Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
VARIABILITY AND ITS FORMS Variability represents the organism’s propriety to obtain new characters (traits), different from that of their parents. It means different genetic, biochemical, physiological or morphological changes. Variability is e common propriety of organisms and ensures: - Surviving of organisms in different environmental conditions - Individual polymorphism - Natural selection - Evolution - Appearance of different pathological states. Different variations may be induced by internal factors (hormones, metabolites, physiological states) and external factors (physical, chemical and biological). The most important physical factors are radiations: UV (non-ionizing), X-rays, cosmic irradiations (ionizing). The chemical substances, which may affect genetic material, are oxides, compounds with chlorine, salts of heavy metals, vitamin C, and nitrates. The main biological factors are viruses, bacterial and fungal toxins. Classification of variability There are two types of variability: hereditary and nonhereditary. Hereditary variability can be due to crossing over during meiosis (recombination) or due to mutations. Non-hereditary variability is also called modification. Nonhereditary (phenotypic) variability Each phenotype develops under specific environmental conditions. Different factors (like sun light, radiations, drugs) may change the phenotype, without modification of DNA. So, the nonhereditary variations in phenotype don’t affect the genotype. The phenotypic variations are also called modifications. Usually phenotypic modifications are determined by genotype. Each character may vary in determined limits – this property is called norm of reaction. [e.g. an white man exposed to sunlight (UV irradiation) became more dark, but not a black]. Usually the modifications persist as long as the modification factor acts. Modification’s characteristics: - Represents nonhereditary variations of phenotype - Represents adaptations to environmental conditions - Are reversible (if they appear in adults) - Different organisms present the same variations in identical conditions [in all people UV light provoke darkness of the skin] - The variation of phenotype is determined by organism’s genotype – norm of reaction [in the same condition some people begin more dark, other – less]. Gene mutations Some environment factors may have a destructive action on organism. In this case the phenotype develops outside norm of reaction limits and an abnormal modification is produced. The factors, which produce such abnormal modifications, are called teratogenes. The degree of abnormality depends on the stage of development where it was produced: earlier damages are more sever. Same times the phenotype closely resembles a genetic disease (state caused by mutations), but has arisen by a completely different (environmentally determined) mechanism. Such phenotype is called phenocopy. Hereditary (genotypic) variability The genotypic variability is determined by changes at the level of DNA. All genotypic variations have the next proprieties: - Are determined by changes in genetic apparatus; - Are induced by physical, chemical or biological conditions; - May be inherited through generations; - Represent the basis of population polymorphism. There are two types of hereditary variations: mutational and combinative. Combinative variability The recombination of genetic material takes place during sexual reproduction. There are 3 types of genetic recombination: - Genomic recombination – random mating of gametes during fecundation. - Inter-chromosomal recombination – random segregation of maternal and paternal chromosomes during anaphase I. After meiosis may be 223 = 83886068 different chromosome combinations in gametes. - Intra-chromosomal recombination – represents the exchange of fragments between homologous chromosomes during prophase I – crossing-over. Mutational variability Mutation is the process whereby changes occur in the quantity or structure of the genetic material of an organism. Mutations are permanent alterations in the genetic material, which may lead to changes in phenotype. An organism, gene, DNA sequence, etc. in which a mutation has occurred is called a mutant. Mutations can arise spontaneously as a result of events such as errors in the fidelity of DNA replication or the movement of transposable genetic elements within genomes. They are also induced following exposure to chemical or physical mutagens. Such mutation-inducing agents include ionizing radiations, ultraviolet light and a diverse range of chemicals such as the alkylating agents, and polycyclic aromatic hydrocarbons, all of which are capable of interacting either directly or indirectly (generally following some metabolic biotransformations) with 2 Gene mutations nucleic acids. The DNA lesions induced by such environmental agents may lead to modifications of the base sequence when the affected DNA is replicated or repaired and thus to a mutation. Classification of mutations: 1) Depending on the cells in which mutations occur. Mutations may occur either in germ cells or in somatic cells. Germ cell mutations can be transmitted to individuals of the next generation and are usually found in all cells of the affected offspring. Somatic mutations are found only in the descendents of the mutant cell, making the individual a "mosaic". Phenotypic consequences are observable only if the mutations happen to interfere with the specific function of the affected cells. 2) Depending on the origin of the mutation. Mutations can be spontaneous (which occur naturally) and induced (they are produced when an organism is exposed to a mutagenic agent, or mutagen; such mutations typically occur at much higher frequencies than spontaneous mutations do). 3) Depending on the localization of a mutation in the cell. Mutations can be nuclear (chromosome), in case the mutated gene is localized in a chromosome, or cytoplasmic, if the mutated gene is localized in mitochondrial or chloroplast DNA. 4) Depending on the influence on viability of the organism. Mutations can be lethal (they cause death of the embryo carrying the mutation), semi-lethal (they decrease drastically the viability of the organism carrying the mutation), conditionally lethal (they may cause death of the organism carrying the mutations in certain environment), neutral (they do not affect viability of the individual), and enhancing (they increase viability of the individual). 5) Depending on the character of changes to the genetic material. In experimental genetics, the following types of mutations can be distinguished: Genome mutations involve alterations in the number of chromosomes. Whole sets of chromosomes may be multiplied (polyploidy), or the number of copies of a particular chromosome may be increased (trisomy) or decreased (monosomy). Chromosome mutations. The structure of chromosome is changed, allowing microscopic detection. The total number of chromosomes is not altered. Gene mutations (point mutations). Here no changes of chromosomes can be detected microscopically; the mutation can be inferred from a change in the phenotype be genetic analysis or can be detected by DNA studies. Gene (point) mutations Gene mutations alter the hereditary material at the level of a gene. There are several types of gene mutation: substitution, deletion, duplication, insertion, reversion, unequal crossing-over. Substitution represents the replacing of one base with another and may be two types: transition and transversion. Transition mutations involve the substitution of one purine in the DNA by another purine or one pyrimidine by another pyrimidine, that is A by G and vice versa, or T by C and vice versa. Transversions involve the replacement of a purine by a pyrimidine and vice versa. Such base substitutions (also termed base-pair substitutions or nucleotide substitutions) may affect the correct functioning of the product of the modified gene; the extent of the effect can, however, range from the undetectable to the severe. As the GENETIC CODE is degenerate, so that most of the amino acids inserted into a growing polypeptide chain are coded for by more than one triplet, a base substitution may simply convert one codon for a particular amino acid to another codon for the same amino acid (samesens mutation). Even when the substitution results in the insertion of a different amino acid into a polypeptide, a missense mutation, the amino acid may be an acceptable substitute and thus not lead to any significant change in the activity of the polypeptide. However, some 3 Gene mutations missense amino-acid changes can have drastic effects upon the folding of polypeptide chains or upon the configuration of the active site of an enzyme. Other base substitutions may have drastic effects because they convert a triplet coding for an amino acid into one of the three termination signals, which lead to the premature termination of polypeptide synthesis. Such nonsense mutations are usually accompanied by the loss of function of the gene product. Frameshift mutations The addition or deletion of base-pairs from the coding sequence of a gene may lead to the production of frameshift changes in the messenger RNA transcribed from that sequence and a severe effect is nearly always produced in the resultant polypeptide. Additions or deletions of one (or two or four) bases cause a change in the reading frame of the mRNA which can lead to premature termination as the result of generation of a stop codon in the new reading frame, or to the insertion of a number of incorrect amino acids in the growing polypeptide with a high probability of producing a defective gene product. In inversion a fragment of gene is rotated by 1800. As consequence a new sequence of amino acids will be synthesized. Reversion represents the change from a mutant phenotype to the original (wild type) phenotype, which is usually due to back mutation. In intragenic suppression a phenotypic correction of a frameshift mutation takes place when a compensating mutation within the same gene restores the original reading frame. Unequal crossing-over represents a nonreciprocal recombination event. This type of recombination between arrays of similar repeated sequences may be responsible for the expansion and contraction of such arrays. [The hemoglobin Lepore represents hemoglobin product of the fusion gene that results from unequal crossingover between b - and d -globin genes. The intervening material is deleted. The fusion gene encodes a single b -like chain that consists of the Nterminal sequence of d joined to the C-terminal sequence of b. Several types of hemoglobin Lepore are known, the difference between them lying in the point of transition from d to b sequences. The phenotype is classified as d - b thalassaemia and in the homozygous state there is a mild degree of anaemia]. Dynamic mutations There are some mutations with an unusual pattern of inheritance, characteristic for a group of genes, which give rise to a disease phenotype by dynamic mutation of a trinucleotide 4 Gene mutations repeat. As example may be used FMR1 gene, dynamic mutation in which is associated with fragile X syndrome. This disease is characterized by mental retardation, elongated faces with large ears, and macro-orchidism. The syndrome is unusual in that it is associated with the appearance of a fragile site on the long arm of the X- chromosome. This can be visualized cytogenetically in metaphase chromosomes prepared from lymphocytes of affected individuals. Unusually for an X-linked recessive disorder, up to 30% of carrier females show some degree of mental impairment, and the mutation may also be passed through males who do not show a fragile X site (normal transmitting males). Additionally, there is an imbalance of penetrance of the phenotype in the different generations of family members in which the mutation is segregating. Nonpenetrant individuals are said to carry a premutation chromosome, that is, a chromosome which has no abnormal phenotypic effect but which is capable of progressing to a fully penetrant mutation on passage through a female oogenesis. In normal gene there are up to 50 repeats of CGG trinucleotide. Expansions in FMR1 are associated with fragile X syndrome, but only when the gene is methylated, and this occurs when the number of CGG repeats exceeds about 200 (full mutation). Further expansion of the repeat does not generate a more severe phenotype. FMR1 has a premutation category, with unmethylated expansion of approximately 50-200 repeats. Premutations have no phenotypic effect, because the protein is identical whether transcribed from a normal or premutation allele. Although the mechanism of amplification is unknown, it most probably originates either as an artefact of unscheduled DNA replication or by unequal sister chromatid exchange recombination. The consequences of gene mutations The primary effect of gene mutations is represented by modifications at the level of amino acid sequence. The biological effect of such modifications depends on type of amino acids involved in alteration and its position in polypeptide. A mutation may interfere the structure of the rate of synthesis of a specific enzyme; as result a particular metabolic pathway will be changed. If a mutation affects the regulatory sequences, usually, only quantitative changes take place. If the mutation changes the structural part of gene, may be both quantitative and qualitative changes. As result the new alleles may be hypomorphic, hypermorphic, neomorphic or amorphic (see “Gene interaction”). Genetic load represents the average number of lethal alleles per individual within a given population. A gene that has undergone a lethal mutation is typically incapable of producing an active form of an indispensable protein. This is incompatible with survival in a haploid organism. In a diploid organism lethal mutations are characterized as those that “kill” the 5 Gene mutations organism directly, usually early in development (embryonic lethal) or prevent it from reproducing. Lethal mutations may be dominant or recessive. Mutation rate. The number of mutation events in a particular unit of time, for example the number of mutations per cell per generation, or the rate of mutation per locus per gamete. In the study of heritable diseases, the mutation rate is expressed as mutations per locus per gamete, which is effectively mutations per locus per generation (usually 1:25000 (or 4x10-5) – 1:1000000 (or 1x10-6). It can be measured directly in autosomal dominant diseases (as the number of cases born to unaffected parents) and in diseases where carrier detection is possible. For autosomal recessive diseases where carrier status cannot be ascertained, the mutation rate is measured indirectly and involves estimates the effect of carrier status on fitness. 6 Gene mutations ANOMALIILE CROMOZOMICE CHROMOSOMAL ABNORMALITIES Chromosomal abnormalities represents chromosomes number modifications species characteristic (46 in human somatic cells) or structural modifications of this. There are notions of genomic mutations in literature ( that explains chromosomal number abnormalities), and mutations or chromosomal aberrations (that explain chromosomal structure abnormalities). Number chromosomal abnormalities affects whole the chromosome , and structural abnormalities implicates rearrangements of chromosomes structure. Chromosomal abnormalities possible causes: mitosis deregulating factors that produce DNA tears or affects replication chemical factors: cytostatines, antimethabolits, free radicals, alkilant agents physical factors: ionizing radiations biological factors: viruses mother advanced age increase error risk in meiotic chromosomal segregation and offspring’s aneuploidii risk one of the parents is equilibrate congenital abnormality carrier (translocations, inversions) twins, more frequent in families with dizigot twins chromosomal rearrangements (unequal crossing-over, recombination’s errors0 ovulation inductor therapy Number abnormalities are clasificated in Anomaliile cromozomice reprezintă modificări ale numărului cromozomilor caracteristic speciei (46 în celulele somatice umane) sau modificări structurale ale acestora. În literatură sunt întâlnite noţiunile de mutaţii genomice (ce explică anomaliile cromozomice de număr) şi mutaţii sau aberaţii cromozomice (ce se referă la anomaliile de structură). Anomaliile cromozomice numerice afectează întregul cromozom şi cele structurale implică rearanjamente ale structurii cromozomilor (fig.9.4). Cauzele anomaliilor cromozomice ar putea fi: factori care dereglează mitoza şi produc rupturi ale ADN-ului sau îi alterează replicarea: factori chimici: citostatice, antimetaboliţi, radicali liberi, agenţii alkilanţi; factori fizici: radiaţiile ionizante; factori biologici: virusuri; vârsta maternă avansată sporeşte riscul erorilor în segregarea cromozomilor în meioză şi a aneuploiilor la descendenţi; unul din părinţi este purtător de anomalie congenitală echilibrată (translocaţii, inversii); gemelaritatea, mai frecvent în familiile gemenilor dizigoţi; rearanjările intercromozomice (crossing-over inegal, erori de recombinare); terapia cu inductori de ovulaţie. Anomaliile numerice sunt clasificate în: poliploidii (prezenţa în plus a unor seturi haploide de cromozomi) şi aneuploidii (prezenţa în plus sau absenţa unui cromozom întreg). Poliploidiile, în dependenţă de numătul de seturi haploide prezente în nucleul celulei somatice, pot fi: triploidii (3n) - 69,XXX sau 69,XXY sau 69,XYY; tetraploidii (4n )- 92,XXXX sau 92,XXYY; etc. Triploidia (3n) poate rezulta prin fecundarea de către un gamet normal (n = haploid) a unui gamet anormal (2n=diploid); gametul diploid este rezultatul neseparării citelor de ordinul II în meioza parentală (de obicei, în cursul ovogenezei, neexpulzarea primului globul polar - diginie; uneori în cursul spermatogenezei - diandrie); prin erori în cursul fecundării: fecundarea unui ovul (n) de către 2 spermatozoizi (2n) – dispermie. Tetraploidia (4n) poate fi rezultatul unei erori de clivaj în cursul primei diviziuni mitotice a zigotului şi dublarea numărului de cromozomi imediat după fecundare (endomitoză) sau prin fecundarea a 2 gameţi diploizi (2n+2n=4n). Poliploidiile interesează o mare cantitate de material 7 Gene mutations genetic şi la om sunt, de regulă, neviabile (manifestându-se prin avort în trimestrul I de sarcină sau nou-născuţi morţi). 8 Fig. 9.4. Clasificarea anomaliilor cromozomice Aneuploidile se caracterizează prin prezenţa în plus faţă de numărul diploid normal sau absenţa a 1-2-3 cromozomi. Majoritatea aneuploidiilor sunt consecinţa unor erori de segregare cromozomică sau cromatidiană în cursul diviziunii celulare, numite nedisjuncţii. În cazul nedisjuncţiilor numărul de cromozomi din celulele fiice nu este egal. Aceste anomalii se pot produce în meioza I, meioza II sau în mitoză. Rareori, gameţii nulisomici, iar apoi embrionii monosomici, pot rezulta datorită pierderii cromozomilor printr-o întârziere anafazică la nivelul plăcii ecuatoriale. Aneuploidiile omogene sunt rezultatul fecundării unui gamet normal de către un gamet aneuploid produs prin erori de distribuţie a materialului genetic în cursul meiozei parentale. Aneuploidiile în mozaic sunt rezultatul erorilor de distribuţie a materialului genetic în cursul mitozei (de obicei, diviziunile de segmentare ale primelor stadii embrionare). Clasificarea aneuploidiilor: a) după surplus sau lipsă de cromozomi: monosomie (2n-1) - absenţa unui cromozom; trisomie (2n+1) - prezenţa unui cromozom supranumerar; b) după tipul cromozomului implicat: aneuploidii autozomale aneuploidii gonozomale c) după numărul de celule afectate: anomalii omogene (prezenţa anomaliei în toate celulele organismului); anomalii în mozaic (prezenţa unor linii celulare anormale şi normale în acelaşi organism); d) după asocierea sau lipsa acesteia cu anomaliile de structură: anomalii libere – fără anomalii cromozomice structurale; anomalii prin translocaţie – prezenţa în plus a unor cromozomi ataşaţi la alţii fără modificarea numărului diploid normal, sau falsa absenţă a unui cromozom ca urmare a fuzionării cu un altul. Uneori termenul se foloseşte referitor la orice modificare cantitativă a materialului genetic, inclusiv la anomaliile congenitale structurale): load anomalii complete – prezenţa în plus sau lipsa unui cromozom în întregime; anomalii parţiale – prezenţa în plus sau lipsa unui segment cromozomic. Efectele şi gravitatea anomaliilor cromozomice cantitative depind de: tipul de anomalie şi mărimea dezechilibrului genetic - cu cât defectul cantitativ este mai mare, cu atât consecinţele sunt mai grave; deficitul are consecinţe mai grave decât excesul; conţinutul genic şi activitatea cromozomului implicat – de ex., trisomia 1 nu este viabilă, trisomia 21 - da. tipul şi numărul de celule afectate - afectarea celulelor somatice duce la modificarea fenotipului individului; afectarea celulelor sexuale duce la apariţia tulburărilor de reproducere. Monosomiile sunt mai grave decât trisomiile. Singura monosomie viabilă la specia umană este monosomia X; monosomiile autosomale, Y şi 98% din zigoţii cu monosomie X se elimină ca produşi de avort, în trimestrul I de sarcină. Trisomiile cromozomilor mari, activi genetic, sunt neviabile, producînd avort în trimestrul I de sarcină sau nou-născuţi morţi. Viabile pot fi trisomiile 8, 13, 18, 21, fiind responsabile de multiple anomalii de dezvoltare (sindroame): sindromul trisomiei 8 - 47, XX (XY), +8; sindromul Patau - 47, XX (XY), +13; sindromul Edwards - 47, XX (XY), +18; sindromul Down - 47, XX (XY), +21. Anomaliile cromozomice viabile (sindroamele cromozomice) prezintă modificări fenotipice comune (tulburări de creştere pre- şi postnatală; întârziere în dezvoltarea psiho-motorie şi debilitate mintală; multiple anomalii viscerale, disgenezii gonadice) şi modificări specifice ale cromozomului sau cromozomilor implicaţi. ANOMALIILE CROMOZOMICE DE STRUCTURĂ Gene mutations Anomaliile cromozomice structurale pot fi clasificate în funcţie de efectul fenotipic şi de mecanismul de producere. Pe baza efectului fenotipic, anomaliile cromozomice structurale se împart în: echilibrate (inversiile şi translocaţiile), care nu modifică fenotipul purtătorului şi neechilibrate (deleţiile, duplicaţiile, etc.), care produc fenotipuri anormale. În raport cu mecanismul de producere, anomaliile cromozomice structurale pot fi grupate în: anomalii produse printr-o singură ruptură cromozomică (deleţia terminală), anomalii produse prin două rupturi cromozomice în acelaşi cromozom (deleţiile interstiţiale, inversiile, cromozomii inelari), anomalii produse prin rupturi în cromozomi diferiţi (cromozomii dicentrici, translocaţiile reciproce şi cele robertsoniene; inserţiile). Anomalii echilibrate Inversia reprezintă o anomalie de structură, caracterizată prin modificarea ordinii genelor de pe un fragment cromozomic. Mecanismul de producere constă în ruperea unui cromozom în două puncte şi rotirea cu 180° a fragmentului intermediar. Inversiile pot fi de două tipuri: pericentrice: produse prin ruptura unui cromozom în două puncte situate pe braţe diferite, urmată de rotaţia cu 180o a fragmentului intermediar şi reunirea fragmentelor; în urma acestei rotaţii se poate produce modificarea configuraţiei cromozomului; paracentrice: produse prin ruptura unui cromozom în două puncte situate pe acelaşi braţ, urmată de rotaţia cu 1800 a fragmentului intermediar şi reunirea fragmentelor; în urma acestei rotaţii nu se modifică configuraţia cromozomului, ci numai ordinea benzilor. Translocaţiile sunt anomalii de structură caracterizate prin trecerea unuia sau mai multor fragmente cromozomice de pe un cromozom pe altul, fără a determina modificări fenotipice. Translocaţiile pot fi de trei tipuri: reciproce - produse prin ruperea a doi cromozomi în câte un punct, urmată de schimbul fragmentelor rupte şi realipirea cromozomilor; 11 Gene mutations cu inserţii - produse prin ruperea a doi cromozomi neomologi, unul într-un punct şi celălalt în două puncte de pe acelaşi braţ, urmată de inserarea în punctul de ruptură al primului cromozom al fragmentului intermediar din al doilea cromozom; robertsoniene - produse prin ruperea a doi cromozomi acrocentrici la nivelul centromerului urmată de fuziunea braţelor lungi (fuziune centrică) şi pierderea braţelor scurte (conţin doar gene pentru ARN ribosomal şi, astfel, pierderea lor nu determină modificări fenotipice); acest tip de anomalii conduce la scăderea numărului de cromozomi de la 46 la 45. Anomaliile cromozomice echilibrate nu modifică fenotipul individului, deoarece reprezintă rearanjări cromozomice, care nu determină modificări cantitative ale materialului genetic. Dar, purtătorul unei translocaţii echilibrate, deşi normal fenotipic, poate produce gameţi anormali datorită erorilor de conjugare şi erorilor de segregare (nedisjuncţii) ale cromozomilor implicaţi în translocaţie (fig. 9.5). Anomalii neechilibrate Deleţiile sunt anomalii structurale caracterizate prin pierderea unor fragmente cromozomice. Anomaliile pot fi de două tipuri: terminale - produse prin ruperea unui cromozom într-un punct, urmată de pierderea fragmentului terminal; interstiţiale - produse prin ruperea unui cromozom în două puncte situate pe acelaşi braţ, urmată de pierderea fragmentului intermediar. 12 Gene mutations Deleţiile se pot produce şi prin alte mecanisme: crossing- over inegal între cromozomi omologi aliniaţi eronat, segregarea cromozomilor anormali în cursul meiozei parentale în cazul în care unul din părinţi prezintă o anomalie echilibrată. Deleţia are ca efect apariţia unei diferenţe de lungime între cromozomii omologi. Fig. 9.5. Consecinţele translocaţiei robertsoniene t(13q21q) asupra gametogenezei Duplicaţiile sunt anomalii structurale caracterizate prin prezenţa în dublu exemplar a unui fragment cromozomic. Anomalia se poate produce prin crossing-over inegal şi segregare anormală a cromozomilor cu translocaţie. Cromozomii inelari apar prin ruperea unui cromozom în două puncte situate pe braţe diferite, urmată de pierderea segmentelor terminale (acentrice) şi reunirea capetelor segmentului centric într-o structură inelară. Izocromozomii sunt cromozomi anormali formaţi fie numai din braţe scurte, fie numai din braţe lungi. Mecanismul de apariţie a anomaliei constă în clivarea transversală a centromerului. Anomalia are ca efect apariţia unui cromozom care prezintă concomitent deleţia unuia din braţe şi duplicaţia celuilalt braţ. Cromozomii dicentrici sunt cromozomi anormali caracterizaţi prin prezenţa în acelaşi cromozom a doi centromeri. Mecanismul de producere constă în ruperea a doi cromozomi în câte un punct, urmată de pierderea fragmentelor terminale şi unirea celor două segmente cromozomice, care prezintă centromere, într-un singur cromozom. 13 Gene mutations Anomaliile cromozomice neechilibrate determină un dezechilibru cantitativ al materialului genetic (în plus sau în minus) ce se manifestă fenotipic asemănător anomaliilor numerice (trisomii parţiale sau monosomii parţiale). Trisomiile şi monosomiile parţiale ale unui cromozom determină multiple caractere anormale în "tip şi contratip" asemănătoare cu monosomiile şi trisomiile totale ale aceluiaşi cromozom: trisomia 18 (sdr. Edwards) şi monosomia parţială determinată de 18q-; trisomia 13 (sdr. Patau) şi monosomia parţială determinată de r(13). 14