
241
1_photo_
_dyn1.ascc, 241_ph
hoto_dyn2.asc
Circuit
C
de
escription:
s
build circuit on right sside
Jobs:
J
oto diode: diode w
ameters
pho
with para
as above
a
an
nd curren t source
PUL
LSE (I1
1=0, I2 =100µA,
,
Ton
n=1ns, Tperiod
d=2ns)
2.5V
RL
• set
s RL = 10 Ω, simulate 4 ns transient, view vvoltage at RL
• a
add param
metric sw
weep for model
m
parameter C
CJO = 5 | 10 | 15p
pF
(.step D mydio
ode(CJO)
) list 5p 10p 15p)
• re
epeat witth RL = 10
0 kΩ; what happened?
• s
set PULSE
E: Ton = 1µs, Tperio
od=2µs a
and simulate 4 µs
e
explain
the differen
nce!
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
34
EEE536JJ2: Contrrol & Auto
omation
2.4.2
2
Pho
oto trans
sistor
hf
B
E
C
C
n
p
IF
IC
^
=
IF
IC = B IF
B
E
n
E
C
• Basse of BJT
T is open to light
• currrent ampllification:
⋅
• lowe
er bandw
width than
n photo d iodes
IC
U0
illumination
U0
R
UCE
R
UCE
C
U0
Simulatio
S
on: photto transis
stor
Resource
R
e:
242
2_photo_
_transisto r_DC/AC
C/tran.asc
c
Circuit
C
de
escription:
s
build circuit on right sside
ansistor = BC550C
C;
(tra
currrent: DC=
=2µA and
d AC=2µA
A)
V1=5V
IF<5µA
A
5kΩ
Jobs:
J
Prof.
P
Dr.-Ing. Gro
oßmann
UR
Ana
alyze UR(I
( F) (linea rity, phas
se, cut-offf frequen
ncy, …)
V
V3.0
35
EEE536JJ2: Contrrol & Auto
omation
2.4.3
2
Currrent sou
urces in LTspice
voltage-co
v
ontrolled current sources:
s
curren
nt = G ⋅ control
c
vo
oltage
currentt = interpo
olated tab
ble
A generall controlle
ed curren
nt source acceptin
ng expres
ssions and
d Laplace
e transfer
function
f
a
also exists:
age sourc
ce BV
syntax: ssee volta
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
36
EEE536JJ2: Contrrol & Auto
omation
2.5
2 Resistors
2.5.1
2
NTC
C
Tempera
Negative
N
ature Coe
efficient:
undoped
u
semicond
ductors in
ncrease n
number of
o free charges witth temperature →
resistance
r
e smallerr
⋅
10
6
R [Ω]
10
10
5
4
3
10
-40
0
40
ϑ [°C]]
120
0
Datashee
D
et: Visha
ay, Cantherm
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
37
EEE536JJ2: Contrrol & Auto
omation
2.5.2
2
Gas
s sensorr
Semicond
S
ducting metal
m
oxid
de:
• reduce
ed or oxid
dized by gases
g
→ change in resista
ance
• heated
d for stable operattion and ffaster rea
action
meta
al oxide
(SnO
O2)
ceramic
c
p
pipe
de
electrod
wire
w
h
heating
character
c
ristic: stra
aight line in double
e-log diag
gram →
R/R0
y
y=log(.)
→
slope:
1
10
0
1
Δ
logg
-1
⋅Δ
⋅ log
0.1
-2 0.01
0.1
0.2
-1
0.5
1
2
5
c/c0
10
x=log
g(.) 1
0
Datashee
D
et: Figaro
o TGS 82
22
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
38
EEE536JJ2: Contrrol & Auto
omation
2.5.3
2
Stra
ain gaug
ges
⋅
Δ
→ Δ
Δ
Δ
Δ
Δϱ
⋅ 1
2μ
Δϱ
ϱ
strain
µ = 0.5
0
Poisson
n’s ratio (metals)
(
∆ϱ=
=0
change
e of specific resista
ance (me
etals)
R: nom
minal valu
ue (typ. 120 Ω, 350 Ω or 1000
1
Ω)
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
39
EEE536JJ2: Contrrol & Auto
omation
2.5.4
2
Eva
aluation of
o resistance
2.5.5
2
Wheatstone
e bridge
R3+ΔR3
U0
R4+ΔR4
UBr
R1+ΔR1
R2+ΔR2
iff
⋅
:
iff
Δ
and
a
Δ
⋅
Δ
Δ
2
Δ
Δ
2
Δ
Δ
⋅ Δ
Δ
⋅ 2
Δ
Δ
Δ
Δ
but:
b non-linear for single se
ensor (on
nly one ∆R
∆ i ≠ 0)!
2.5.6
2
Brid
dge with differen
nce ampl ifier
R
R+
+ΔR
U0
∞
Uout
+
R
R
⋅
Δ
2
liinear eve
en for larg
ge ∆R > R
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
40
EEE536JJ2: Contrrol & Auto
omation
2.5.7
2
LTs
spice sim
mulations
s of resis
stive sen
nsors
simulation
s
n: strain gauges
Resource
R
e:
257
7_straingauge.ascc
Circuit
C
de
escription:
s
brid
dge 4 x 1k resistorrs
(R1 and R2 in series, R3 and R4 in serie
es)
volttage supp
ply +10 V
V;
cha
ange valu
ue of R2 tto “{1k + DR}”,
Jobs:
J
sim
mulate parrameter ssweep for DR = -5
500 Ω …5
500 Ω;
view
w bridge voltage
dettermine linearity errror
(ma
ax deviation from line betw
ween startt & end)
hintt: subtrac
ct line equ
uation fro
om output (calcula
ate slope first)
cha
ange valu
ue of R1 tto “{1k - DR}”;
D
how
w about liinearity o
of output?
?
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
41
EEE536JJ2: Contrrol & Auto
omation
simulatio
s
on: NTC
C sensor
Resource
R
e:
257
7_NTC1.a
asc, 257
7_NTC2.a
asc, 257_
_NTC_lin .asc
Circuit
C
de
escription:
s
brid
dge with 4 x 4.7kΩ
Ω resistorrs + differrence am plifier using µA74
41
sup
pply voltage: bridg
ge +10 V, opamp ±10
± V
cha
ange valu
ue of feed
dback res
sistor to “{4.7k
“
+D
DR}”
Jobs:
J
sim
mulate parrameter ssweep for DR = -4
4500 Ω …
…4500 Ω;
is output
o
still non-line
ear?
cha
ange feed
dback ressistor valu
ue to “{1k
k * exp(B2
25/T - B2
25/T0)}”,
determine B25
B
and T0 from
m Vishay NTC
N
data
asheet
mulate parrameter ssweep for T = [233
3 K; 398 K]
sim
(i.e. -40 °C…
…125 °C)) and plo
ot tempera
ature cha
aracteristic
ze the ch aracteris
stic around 40 °C ((T =313 K)
K
Let’s lineariz
h a resisttor Rp pa
arallel to the NTC.. For the best resu
ult, the
with
currvature (second de
erivative) should be
b 0 at the
e center.
do paramete
er sweep
ps for T an
nd Rp (10
00 Ω…1 kΩ, step 100 Ω).
nts: 2nd de
erivative = 0 mean
ns 1st derrivative ha
as a max
ximum.
hin
The
e derivative in Wa
aveformVi
Viewer is called “D ()”.
simulatio
s
on: gas sensor
s
Resource
R
e:
257
7_gas.asc
c
Circuit
C
de
escription:
s
resistor + vo
oltage sou
urce
Jobs:
J
dettermine fo
ormula fo
or resistan
nce Rs off gas sen
nsor TGS822
as detector
d
for ethan
nol (for R0 assum
me 5 kΩ))
sim
mulate for concentrrations 50
5 ppm … 5000 p
ppm
disp
play Rs/R
R0 (= U(ssource) / I(R) / R0))
com
mpare witth datash
heet diagrram, optimize form
mula if ne
eeded
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
42
EEE536JJ2: Contrrol & Auto
omation
2.5.8
2
Non
n-linear resistors
r
s
2.5.8.1
2
S
Static mo
odel
• non-lin
nearity with respec
ct to U-I ccharacterristic →
• current i is a fun
nction of voltage u across pins →
• model:: current source co
ontrolled by its ow
wn voltage
e
⋅ exp
e
example:
e
: diode
1 ;
⋅
25.85
@300
0
2.5.8.2
2
F
From phy
ysical to electron
nic model
p region
n
cha
arge distribution arround pn junction
(dio
ode) with voltage u
u; total ch
harge:
n region
n
p(x
x)
pn junction
n(x)
⋅ exxp
disttribution is
i stable (for )
butt charge carriers
c
re
ecombine
e and are
e
rep
placed after averag
ge “transffer time” tT
-x
x
u
→ when
w
u ch
hanges → Q chan
nges → a
additional current
iF
u
Prof.
P
Dr.-Ing. Gro
oßmann
⋅
iQ
, modelled by pa
arallel C:
: non--linear!
Cd
V
V3.0
43
EEE536JJ2: Contrrol & Auto
omation
non-linea
n
r capacito
ors in LTspice pro
ovide exp
pression for
f charge
e Q:
2.5.8.3
2
B
Behaviou
ural mode
el
capacitor
c
current:
⋅
⋅
total curre
ent:
Fourier/La
F
aplace:
⋅
⋅
⋅ 1
⋅
→ model with source BI alone:
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
44
EEE536JJ2: Contrrol & Auto
omation
2.6
2 Osc
cillators
•
•
•
•
Amp
plifiers with positiv
ve feed-b
back for one
o filtere
ed freque ncy
Ressonant fre
equency adjusted by comp
ponents R,
R L or C
Safe
e transmission of pulses ovver distorted lines
s
Use
ed with co
ounters as
a receive
ers
2.6.1
2
LC oscillato
or
2.6.2
2
RC oscillato
or
C
C
R
C
R
Prof.
P
Dr.-Ing. Gro
oßmann
R
V
V3.0
45
EEE536JJ2: Contrrol & Auto
omation
2.6.3
2
Tim
mer IC 555
NE555 (single), 556 (dou
Timer-IC:
T
uble); ICM
M7555/6 (CMOS ssingle/do
ouble)
2.6.3.1
2
M
Monoflop
p
8:
8
7:
7
6:
6
5:
5
VCC
R
8
VCC
discha
arge
threshold
control
reset
r
output
o
trigger
GND
G
trig
gger
7
1 VCC
3
Ri
6
C
4:
3:
2:
1:
t
K1: set
s FF
5
K2
Ri
2
R Q
3
S Q
2 VCC
3
Uc
c
K2: reset FF
F
K1
Trigger
ou
ut
Ri
Timer 555
5
1
4
Start/Res
S
et:
Q = L; diischarge = short to
o ground →
C discharrged (UC = 0)
Trigger:
T
trrigger < VCC/3
V
→ K1 sets FF
Q = H; diischarge high imp
pedance (open sw
witch) →
lo
oad C, tim
me consta
ant τ = RC
R
threshold:
fo
or t ≈ 1,1⋅RC: UC ≈ 2/3⋅VC
CC (thresh
hold at K
K2) →
Q=L
new
n
start only upo
on new trigger imp
pulse
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
46
EEE536JJ2: Contrrol & Auto
omation
2.6.3.2
2
O
Oscillatorr
VCC
RA
2 VCC
V
3
8
7
Uc
1 VCC
V
3
RB
6
5
K2
R Q
outt
S Q
2
K1
C
Timer 555
5
1
4
Start/Res
S
et:
UC = 0 (diischarge → ground) → trig
gger → FF
F set
out
o = H:
C loads via RA+RB (discharrge open))
w
when
UC > 2/3⋅VCC → FF reset
out
o = L:
C discharrges via RB and dis
scharge to
t ground
d
w
when
UC < VCC/3 → FF se
et
1,49
2
→ periodiic operatiion, frequ
uency:
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
⋅
47
EEE536JJ2: Contrrol & Auto
omation
2.6.3.3
2
P
Pulse wid
dth modu
ulator (PW
WM):
R
RA
dis
scharge
RB2
RB1
outt
discharg
ge
CM
out
threshold
d
trigger
thre
eshold
trig
gger
C
mo
onostable
e vibrator
(du
uty cycle dependss on
R and
a CM)
Oscillator
O
r with sho
ort triggerr pulses
load:
l
VC
CC via RA and RB1
discharge
d
e: via RB22 to discharge
LTspice analysis
2.6.3.4
2
a
of Timerr 555 circ
cuits
Resource
R
e:
262
2_timer55
55.asc
Circuit
C
de
escription:
s
Build a Monoflop, an oscillato
or and a PWM
P
with
h Timer 555
5
(componentt NE555)
Jobs:
J
Tra
ansient an
nalysis;
disp
play volta
ages
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
48
EEE536JJ2: Contrrol & Auto
omation
3
Sen
nsor sy
ystems
s
3.1
3 Indu
uctive proximit
p
ty switc
ch
• coil emits ma
agnetic field
• edd
dy currentts induced in meta
al objects
s close to coil →
incrreased losses (mo
odeled ass ohmic re
esistance
e)
• oscillation da
amped, even
e
stop
pped
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
49
EEE536JJ2: Contrrol & Auto
omation
simulatio
s
on: LC oscillator
o
and com
mparator
Resource
R
e:
310
0_LC_osc
c.asc
Circuit
C
de
escription:
s
cop
py circuit above. L
L1 is sens
sor coil
Jobs:
J
disccuss the function of the cirrcuit (amp
plifier, fee
edback, re
esonance
e)
set series re
esistance
e of L1 to 50 Ω and
d view ou
utput volta
age. Whicch
uation do we see h
here?
situ
add
d a peak--type recttifier to ou
utput (dio
ode + C=1
10 µF to ground).
g
How
w large is
s its outpu
ut?
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
50
EEE536JJ2: Contrrol & Auto
omation
Resource
R
e:
310
0_prox_switch.ascc
Circuit
C
de
escription:
s
Cop
py circuit above (ssimple inv
verting co
omparato
or, additio
onal seria
al
volttage sourrce)
Jobs:
J
Exa
amine output – wh
hat happe
ened?
com
mplete Sc
chmitt trig
gger; thre
esholds U1
U = 1.5 V and U2
2 = 2.5 V
(calculate re
esistors a
and ref vo
oltage firs
st)
amine outtput again
n – still distorted?
exa
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
51
omation
EEE536JJ2: Contrrol & Auto
3.2
3 Com
mplex Sy
ystems
s
3.2.1
3
Amplifier circuits
already
a
co
overed:
•
•
•
•
•
Zin
voltage
e amplifie
ers
non-lin
nearity
input/o
output imp
pedance
dynam
mic behavviour
active filters
sourrce E/BV
TAB
BLE
LAP
PLACE
Routt
sourrce G/BI
TAB
BLE
LAP
PLACE
• specia
al resistors
additional
a
l current--controlled sourcess:
The co
ontrolling current m
must flow
w through a
voltage
e source.
If nece
essary, ad
dd a 0V ssource in path.
• F: currrent sourc
ce
• H: voltage sourrce
example:
e
:
BJT
B (operrating point in
amplifier
a
rregion) with
w
current
c
ga
ain
C
B
E
simulatio
s
on: mode
el of a FET
T
Resource
R
e:
321
1_FET.as
sc
Circuit
C
de
escription:
s
MO
OSFET IR
RF510, in put sourc
ce UGS, voltage so
ource UDSS = 10 V,
BI with currrent = 0.68 ⋅
3.8 ²; load re
esistor 1 kΩ
Jobs:
J
pro
oduce cha
aracteristtics of cha
annel currrent ID an
nd GVAL
LUE curre
ent
verrsus UGS (DC swe
eep for UGS = 2 V… 4 V).
Lim
mit of this simple m
model? Ho
ow can you impro
ove it?
Prof.
P
Dr.-Ing. Gro
oßmann
²
V
V3.0
52
EEE536JJ2: Contrrol & Auto
omation
3.2.2
3
Mod
dulator
multiply
m
in
nput signal with high
frequency
f
y carrier (before
(
transmisssion over antenna)):
3.2.3
3
VCO
O (voltag
ge-contro
olled osc
cillator)
output
o
fre
equency dependin
d
g on inpu
ut voltage
e:
hint:
h
→ sine
e phase
integral in LT
Tspice is idt(x)
Prof.
P
Dr.-Ing. Gro
oßmann
V
V3.0
2 ⋅
⋅
53
LM741
Operational Amplifier
General Description
The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements
for the 709C, LM201, MC1439 and 748 in most applications.
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and
output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.
The LM741C is identical to the LM741/LM741A except that
the LM741C has their performance guaranteed over a 0˚C to
+70˚C temperature range, instead of −55˚C to +125˚C.
Features
Connection Diagrams
Metal Can Package
Dual-In-Line or S.O. Package
00934103
00934102
Note 1: LM741H is available per JM38510/10101
Order Number LM741H, LM741H/883 (Note 1),
LM741AH/883 or LM741CH
See NS Package Number H08C
Order Number LM741J, LM741J/883, LM741CN
See NS Package Number J08A, M08A or N08E
Ceramic Flatpak
00934106
Order Number LM741W/883
See NS Package Number W10A
Typical Application
Offset Nulling Circuit
00934107
© 2004 National Semiconductor Corporation
DS009341
www.national.com
LM741 Operational Amplifier
August 2000
LM741
Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 7)
LM741A
LM741
± 22V
± 22V
± 18V
500 mW
500 mW
500 mW
± 30V
± 15V
± 30V
± 15V
± 30V
± 15V
Output Short Circuit Duration
Continuous
Continuous
Continuous
Operating Temperature Range
−55˚C to +125˚C
−55˚C to +125˚C
0˚C to +70˚C
Storage Temperature Range
−65˚C to +150˚C
−65˚C to +150˚C
−65˚C to +150˚C
150˚C
150˚C
100˚C
N-Package (10 seconds)
260˚C
260˚C
260˚C
J- or H-Package (10 seconds)
300˚C
300˚C
300˚C
Vapor Phase (60 seconds)
215˚C
215˚C
215˚C
Infrared (15 seconds)
215˚C
215˚C
215˚C
Supply Voltage
Power Dissipation (Note 3)
Differential Input Voltage
Input Voltage (Note 4)
Junction Temperature
LM741C
Soldering Information
M-Package
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of
soldering
surface mount devices.
ESD Tolerance (Note 8)
400V
400V
400V
Electrical Characteristics (Note 5)
Parameter
Conditions
LM741A
Min
Input Offset Voltage
LM741
Min
LM741C
Typ
Max
1.0
5.0
Min
Units
Typ
Max
Typ
Max
0.8
3.0
2.0
6.0
mV
4.0
mV
TA = 25˚C
RS ≤ 10 kΩ
RS ≤ 50Ω
mV
TAMIN ≤ TA ≤ TAMAX
RS ≤ 50Ω
RS ≤ 10 kΩ
6.0
Average Input Offset
7.5
15
mV
µV/˚C
Voltage Drift
Input Offset Voltage
TA = 25˚C, VS = ± 20V
± 10
± 15
± 15
mV
Adjustment Range
Input Offset Current
TA = 25˚C
3.0
TAMIN ≤ TA ≤ TAMAX
Average Input Offset
30
20
200
70
85
500
20
200
nA
300
nA
0.5
nA/˚C
Current Drift
Input Bias Current
TA = 25˚C
Input Resistance
TA = 25˚C, VS = ± 20V
1.0
TAMIN ≤ TA ≤ TAMAX,
0.5
30
TAMIN ≤ TA ≤ TAMAX
80
80
0.210
6.0
500
80
1.5
0.3
2.0
500
0.8
0.3
2.0
nA
µA
MΩ
MΩ
VS = ± 20V
Input Voltage Range
± 12
TA = 25˚C
TAMIN ≤ TA ≤ TAMAX
www.national.com
± 12
2
± 13
± 13
V
V
Parameter
(Continued)
Conditions
LM741A
Min
Large Signal Voltage Gain
Typ
LM741
Max
Min
Typ
50
200
LM741C
Max
Min
Typ
20
200
Units
Max
TA = 25˚C, RL ≥ 2 kΩ
VS = ± 20V, VO = ± 15V
50
V/mV
VS = ± 15V, VO = ± 10V
V/mV
TAMIN ≤ TA ≤ TAMAX,
RL ≥ 2 kΩ,
VS = ± 20V, VO = ± 15V
32
V/mV
VS = ± 15V, VO = ± 10V
VS = ± 5V, VO = ± 2V
Output Voltage Swing
25
15
V/mV
10
V/mV
± 16
± 15
V
VS = ± 20V
RL ≥ 10 kΩ
RL ≥ 2 kΩ
V
VS = ± 15V
RL ≥ 10 kΩ
± 12
± 10
RL ≥ 2 kΩ
Output Short Circuit
TA = 25˚C
10
Current
TAMIN ≤ TA ≤ TAMAX
10
Common-Mode
TAMIN ≤ TA ≤ TAMAX
Rejection Ratio
25
35
Supply Voltage Rejection
TAMIN ≤ TA ≤ TAMAX,
Ratio
VS = ± 20V to VS = ± 5V
RS ≤ 50Ω
25
± 14
± 13
V
25
mA
95
86
96
90
70
90
dB
77
96
77
96
dB
µs
TA = 25˚C, Unity Gain
0.25
0.8
0.3
0.3
Overshoot
6.0
20
5
5
TA = 25˚C
Slew Rate
TA = 25˚C, Unity Gain
Supply Current
TA = 25˚C
Power Consumption
TA = 25˚C
0.437
1.5
0.3
0.7
VS = ± 20V
80
LM741
%
MHz
0.5
0.5
V/µs
1.7
2.8
1.7
2.8
mA
50
85
50
85
mW
150
VS = ± 15V
LM741A
dB
dB
Rise Time
Bandwidth (Note 6)
V
mA
70
80
RS ≤ 10 kΩ
Transient Response
± 12
± 10
40
RS ≤ 10 kΩ, VCM = ± 12V
RS ≤ 50Ω, VCM = ± 12V
± 14
± 13
mW
VS = ± 20V
TA = TAMIN
165
mW
TA = TAMAX
135
mW
VS = ± 15V
TA = TAMIN
60
100
mW
TA = TAMAX
45
75
mW
Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits.
3
www.national.com
LM741
Electrical Characteristics (Note 5)
LM741
Electrical Characteristics (Note 5)
(Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum
Ratings”). Tj = TA + (θjA PD).
Thermal Resistance
θjA (Junction to Ambient)
θjC (Junction to Case)
Cerdip (J)
DIP (N)
HO8 (H)
SO-8 (M)
100˚C/W
100˚C/W
170˚C/W
195˚C/W
N/A
N/A
25˚C/W
N/A
Note 4: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specified, these specifications apply for VS = ± 15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these
specifications are limited to 0˚C ≤ TA ≤ +70˚C.
Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).
Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 8: Human body model, 1.5 kΩ in series with 100 pF.
Schematic Diagram
00934101
www.national.com
4
General-Purpose CMOS
Rail-to-Rail Amplifiers
AD8541/AD8542/AD8544
Single-supply operation: 2.7 V to 5.5 V
Low supply current: 45 μA/amplifier
Wide bandwidth: 1 MHz
No phase reversal
Low input currents: 4 pA
Unity gain stable
Rail-to-rail input and output
PIN CONFIGURATIONS
OUT A 1
AD8541
5 V+
V– 2
+IN A 3
4 –IN A
00935-001
FEATURES
Figure 1. 5-Lead SC70 and 5-Lead SOT-23
(KS and RJ Suffixes)
APPLICATIONS
8
NC
2
7
V+
+IN A 3
6
OUT A
4
5
NC
NC 1
–IN A
V–
AD8541
00935-002
ASIC input or output amplifiers
Sensor interfaces
Piezoelectric transducer amplifiers
Medical instrumentation
Mobile communications
Audio outputs
Portable systems
NC = NO CONNECT
Figure 2. 8-Lead SOIC
(R Suffix)
Very low input bias currents enable the AD8541/AD8542/AD8544
to be used for integrators, photodiode amplifiers, piezoelectric
sensors, and other applications with high source impedance.
The supply current is only 45 μA per amplifier, ideal for battery
operation.
Rail-to-rail inputs and outputs are useful to designers buffering
ASICs in single-supply systems. The AD8541/AD8542/AD8544
are optimized to maintain high gains at lower supply voltages,
making them useful for active filters and gain stages.
The AD8541/AD8542/AD8544 are specified over the extended
industrial temperature range (–40°C to +125°C). The AD8541
is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC
packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP,
and 8-lead TSSOP surface-mount packages. The AD8544 is
available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available
in tape and reel only.
OUT A
1
–IN A
AD8542
8
V+
2
7
OUT B
+IN A
3
6
–IN B
V–
4
5
+IN B
Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP
(R, RM, and RU Suffixes)
OUT A
1
14 OUT D
–IN A
2
13 –IN D
+IN A
3
12 +IN D
AD8544
V+
4
11 V–
+IN B
5
–IN B
6
9
–IN C
OUT B
7
8
OUT C
10 +IN C
00935-004
The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output, single-supply amplifiers featuring very
low supply current and 1 MHz bandwidth. All are guaranteed to
operate from a 2.7 V single supply as well as a 5 V supply. These
parts provide 1 MHz bandwidth at a low current consumption
of 45 μA per amplifier.
00935-003
GENERAL DESCRIPTION
Figure 4. 14-Lead SOIC and 14-Lead TSSOP
(R and RU Suffixes)
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2008 Analog Devices, Inc. All rights reserved.
AD8541/AD8542/AD8544
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................7
Applications....................................................................................... 1
Theory of Operation ...................................................................... 13
General Description ......................................................................... 1
Notes on the AD854x Amplifiers............................................. 13
Pin Configurations ........................................................................... 1
Applications..................................................................................... 14
Revision History ............................................................................... 2
Notch Filter ................................................................................. 14
Specifications..................................................................................... 3
Comparator Function ................................................................ 14
Electrical Characteristics............................................................. 3
Photodiode Application ............................................................ 15
Absolute Maximum Ratings............................................................ 6
Outline Dimensions ....................................................................... 16
Thermal Resistance ...................................................................... 6
Ordering Guide .......................................................................... 18
ESD Caution.................................................................................. 6
REVISION HISTORY
1/08—Rev. E to Rev. F
Inserted Figure 21; Renumbered Sequentially.............................. 9
Changes to Figure 22 Caption......................................................... 9
Changes to Notch Filter Section, Figure 35, Figure 36, and
Figure 37 .......................................................................................... 13
Updated Outline Dimensions ....................................................... 16
1/07—Rev. D to Rev. E
Updated Format..................................................................Universal
Changes to Photodiode Application Section .............................. 14
Changes to Ordering Guide .......................................................... 17
8/04—Rev. C to Rev. D
Changes to Ordering Guide .............................................................5
Changes to Figure 3........................................................................ 10
Updated Outline Dimensions....................................................... 12
1/03—Rev. B to Rev. C
Updated Format..................................................................Universal
Changes to General Description .....................................................1
Changes to Ordering Guide .............................................................5
Changes to Outline Dimensions .................................................. 12
Rev. F | Page 2 of 20
AD8541/AD8542/AD8544
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
1
6
7
60
100
1000
30
50
500
2.7
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
μV/°C
fA/°C
fA/°C
fA/°C
−40°C ≤ TA ≤ +125°C
Input Bias Current
IB
4
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
0.1
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
ΔVOS/ΔT
ΔIB/ΔT
Offset Current Drift
ΔIOS/ΔT
VCM = 0 V to 2.7 V
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ, VO = 0.5 V to 2.2 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
0
40
38
100
50
2
45
500
4
100
2000
25
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
PSRR
ISY
SR
tS
GBP
IL = 1 mA
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
VOUT = VS − 1 V
2.575
2.550
2.65
35
100
125
15
±20
50
f = 200 kHz, AV = 1
VS = 2.5 V to 6 V
−40°C ≤ TA ≤ +125°C
VO = 0 V
−40°C ≤ TA ≤ +125°C
65
60
RL = 100 kΩ
To 0.1% (1 V step)
0.4
76
38
55
75
V
V
mV
mV
mA
mA
Ω
dB
dB
μA
μA
0.75
5
980
63
V/μs
μs
kHz
Degrees
40
38
<0.1
nV/√Hz
nV/√Hz
pA/√Hz
ΦM
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
en
en
in
f = 1 kHz
f = 10 kHz
Rev. F | Page 3 of 20
AD8541/AD8542/AD8544
VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
1
6
7
60
100
1000
30
50
500
3
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
μV/°C
fA/°C
fA/°C
fA/°C
−40°C ≤ TA ≤ +125°C
Input Bias Current
IB
4
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
0.1
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
ΔVOS/ΔT
ΔIB/ΔT
Offset Current Drift
OUTPUT CHARACTERISTICS
Output Voltage High
ΔIOS/ΔT
VOH
Output Voltage Low
VOL
Output Current
IOUT
ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
PSRR
VCM = 0 V to 3 V
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ, VO = 0.5 V to 2.2 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
VOUT = VS − 1 V
0
40
38
100
50
2
2.875
2.850
2.955
32
100
125
18
±25
50
f = 200 kHz, AV = 1
65
60
SR
tS
GBP
ΦM
RL = 100 kΩ
To 0.01% (1 V step)
0.4
en
en
in
f = 1 kHz
f = 10 kHz
Rev. F | Page 4 of 20
500
4
100
2000
25
VS = 2.5 V to 6 V
−40°C ≤ TA ≤ +125°C
VO = 0 V
−40°C ≤ TA ≤ +125°C
ISY
45
76
40
60
75
V
V
mV
mV
mA
mA
Ω
dB
dB
μA
μA
0.8
5
980
64
V/μs
μs
kHz
Degrees
42
38
<0.1
nV/√Hz
nV/√Hz
pA/√Hz
AD8541/AD8542/AD8544
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
1
6
7
60
100
1000
30
50
500
5
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
μV/°C
fA/°C
fA/°C
fA/°C
−40°C ≤ TA ≤ +125°C
Input Bias Current
IB
4
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
0.1
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
ΔVOS/ΔT
ΔIB/ΔT
Offset Current Drift
ΔIOS/ΔT
VCM = 0 V to 5 V
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ, VO = 0.5 V to 2.2 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
0
40
38
20
10
2
48
40
4
100
2000
25
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Full Power Bandwidth
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
PSRR
IL = 1 mA
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
VOUT = VS − 1 V
4.9
4.875
25
f = 200 kHz, AV = 1
65
60
SR
BWP
tS
GBP
ΦM
RL = 100 kΩ, CL = 200 pF
1% distortion
To 0.1% (1 V step)
0.45
en
en
in
f = 1 kHz
f = 10 kHz
Rev. F | Page 5 of 20
100
125
30
±60
45
VS = 2.5 V to 6 V
−40°C ≤ TA ≤ +125°C
VO = 0 V
−40°C ≤ TA ≤ +125°C
ISY
4.965
76
45
65
85
V
V
mV
mV
mA
mA
Ω
dB
dB
μA
μA
0.92
70
6
1000
67
V/μs
kHz
μs
kHz
Degrees
42
38
<0.1
nV/√Hz
nV/√Hz
pA/√Hz
AD8541/AD8542/AD8544
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage (VS)
Input Voltage
Differential Input Voltage1
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
1
Rating
6V
GND to VS
±6 V
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
For supplies less than 6 V, the differential input voltage is equal to ±VS.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 5.
Package Type
5-Lead SC70 (KS)
5-Lead SOT-23 (RJ)
8-Lead SOIC (R)
8-Lead MSOP (RM)
8-Lead TSSOP (RU)
14-Lead SOIC (R)
14-Lead TSSOP (RU)
ESD CAUTION
Rev. F | Page 6 of 20
θJA
376
230
158
210
240
120
240
θJC
126
146
43
45
43
36
43
Unit
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
AD8541/AD8542/AD8544
TYPICAL PERFORMANCE CHARACTERISTICS
180
160
VS = 2.7V AND 5V
VCM = VS/2
350
140
300
INPUT BIAS CURRENT (pA)
120
100
80
60
40
250
200
150
100
–3.5
–2.5 –1.5
–0.5
0.5
1.5
2.5
INPUT OFFSET VOLTAGE (mV)
3.5
0
–40
00935-005
0
–4.5
4.5
Figure 5. Input Offset Voltage Distribution
6
0
INPUT OFFSET CURRENT (pA)
100
120
140
–0.5
–1.0
–1.5
–2.0
–2.5
–3.0
VS = 2.7V AND 5V
VCM = VS/2
5
4
3
2
1
0
–3.5
–35
5
–15
25
45
65
85
TEMPERATURE (°C)
105
145
125
–1
–55
00935-006
–4.0
–55
Figure 6. Input Offset Voltage vs. Temperature
–35
–15
5
25
45
65
85
TEMPERATURE (°C)
105
125
145
00935-009
INPUT OFFSET VOLTAGE (mV)
20
40
60
80
TEMPERATURE (°C)
7
VS = 2.7V AND 5V
VCM = VS/2
0.5
Figure 9. Input Offset Current vs. Temperature
9
160
VS = 2.7V AND 5V
VCM = VS/2
POWER SUPPLY REJECTION (dB)
140
7
6
5
4
3
2
1
VS = 2.7V
TA = 25°C
120
100
80
–PSRR
60
+PSRR
40
20
0
–20
0
–0.5
0.5
1.5
2.5
3.5
COMMON-MODE VOLTAGE (V)
4.5
5.5
–40
100
00935-007
INPUT BIAS CURRENT (pA)
0
Figure 8. Input Bias Current vs. Temperature
1.0
8
–20
00935-008
50
20
Figure 7. Input Bias Current vs. Common-Mode Voltage
1k
10k
100k
FREQUENCY (Hz)
1M
Figure 10. Power Supply Rejection vs. Frequency
Rev. F | Page 7 of 20
10M
00935-010
NUMBER OF AMPLIFIERS
400
VS = 5V
VCM = 2.5V
TA = 25°C
AD8541/AD8542/AD8544
60
SMALL SIGNAL OVERSHOOT (%)
100
SOURCE
10
SINK
1
0.1
0.01
0.1
1
LOAD CURRENT (mA)
10
100
+OS
40
–OS
30
20
10
0
00935-011
0.01
0.001
50
10
Figure 11. Output Voltage to Supply Rail vs. Load Current
3.0
SMALL SIGNAL OVERSHOOT (%)
OUTPUT SWING (V p-p)
60
2.0
1.5
1.0
0.5
1k
10k
100k
FREQUENCY (Hz)
1M
10M
VS = 2.7V
RL = 2kΩ
TA = 25°C
50
40
+OS
30
–OS
20
10
0
00935-012
0
10k
Figure 14. Small Signal Overshoot vs. Load Capacitance
VS = 2.7V
VIN = 2.5V p-p
RL = 2kΩ
TA = 25°C
2.5
100
1k
CAPACITANCE (pF)
10
100
1k
CAPACITANCE (pF)
10k
00935-015
1k
Δ OUTPUT VOLTAGE (mV)
VS = 2.7V
RL = 10kΩ
TA = 25°C
VS = 2.7V
TA = 25°C
00935-014
10k
Figure 15. Small Signal Overshoot vs. Load Capacitance
Figure 12. Closed-Loop Output Voltage Swing vs. Frequency
VS = 2.7V
RL = ∞
TA = 25°C
50
VS = 2.7V
RL = 100kΩ
CL = 300pF
AV = 1
TA = 25°C
+OS
40
30
–OS
1.35V
20
0
10
100
1k
CAPACITANCE (pF)
10k
50mV
10µs
Figure 16. Small Signal Transient Response
Figure 13. Small Signal Overshoot vs. Load Capacitance
Rev. F | Page 8 of 20
00935-016
10
00935-013
SMALL SIGNAL OVERSHOOT (%)
60
AD8541/AD8542/AD8544
90
VS = 2.7V
RL = 2kΩ
AV = 1
TA = 25°C
VS = 5V
TA = 25°C
COMMON-MODE REJECTION (dB)
80
10µs
60
50
40
30
20
10
0
–10
1k
100k
FREQUENCY (Hz)
1M
10M
Figure 20. Common-Mode Rejection vs. Frequency
Figure 17. Large Signal Transient Response
5
VS = 2.7V
RL = NO LOAD
TA = 25°C
VS = 5V
RL = NO LOAD
TA = 25°C
40
90
20
135
0
180
3
2
1
0
–1
–2
–3
00935-040
45
PHASE SHIFT (Degrees)
60
INPUT OFFSET VOLTAGE (mV)
4
80
1k
10k
100k
FREQUENCY (Hz)
1M
00935-018
–4
10M
–5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
COMMON-MODE VOLTAGE (V)
Figure 21. Input Offset Voltage vs. Common-Mode Voltage
Figure 18. Open-Loop Gain and Phase vs. Frequency
10k
160
VS = 5V
TA = 25°C
140
1k
Δ OUTPUT VOLTAGE (mV)
120
100
80
–PSRR
60
+PSRR
40
20
0
VS = 5V
TA = 25°C
100
SOURCE
10
SINK
1
0.1
–40
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0.01
0.001
Figure 19. Power Supply Rejection Ratio vs. Frequency
0.01
0.1
1
LOAD CURRENT (mA)
10
100
Figure 22. Output Voltage to Supply Rail vs. Load Current
Rev. F | Page 9 of 20
00935-021
–20
00935-019
POWER SUPPLY REJECTION RATIO (dB)
GAIN (dB)
10k
00935-020
500mV
00935-017
1.35V
70
AD8541/AD8542/AD8544
5.0
4.0
SMALL SIGNAL OVERSHOOT (%)
4.5
OUTPUT SWING (V p-p)
60
VS = 5V
VIN = 4.9V p-p
RL = NO LOAD
TA = 25°C
3.5
3.0
2.5
2.0
1.5
1.0
VS = 5V
RL = 2kΩ
TA = 25°C
50
40
+OS
30
–OS
20
10
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0
00935-022
0
Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,
5.0
10k
60
SMALL SIGNAL OVERSHOOT (%)
OUTPUT SWING (V p-p)
4.0
100
1k
CAPACITANCE (pF)
Figure 26. Small Signal Overshoot vs. Load Capacitance
VS = 5V
VIN = 4.9V p-p
RL = 2kΩ
TA = 25°C
4.5
10
00935-025
0.5
3.5
3.0
2.5
2.0
1.5
1.0
VS = 5V
RL = ∞
TA = 25°C
50
40
+OS
30
–OS
20
10
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0
10
00935-023
0
Figure 24. Closed-Loop Output Voltage Swing vs. Frequency
VS = 5V
RL = 100kΩ
CL = 300pF
AV = 1
TA = 25°C
VS = 5V
RL = 10kΩ
TA = 25°C
40
+OS
2.5V
30
–OS
10
50mV
0
10
100
1k
CAPACITANCE (pF)
10k
10µs
Figure 28. Small Signal Transient Response
Figure 25. Small Signal Overshoot vs. Load Capacitance
Rev. F | Page 10 of 20
00935-027
20
00935-024
SMALL SIGNAL OVERSHOOT (%)
10k
Figure 27. Small Signal Overshoot vs. Load Capacitance
60
50
100
1k
CAPACITANCE (pF)
00935-026
0.5
AD8541/AD8542/AD8544
VS = 5V
RL = 2kΩ
AV = 1
TA = 25°C
VS = 5V
RL = 10kΩ
AV = 1
TA = 25°C
VIN
VOUT
2.5V
10µs
1V
Figure 29. Large Signal Transient Response
60
90
20
135
0
180
100k
FREQUENCY (Hz)
1M
10M
Figure 30. Open-Loop Gain and Phase vs. Frequency
50
40
30
20
10
0
0
1
2
3
4
SUPPLY VOLTAGE (V)
5
Figure 32. Supply Current per Amplifier vs. Supply Voltage
Rev. F | Page 11 of 20
6
00935-031
40
PHASE SHIFT (Degrees)
45
00935-029
GAIN (dB)
60
SUPPLY CURRENT/AMPLIFIER (µA)
TA = 25°C
80
10k
20µs
Figure 31. No Phase Reversal
VS = 5V
RL = NO LOAD
TA = 25°C
1k
00935-030
1V
00935-028
2.5V
AD8541/AD8542/AD8544
VS = 5V
MARKER SET @ 10kHz
MARKER READING: 37.6nV/ Hz
TA = 25°C
50
VS = 5V
15nV/DIV
45
40
VS = 2.7V
35
30
20
–55
–35
–15
5
25
45
65
85
TEMPERATURE (°C)
105
125
145
0
1000
800
VS = 2.7V AND 5V
AV = 1
TA = 25°C
600
500
400
300
200
100
10k
100k
1M
FREQUENCY (Hz)
10M
100M
00935-033
IMPEDANCE (Ω)
700
0
1k
10
15
FREQUENCY (kHz)
Figure 35. Voltage Noise
Figure 33. Supply Current per Amplifier vs. Temperature
900
5
Figure 34. Closed-Loop Output Impedance vs. Frequency
Rev. F | Page 12 of 20
20
25
00935-034
25
00935-032
SUPPLY CURRENT/AMPLIFIER (µA)
55
AD8541/AD8542/AD8544
THEORY OF OPERATION
NOTES ON THE AD854X AMPLIFIERS
Higher Output Current
The AD8541/AD8542/AD8544 amplifiers are improved
performance, general-purpose operational amplifiers.
Performance has been improved over previous amplifiers in
several ways, including lower supply current for 1 MHz gain
bandwidth, higher output current, and better performance at
lower voltages.
At 5 V single supply, the short-circuit current is typically 60 μA.
Even 1 V from the supply rail, the AD854x amplifiers can provide a
30 mA output current, sourcing, or sinking.
Lower Supply Current for 1 MHz Gain Bandwidth
The AD854x series typically uses 45 μA of current per amplifier,
which is much less than the 200 μA to 700 μA used in earlier
generation parts with similar performance. This makes the
AD854x series a good choice for upgrading portable designs
for longer battery life. Alternatively, additional functions and
performance can be added at the same current drain.
Sourcing and sinking are strong at lower voltages, with 15 mA
available at 2.7 V and 18 mA at 3.0 V. For even higher output
currents, see the AD8531/AD8532/AD8534 parts for output
currents to 250 mA. Information on these parts is available
from your Analog Devices, Inc. representative, and data sheets
are available at www.analog.com.
Better Performance at Lower Voltages
The AD854x family of parts was designed to provide better ac
performance at 3.0 V and 2.7 V than previously available parts.
Typical gain bandwidth product is close to 1 MHz at 2.7 V.
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase
margin is typically over 60°C, making the part easy to use.
Rev. F | Page 13 of 20
AD8541/AD8542/AD8544
APPLICATIONS
The AD854x have very high open-loop gain (especially with a
supply voltage below 4 V), which makes it useful for active filters of
all types. For example, Figure 36 illustrates the AD8542 in the
classic twin-T notch filter design. The twin-T notch is desired
for simplicity, low output impedance, and minimal use of op
amps. In fact, this notch filter can be designed with only one op
amp if Q adjustment is not required. Simply remove U2 as
illustrated in Figure 37. However, a major drawback to this
circuit topology is ensuring that all the Rs and Cs closely match.
The components must closely match or notch frequency offset
and drift causes the circuit to no longer attenuate at the ideal
notch frequency. To achieve desired performance, 1% or better
component tolerances or special component screens are usually
required. One method to desensitize the circuit-to-component
mismatch is to increase R2 with respect to R1, which lowers Q.
A lower Q increases attenuation over a wider frequency range
but reduces attenuation at the peak notch frequency.
Figure 38 is an example of the AD8544 in a notch filter circuit. The
frequency dependent negative resistance (FDNR) notch filter has
fewer critical matching requirements than the twin-T notch, where
as the Q of the FDNR is directly proportional to a single resistor R1.
Although matching component values is still important, it is also
much easier and/or less expensive to accomplish in the FDNR
circuit. For example, the twin-T notch uses three capacitors
with two unique values, whereas the FDNR circuit uses only
two capacitors, which may be of the same value. U3 is simply a
buffer that is added to lower the output impedance of the circuit.
R1
Q ADJUST
200Ω
2.5VREF
2.5VREF
1/4 AD8544
U2
6
f0 =
R/2
50kΩ
C
26.7nF
1
2πRC
C
26.7nF
U1
4
1
f=
VOUT
1/2 AD8542
11
R
2.61kΩ
1
2π LC1
R
2.61kΩ
13
12
1/4 AD8544
U4
14
NC
U2
2.5VREF
R2
2.5kΩ
5
6
Figure 38. FDNR 60 Hz Notch Filter with Output Buffer
COMPARATOR FUNCTION
R1
97.5kΩ
2.5VREF
Figure 36. 60 Hz Twin-T Notch Filter, Q = 10
5.0V
3
2
2C
1
VIN
R1
4 1–
R1 + R2
VIN
1/4 AD8544
U1
R
2.61kΩ
5
L = R2C2
1
R
2
2.5VREF
7
R
4
3
C2
1µF
7
AD8541
U1
4
6
VOUT
2.5VREF
A comparator function is a common application for a spare op
amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a
comparator in a standard overload detection application. Unlike
many op amps, the AD854x family can double as comparators
because this op amp family has a rail-to-rail differential input
range, rail-to-rail output, and a great speed vs. power ratio.
R2 is used to introduce hysteresis. The AD854x, when used as
comparators, have 5 μs propagation delay at 5 V and 5 μs
overload recovery time.
R2
1MΩ
R1
1kΩ
C
C
00935-036
R/2
Figure 37. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal)
VOUT
VIN
2.5VREF
2.5VDC
1/4 AD8541
00935-038
f0 =
2
2C
53.6µF
1/2 AD8542
00935-035
VIN
8
3
VOUT
R
2.61kΩ
5.0V
R
100kΩ
8
U3
10
C1
1µF
VIN
7
R
100kΩ
1/4 AD8544
9
00935-037
NOTCH FILTER
Figure 39. AD854x Comparator Application—Overload Detector
Rev. F | Page 14 of 20
AD8541/AD8542/AD8544
C
100pF
PHOTODIODE APPLICATION
The AD854x family has very high impedance with an input bias
current typically around 4 pA. This characteristic allows the
AD854x op amps to be used in photodiode applications and
other applications that require high input impedance. Note that
the AD854x has significant voltage offset that can be removed
by capacitive coupling or software calibration.
•
Shielding the circuit.
•
Cleaning the circuit board.
•
Putting a trace connected to the noninverting input around
the inverting input.
•
Using separate analog and digital power supplies.
V+
OR
2
7
6
3
4
D
2.5VREF
2.5VREF
VOUT
AD8541
00935-039
Figure 40 illustrates a photodiode or current measurement
application. The feedback resistor is limited to 10 MΩ to avoid
excessive output offset. In addition, a resistor is not needed on
the noninverting input to cancel bias current offset because the
bias current-related output offset is not significant when compared
to the voltage offset contribution. For best performance, follow the
standard high impedance layout techniques, which include the
following:
R
10MΩ
Figure 40. High Input Impedance Application—Photodiode Amplifier
Rev. F | Page 15 of 20
MF58 Glass Shell Precision NTC Thermistors
The MF58 is a NTC thermistor which is
manufactured using a combination of ceramic
and semiconductor techniques. It is equipped
with tinned axial leads and then wrapped with
purified glass.
Applications
Dimensions(mm)
Features
Main Techno-Parameter
Temperature compensation and detection for:
• Household appliances (air conditioners, microwave ovens,
electric fans, electric heaters etc.)
• Office equipment (copiers, printers etc.)
• Industrial, medical, environmental, weather and food
processing equipment
• Liquid level detection and flow rate measurement
• Mobile phone battery
• Apparatus coils, integrated circuits, quartz crystal
oscillators and thermocouples.
• Good stability and repeatability
• High reliability
• Wide range of resistance: 0.1~1000KΩ
• Tight tolerance on resistance and Beta values
• Usable in high-temperature and high-moisture environments
• Small, light, strong package,
• Suitable for automatic insertion on thru-hole PCBs
• Rapid response
• High sensitivity
• Zero power resistance range (R25): 0.1~1000KΩ
• Available tolerances of R25:
F=±1% G=±2% H=±3% J=±5% K=±10%
• B value (B25/50°C) range: 3100~4500K
• Available tolerances of B value: ±0.5%, ±1%, ±2%
• Dissipation factor: ≥2mW/°C (In Still Air)
• Thermal time constant: ≤20S (In Still Air)
• Operating temperature range: -55°C ~ +200°C
• Rated Power: ≤50mW
Specifications
8415 Mountain Sights Avenue • Montreal (Quebec), H4P 2B8, Canada
Tel: (514) 739-3274 • 1-800-561-7207 • Fax: (514) 739-2902
E-mail: [email protected] • Website: www.cantherm.com
2008/Feb
2322 640 3/4/6....
Vishay BCcomponents
NTC Thermistors, Accuracy Line
FEATURES
• Accuracy over a wide temperature range
• High stability over a long life
• Excellent price/performance ratio
APPLICATIONS
• Temperature sensing and control
These thermistors have a negative temperature coefficient.
The device consists of a chip with two tinned solid
copper-plated leads. It is grey lacquered and colour coded,
but not insulated.
QUICK REFERENCE DATA
PARAMETER
VALUE
Resistance value at 25 °C
Tolerance on R25-value
Tolerance on B25/85-value
Maximum dissipation
Dissipation factor δ
(for information only)
Response time
Thermal time constant τ (for
information only)
Operating temperature range:
at zero dissipation; continuously
at zero dissipation;
for short periods
at maximum dissipation (500 mW)
Climatic category
Mass
3.3 Ω to 470 kΩ
±2%; ±3%; ±5%; ±10%
±0.5% to ±3%
500 mW
7 mW/K
8.5 mW/K
(for 640..338 to 689)
1.2 s
15 s
PACKAGING
The thermistors are packed in bulk or tape on reel;
see code numbers and relevant packaging quantities.
−40 to +125 °C
≤150 °C
0 to 55 °C
40/125/56
≈0.3 g
ELECTRICAL DATA AND ORDERING INFORMATION
R25
(Ω)
B25/85-VALUE
3.3
4.7
6.8
10
15
22
33
47
68
100
150
220
330
470
680
1000
1500
2880 K ±3%
2880 K ±3%
2880 K ±3%
2990 K ±3%
3041 K ±3%
3136 K ±3%
3390 K ±3%
3390 K ±3%
3390 K ±3%
3560 K ±0.75%
3560 K ±0.75%
3560 K ±0.75%
3560 K ±0.75%
3560 K ±0.5%
3560 K ±0.5%
3528 K ±0.5%
3528 K ±0.5%
www.vishay.com
70
COLOR CODE
(see dimensions
drawing and note 1)
CATALOG NUMBER 2322 640 6....
R25 ±2%
R25 ±3%
R25 ±5%
R25 ±10%
I
II
III
4338
4478
4688
4109
4159
4229
4339
4479
4689
4101
4151
4221
4331
4471
4681
4102
4152
6338
6478
6688
6109
6159
6229
6339
6479
6689
6101
6151
6221
6331
6471
6681
6102
6152
3338
3478
3688
3109
3159
3229
3339
3479
3689
3101
3151
3221
3331
3471
3681
3102
3152
2338
2478
2688
2109
2159
2229
2339
2479
2689
2101
2151
2221
2331
2471
2681
2102
2152
orange
yellow
blue
brown
brown
red
orange
yellow
blue
brown
brown
red
orange
yellow
blue
brown
brown
orange
violet
grey
black
green
red
orange
violet
grey
black
green
red
orange
violet
grey
black
green
gold
gold
gold
black
black
black
black
black
black
brown
brown
brown
brown
brown
brown
red
red
For technical questions contact: [email protected]
Document Number: 29049
Revision: 10-Oct-03
2322 640 3/4/6....
Vishay BCcomponents
NTC Thermistors, Accuracy Line
R25
( Ω)
B25/85-VALUE
R25 ±2%
R25 ±3%
R25 ±5%
R25 ±10%
I
II
III
4202
4222
4272
4332
4472
4682
4103
4123
4153
4223
4333
4473
4683
4104
4154
4224
4334
4474
6202
6222
6272
6332
6472
6682
6103
6123
6153
6223
6333
6473
6683
6104
6154
6224
6334
6474
3202
3222
3272
3332
3472
3682
3103
3123
3153
3223
3333
3473
3683
3104
3154
3224
3334
3474
2202
2222
2272
2332
2472
2682
2103
2123
2153
2223
2333
2473
2683
2104
2154
2224
2334
2474
red
red
red
orange
yellow
blue
brown
brown
brown
red
orange
yellow
blue
brown
brown
red
orange
yellow
black
red
violet
orange
violet
grey
black
red
green
red
orange
violet
grey
black
green
red
orange
violet
red
red
red
red
red
red
orange
orange
orange
orange
orange
orange
orange
yellow
yellow
yellow
yellow
yellow
3528 K ±0.5%
3977 K ±0.75%
3977 K ±0.75%
3977 K ±0.75%
3977 K ±0.75%
3977 K ±0.75%
3977 K ±0.75%
3740 K ±2%
3740 K ±2%
3740 K ±2%
4090 K ±1.5%
4090 K ±1.5%
4190 K ±1.5%
4190 K ±1.5%
4370 K ±2.5%
4370 K ±2.5%
4570 K ±1.5%
4570 K ±1.5%
2000
2200
2700
3300
4700
6800
10000
12000
15000
22000
33000
47000
68000
100000
150000
220000
330000
470000
COLOR CODE
(see dimensions
drawing and note 1)
CATALOG NUMBER 2322 640 6....
Notes
DERATING AND TEMPERATURE TOLERANCES
1. Dependent upon R25-tolerance, the band IV is coloured as follows:
a) for R25 ±2%, band IV is coloured red
Power derating curve.
P
(%)
b) for R25 ±3%, band IV is coloured orange
100
c) for R25 ±5%, band IV is coloured gold
d) for R25 ±10%, band IV is coloured silver.
0
40
DIMENSIONS in millimeters
0
55
85
Tamb ( o C)
125
PHYSICAL DIMENSIONS FOR RELEVANT TYPE
H1
H2
CODE
NUMBER Bmax
2322 640
.....
6.338 to
6.221
5.0
H1
6.331 to
6.474
3.3
0.6
±0.5 ±0.06
B
T
Ι
ΙΙ
ΙΙΙ
ΛΙ
L
d
0.6
±0.06
H2
L
P
Tmax
max
MIN.
MAX.
1.0
4.0
6.0
24
±1.5
2.54
4.0
−
2.0
±1.0
6.0
24
±1.5
2.54
3.0
MARKING
The thermistors are marked with coloured bands; see
dimensions drawing and “Electrical data and ordering
information”.
d
P
2322 640 6.338 to 6.474.
MOUNTING
By soldering in any position.
Document Number: 29049
Revision: 10-Oct-03
For technical questions contact: [email protected]
www.vishay.com
71
2322 640 3/4/6....
Vishay BCcomponents
NTC Thermistors, Accuracy Line
TEMPERATURE DEVIATION AS A FUNCTION
OF THE AMBIENT TEMPERATURE.
3.0
5
1
∆T
(K)
TEMPERATURE DEVIATION AS A FUNCTION
OF THE AMBIENT TEMPERATURE.
Curves valid for 2.2 to 10 kΩ.
Curve 1: ∆R25/R25 = 5%.
Curve 2: ∆R25/R25 = 3%.
Curve 3: ∆R25/R25 = 2%.
Curve 4: ∆R25/R25 = 1%
(for 2322 640 5.... series only).
2.5
2
2.0
Curves valid for 12 to 22 kΩ.
Curve 1: ∆R25/R25 = 5%.
Curve 2: ∆R25/R25 = 3%.
Curve 3: ∆R25/R25 = 2%.
1
∆T
(K)
4
2
3
3
3
1.5
4
2
1.0
1
0.5
0
40
0
40
80
0
40
120
160
o
T ( C)
TEMPERATURE DEVIATION AS A FUNCTION
OF THE AMBIENT TEMPERATURE.
∆T
(K)
4.0
1
Curves valid for 33 to 47 kΩ.
Curve 1: ∆R25/R25 = 5%.
Curve 2: ∆R25/R25 = 3%.
Curve 3: ∆R25/R25 = 2%.
Curve 4: ∆R25/R25 = 1%
(for 2322 640 5.... series only).
3.5
2
3.0
3
2.5
0
40
80
TEMPERATURE DEVIATION AS A FUNCTION
OF THE AMBIENT TEMPERATURE.
∆T
(K)
4.0
2
3.0
3
2.5
4
2.0
2.0
1.5
1.5
1.0
1.0
0.5
0.5
0
40
80
0
40
120
160
o
T ( C)
TEMPERATURE DEVIATION AS A FUNCTION
OF THE AMBIENT TEMPERATURE.
6
∆T
(K)
5
1
4
2
3
Curves valid for 68 to 100 kΩ.
Curve 1: ∆R25/R25 = 5%.
Curve 2: ∆R25/R25 = 3%.
Curve 3: ∆R25/R25 = 2%.
Curve 4: ∆R25/R25 = 1%
(for 2322 640 5.... series only).
1
3.5
4
0
40
120
160
o
T ( C)
Curves valid for 150 to 220 kΩ.
Curve 1: ∆R25/R25 = 5%.
Curve 2: ∆R25/R25 = 3%.
Curve 3: ∆R25/R25 = 2%.
3
0
40
80
120
160
o
T ( C)
TEMPERATURE DEVIATION AS A FUNCTION
OF THE AMBIENT TEMPERATURE.
∆T
(K)
4.0
Curves valid for 330 to 470 kΩ.
Curve 1: ∆R25/R25 = 5%.
Curve 2: ∆R25/R25 = 3%.
Curve 3: ∆R25/R25 = 2%.
1
3.5
3.0
2
2.5
3
2.0
1.5
2
1.0
1
0.5
0
40
0
www.vishay.com
72
40
80
120
160
o
T ( C)
0
40
0
40
For technical questions contact: [email protected]
80
120
160
o
T ( C)
Document Number: 29049
Revision: 10-Oct-03
2322 640 3/4/6....
NTC Thermistors, Accuracy Line
RT VALUE AND TOLERANCE
These thermistors have a narrow tolerance on the B-value,
the result of which provides a very small tolerance on the
nominal resistance value over a wide temperature range. For
this reason the usual graphs of R = f(T) are replaced by
Resistance Values at Intermediate Temperatures Tables,
together with a formula to calculate the characteristics with a
high precision.
Vishay BCcomponents
DETERMINATION OF THE
RESISTANCE/TEMPERATURE DEVIATION
FROM NOMINAL VALUE
The total resistance deviation is obtained by combining the
‘R25-tolerance’ and the ‘resistance deviation due to
B-tolerance’.
When:
X = R25-tolerance
FORMULAE TO DETERMINE NOMINAL
RESISTANCE VALUES
Y = resistance deviation due to B-tolerance
Z = complete resistance deviation,
The resistance values at intermediate temperatures, or the
operating temperature values, can be calculated using the
following interpolation laws
(extended “Steinhart and Hart”):
2
R (T) = R ref × e
(2)
ref
× 100 % or Z ≈ X + Y.
TC = temperature coefficient
(1)
2 R
3 R –1
R
T (R) = ⎛ A 1 + B 1 ln ---------- + C 1 ln ---------- + D 1 ln ----------⎞
⎝
R ref
R
R ⎠
X
Y
Z = ⎛ 1 + ----------⎞ × ⎛ 1 + ----------⎞ – 1
⎝
100⎠ ⎝
100⎠
When:
3
(A + B ⁄ T + C ⁄ T + D ⁄ T )
ref
then:
∆T = temperature deviation,
Z
then: ∆T = -------
TC
where:
The temperature tolerances are plotted in the graphs on the
previous page.
A, B, C, D, A1, B1, C1 and D1 are constant values
depending on the material concerned; see table below.
Rref is the resistance value at a reference temperature (in
this event 25 °C).
T is the temperature in K.
Formulae numbered (1) and (2) are interchangeable with an
error of max. 0.005 °C in the range 25 °C to 125 °C and
max. 0.015 °C in the range −40 °C to +25 °C.
Example: at 0 °C, assume X = 5%, Y = 0.89% and
TC = 5.08%/K (see Table ), then:
⎧
5
Z = ⎨ 1 + ---------100
⎩
⎫
0.89
× 1 + ----------- – 1 ⎬ × 100%
100
⎭
˙
= { 1.05 × 1.0089 – 1 } × 100% = 5.9345%
( ≈ 5.93% )
Z
5.93
∆T = -------- = ----------- = 1.167 °C ( ≈ 1.17 ° C)
TC 5.08
A NTC with a R25-value of 10 kΩ has a value of 32.56 kΩ
between −1.17 and +1.17 °C.
PARAMETERS FOR DETERMINING NOMINAL RESISTANCE VALUES
B25/85-VALUE
(K)
2880
2990
3041
3136
3390
3528(1)
3528(2)
3560
3740
3977
4090
4190
4370
4570
A
B
(K)
C
(105K2)
D
(106K3)
A1
(10−3)
B1
(10−4K−1)
C1
(10−6K−2)
D1
(10−7K−3)
−9.094
−10.2296
−11.1334
−12.4493
−12.6814
−12.0596
−21.0704
−13.0723
−13.8973
−14.6337
−15.5322
−16.0349
−16.8717
−17.6439
2251.74
2887.62
3658.73
4702.74
4391.97
3687.667
11903.95
4190.574
4557.725
4791.842
5229.973
5459.339
5759.15
6022.726
229098
132336
−102895
−402687
−232807
−7617.13
−2504699
−47158.4
−98275
−115334
−160451
−191141
−194267
−203157
−27.4482
−25.0251
0.516652
31.96830
15.09643
−5914730
247033800
−11992560.91
−7522357
−3730535
−5414091
−3328322
−6869149
−7183526
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.354016
3.495020
3.415560
3.349290
3.243880
2.993410
2.909670
2.933908
2.884193
2.744032
2.569355
2.519107
2.460382
2.367720
2.264097
2.095959
4.955455
3.683843
2.658012
2.135133
1.632136
3.494314
4.118032
3.666944
2.626311
3.510939
3.405377
3.585140
3.278184
4.260615
4.364236
7.050455
−2.70156
−8.05672
0.719220
−7.71269
1.786790
1.375492
0.675278
1.105179
1.034240
1.255349
1.097628
Notes
1. Temperature < 25 °C.
2. Temperature ≥25 °C.
Document Number: 29049
Revision: 10-Oct-03
For technical questions contact: [email protected]
www.vishay.com
73
PRODUCT INFORMATION
TGS 822 - for the detection of Organic Solvent Vapors
Features:
Applications:
* High sensitivity to organic solvent vapors
such as ethanol
* High stability and reliability over a long
period
* Long life and low cost
* Uses simple electrical circuit
* Breath alcohol detectors
* Gas leak detectors/alarms
* Solvent detectors for factories, dry
cleaners, and semiconductor
The sensing element of Figaro gas sensors is a tin dioxide (SnO2) semiconductor
which has low conductivity in clean air. In the presence of a detectable gas, the
sensor's conductivity increases depending on the gas concentration in the air. A
simple electrical circuit can convert the change in conductivity to an output signal
which corresponds to the gas concentration.
The TGS 822 has high sensitivity to the vapors of organic solvents as well as other
volatile vapors. It also has sensitivity to a variety of combustible gases such as
carbon monoxide, making it a good general purpose sensor. Also available with a
ceramic base which is highly resistant to severe environments as high as 200°C
(model# TGS 823).
The figure below represents typical sensitivity characteristics,
all data having been gathered at standard test conditions (see
reverse side of this sheet). The Y-axis is indicated as sensor
resistance ratio (Rs/Ro) which is defined as follows:
Rs = Sensor resistance of displayed gases at
various concentrations
Ro = Sensor resistance in 300ppm ethanol
The figure below represents typical temperature and humidity
dependency characteristics. Again, the Y-axis is indicated as
sensor resistance ratio (Rs/Ro), defined as follows:
Rs = Sensor resistance at 300ppm of ethanol
at various temperatures/humidities
Ro = Sensor resistance at 300ppm of ethanol
at 20°C and 65% R.H.
Sensitivity Characteristics:
Temperature/Humidity Dependency:
10
Air
10
Methane
Rs/Ro
1
Carbonmonoxide
Isobutane
0.1
Acetone
50
100
500 1000
Concentration (ppm)
5
2
R.H.
35%
50%
65%
100%
Rs/Ro 1
.5
n-Hexane
Benzene
Ethanol
5000
0.1
-20
-10
0
10
20
30
40
50
Ambient Temperature (°C)
IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY
RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET
GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS
NOT BEEN SPECIFICALLY TESTED BY FIGARO.
Structure and Dimensions:
1 Sensing Element:
SnO2 is sintered to form a thick film on
the surface of an alumina ceramic tube
which contains an internal heater.
2 Cap:
Nylon 66
3 Sensor Base:
Nylon 66
4 Flame Arrestor:
100 mesh SUS 316 double gauze
17 ± 0.5
5
45˚
1
1.0±0.5
6
2
4
45˚
6.5±0.5
16.5±0.5
9.5
3
um : mm
Pin Connection and Basic Measuring Circuit:
The numbers shown around the sensor symbol in the circuit diagram at the right
correspond with the pin numbers shown in the sensor's structure drawing (above).
When the sensor is connected as shown in the basic circuit, output across the Load
Resistor (VRL) increases as the sensor's resistance (Rs) decreases, depending on
gas concentration.
Basic Measuring Circuit:
Standard Circuit Conditions:
Item
Symbol
Rated Values
Remarks
Heater Voltage
VH
5.0±0.2V
AC or DC
Circuit Voltage
VC
Max. 24V
DC only
Ps≤15mW
Load Resistance
RL
Variable
0.45kΩ min.
Electrical Characteristics:
Symbol
Condition
Specification
Rs
Ethanol at 300ppm/air
1kΩ ~ 10kΩ
Rs/Ro
Rs(Ethanol at 300ppm/air)
Rs(Ethanol at 50ppm/air)
0.40 ± 0.10
Heater Resistance
RH
Room temperature
38.0 ± 3.0Ω
Heater Power
Consumption
PH
VH=5.0V
660mW (typical)
Item
Sensor Resistance
Change Ratio of
Sensor Resistance
Standard Test Conditions:
TGS 822 complies with the above electrical characteristics
when the sensor is tested in standard conditions as specified
below:
Test Gas Conditions:
20°±2°C, 65±5%R.H.
Circuit Conditions:
VC = 10.0±0.1V (AC or DC),
VH = 5.0±0.05V (AC or DC),
RL = 10.0kΩ±1%
Preheating period before testing: More than 7 days
FIGARO USA, INC.
121 S. Wilke Rd. Suite 300
Arlington Heights, IL 60005
Phone: (847)-832-1701
Fax:
(847)-832-1705
email: figarousa@figarosensor.com
REV: 09/02
Sensor Resistance (Rs) is calculated by
the following formula:
Rs = (
VC
-1) x RL
VRL
Power dissipation across sensor electrodes (Ps)
is calculated by the following formula:
Ps =
VC2 x Rs
(Rs + RL)2
For information on warranty, please refer to Standard Terms and
Conditions of Sale of Figaro USA Inc.
SFH 2030
SFH 2030 F
Silizium-PIN-Fotodiode mit sehr kurzer Schaltzeit
Silizium-PIN-Fotodiode mit Tageslichtsperrfilter
Silicon PIN Photodiode with Very Short Switching Time
Silicon PIN Photodiode with Daylight Filter
SFH 2030
SFH 2030 F
Maβe in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.
Features
Wesentliche Merkmale
● Speziell geeignet für Anwendungen im
Bereich von 400 nm bis 1100 nm
(SFH 2030) und bei 880 nm (SFH 2030 F)
● Kurze Schaltzeit (typ. 5 ns)
● 5 mm-Plastikbauform im LED-Gehäuse
● Auch gegurtet lieferbar
● Especially suitable for applications from
400 nm to 1100 nm (SFH 2030) and of
880 nm (SFH 2030 F)
● Short switching time (typ. 5 ns)
● 5 mm LED plastic package
● Also available on tape
Anwendungen
● Industrieelektronik
● “Messen/Steuern/Regeln”
● Schnelle Lichtschranken für Gleich- und
Wechsellichtbetrieb
● LWL
Applications
● Industrial electronics
● For control and drive circuits
● Light-reflecting switches for steady and
varying intensity
● Fiber optic transmission systems
Typ (*ab 4/95)
Bestellnummer
Type (*as of 4/95) Ordering Code
Gehäuse
Package
SFH 2030
(*SFH 203)
Q62702-P955
SFH 2030 F
(*SFH 203 FA)
Q62702-P956
T13/4, klares bzw schwarzes Epoxy-Gieβharz, Lötspieβe im 2.54-mm-Raster (1/10),
Kathodenkennzeichnung: kürzerer Lötspieβ, flach
am Gehäusebund
transparent and black epoxy resin, solder tab
2.54 mm (1/10) lead spacing, cathode marking: short
solder tab, flat at package
Semiconductor Group
442
SFH 2030
SFH 2030 F
Grenzwerte
Maximum Ratings
Bezeichnung
Description
Symbol
Symbol
Wert
Value
Einheit
Unit
Betriebs- und Lagertemperatur
Operating and storage temperature range
Top; Tstg
–55 ... +100
oC
Löttemperatur (Lötstelle 2 mm vom
Gehäuse entfernt bei Lötzeit t ≤ 3s)
Soldering temperature in 2 mm distance
from case bottom (t ≤ 3s)
TS
300
oC
Sperrspannung
Reverse voltage
VR
50
V
Verlustleistung
Total power dissipation
Ptot
100
mW
Kennwerte (TA = 25 oC)
Characteristics
Bezeichnung
Description
Symbol Wert
Symbol Value
Einheit
Unit
SFH 2030
SFH 2030 F
S
80 (≥ 50)
–
nA/Ix
S
–
25 (≥ 15)
µA
Wellenlänge der max. Fotoempfindlichkeit
Wavelength of max. sensitivity
λS max
850
900
nm
Spektraler Bereich der Fotoempfindlichkeit
S = 10% von Smax
Spectral range of sensitivity
S = 10% of Smax
λ
400 ...1100
800 ... 1100
nm
Bestrahlungsempfindliche Fläche
Radiant sensitive area
A
1
1
mm2
Abmessung der bestrahlungsempfindlichen
Fläche
Dimensions of radiant sensitive area
LxB
1x1
1x1
mm
Abstand Chipoberfläche zu Gehäuseoberfläche
Distance chip front to case surface
H
4.0 ... 4.6
4.0 ... 4.6
mm
Fotoempfindlichkeit
Spectral sensitivity
VR = 5 V, Normlicht/standard light A,
T = 2856 K,
VR = 5 V, λ = 950 nm, Ee = 0.5 mW/cm2
Semiconductor Group
LxW
443
SFH 2030
SFH 2030 F
Kennwerte (TA = 25 oC)
Characteristics
Bezeichnung
Description
Symbol Wert
Symbol Value
Einheit
Unit
SFH 2030
SFH 2030 F
Halbwinkel
Half angle
ϕ
± 20
± 20
Grad
deg.
Dunkelstrom, VR = 20 V
Dark current
IR
1 (≤ 5)
1 (≤ 5)
nA
Spektrale Fotoempfindlichkeit, λ = 850 nm
Spectral sensitivity
Sλ
0.62
0.59
A/W
Quantenausbeute, λ = 850 nm
Quantum yield
η
0.89
0.86
Electrons
Photon
Leerlaufspannung
Open-circuit voltage
Ev = 1000 Ix, Normlicht/standard light A,
T = 2856 K
Ee = 0.5 mW/cm2, λ = 950 nm
VL
420 (≥ 350)
–
mV
VL
–
370 (≥ 300)
mV
Kurzschluβstrom
Short-circuit current
Ev = 1000 Ix, Normlicht/standard light A,
T = 2856 K
Ee = 0.5 mW/cm2, λ = 950 nm
IK
80
–
µA
IK
–
25
µA
Anstiegs und Abfallzeit des Fotostromes
tr, tf
Rise and fall time of the photocurrent
RL= 50 kΩ; VR = 20 V; λ = 850 nm; Ip = 800 µA
5
5
ns
Durchlaβspannung, IF = 80 mA, E = 0
Forward voltage
VF
1.3
1.3
V
Kapazität, VR = 0 V, f = 1 MHz, E = 0
Capacitance
C0
11
11
pF
Temperaturkoeffizient von VL
Temperature coefficient of VL
TCV
–2.6
–2.6
mV/K
Temperaturkoeffizient von IK,
Temperature coefficient of IK
Normlicht/standard light A
λ = 950 nm
TCI
Rauschäquivalente Strahlungsleistung
Noise equivalent power
VR = 10 V, λ = 850 nm
Nachweisgrenze, VR = 20 V, λ = 850 nm
Detection limit
Semiconductor Group
%/K
0.18
–
–
0.2
NEP
2.9 x 10–14
2.9 x 10–14
W
√Hz
D*
3.5 x 1012
3.5 x 1012
cm · √Hz
W
444
SFH 2030
SFH 2030 F
Relative spectral sensitivity SFH 2030
Srel = f (λ)
Relative spectral sensitivity SFH 2030 F
Srel = f (λ)
Photocurrent IP = f (Ev), VR = 5 V
Open-circuit-voltage VL= f (Ev)
SFH 2030
Photocurrent IP = f (Ee), VR = 5 V
Open-circuit-voltage VL= f (Ee)
SFH 2030 F
Total power dissipation Ptot = f (TA)
Dark current
IR = f (VR), E = 0
Directional characteristics Srel = f (ϕ)
Semiconductor Group
445