Download ppt

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
COMP 1942
Tutorial 3: Using XLMiner for
Association Rule Mining
TA: Harry Chan
Email: [email protected]
COMP1942
1
Outline



Review
Data Source
Mine Association Rule with XLMiner


Binary matrix
Item list
COMP1942
2
Review

Transaction


Itemset


A set of items, e.g. a, b, c, d
A set of items, e.g. {a, b}, {a, b, c}
Support (of an itemset {a, b, c})

Number of transactions that contain the itemset
{a, b, c}
COMP1942
3
Review (cont.)

Association rule


Confidence



Antecedent -> Consequent, e.g., {a, b} -> c
support (of the {antecedent, consequent}) /
support of {antecedent}
E.g., support (of {a, b, c}) / support (of {a, b})
Lift ratio

Confidence / Expected confidence
COMP1942
4
Summary
(Lift=Conf./Expected Conf.)
Support
Support , # of rules 
COMP1942
Confidence
# of rules
Lift ratio
Confidence, # of rules 
5
Outline



Review
Data Source
Mine Association Rule with XLMiner


Binary matrix
Item list
COMP1942
6
Data source

Dataset is a set of transactions


A transaction is a set of items
Two formats


Binary matrix
Item list
COMP1942
7
Data source formats

Binary matrix
Transaction: {A, D}
COMP1942

Item list
Transaction
8
Outline



Review
Data Source
Mine Association Rule with XLMiner


Binary matrix
Item list
COMP1942
9
Mine Association Rule in XLMiner

Two ways to access association rule


“Add-ins” Tag  XLMiner  Affinity
 Association Rules
“XLMiner Platform” Tag  Associate
 Association Rules
COMP1942
10
Steps




Step
Step
Step
Step
COMP1942
1:
2:
3:
4:
Specify the data range.
Specify the data format.
Specify the parameters.
Analyze the mining results.
11
Binary matrix Example




Data source: rule.xls.
Data range: $B$1:$F$6.
Data format: Binary matrix.
Parameters:


Minimum Support = 3
Minimum Confidence = 50%
COMP1942
12
Binary matrix Example: Steps 1-3
Data range
Parameters
Data format
COMP1942
13
Binary matrix Example: Step 4
Rule 1:D  A
COMP1942
14
Item list Example




Data source: Shopping-Items.xls.
Data range: $A$3:$G$1003.
Data format: Item list.
Parameters:


Minimum Support = 200
Minimum Confidence = 80%
COMP1942
15
Item list Example: Steps 1-3
Data range
Data format
COMP1942
Parameters
16
Item list Example: Step 4
Rule 1: { heineken, soda } cracker
COMP1942
17
Exercise




Data source: Shopping-Items.xls.
Data range: $A$3:$G$1003.
Data format: Item list.
Parameters:


Minimum Support = 150
Minimum Confidence = 90%
COMP1942
18
Related documents