Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
COMP 1942 Tutorial 3: Using XLMiner for Association Rule Mining TA: Harry Chan Email: [email protected] COMP1942 1 Outline Review Data Source Mine Association Rule with XLMiner Binary matrix Item list COMP1942 2 Review Transaction Itemset A set of items, e.g. a, b, c, d A set of items, e.g. {a, b}, {a, b, c} Support (of an itemset {a, b, c}) Number of transactions that contain the itemset {a, b, c} COMP1942 3 Review (cont.) Association rule Confidence Antecedent -> Consequent, e.g., {a, b} -> c support (of the {antecedent, consequent}) / support of {antecedent} E.g., support (of {a, b, c}) / support (of {a, b}) Lift ratio Confidence / Expected confidence COMP1942 4 Summary (Lift=Conf./Expected Conf.) Support Support , # of rules COMP1942 Confidence # of rules Lift ratio Confidence, # of rules 5 Outline Review Data Source Mine Association Rule with XLMiner Binary matrix Item list COMP1942 6 Data source Dataset is a set of transactions A transaction is a set of items Two formats Binary matrix Item list COMP1942 7 Data source formats Binary matrix Transaction: {A, D} COMP1942 Item list Transaction 8 Outline Review Data Source Mine Association Rule with XLMiner Binary matrix Item list COMP1942 9 Mine Association Rule in XLMiner Two ways to access association rule “Add-ins” Tag XLMiner Affinity Association Rules “XLMiner Platform” Tag Associate Association Rules COMP1942 10 Steps Step Step Step Step COMP1942 1: 2: 3: 4: Specify the data range. Specify the data format. Specify the parameters. Analyze the mining results. 11 Binary matrix Example Data source: rule.xls. Data range: $B$1:$F$6. Data format: Binary matrix. Parameters: Minimum Support = 3 Minimum Confidence = 50% COMP1942 12 Binary matrix Example: Steps 1-3 Data range Parameters Data format COMP1942 13 Binary matrix Example: Step 4 Rule 1:D A COMP1942 14 Item list Example Data source: Shopping-Items.xls. Data range: $A$3:$G$1003. Data format: Item list. Parameters: Minimum Support = 200 Minimum Confidence = 80% COMP1942 15 Item list Example: Steps 1-3 Data range Data format COMP1942 Parameters 16 Item list Example: Step 4 Rule 1: { heineken, soda } cracker COMP1942 17 Exercise Data source: Shopping-Items.xls. Data range: $A$3:$G$1003. Data format: Item list. Parameters: Minimum Support = 150 Minimum Confidence = 90% COMP1942 18