Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
COMP 1942 Tutorial 3: Using XLMiner for Association Rule Mining TA: Harry Chan Email: [email protected] COMP1942 1 Outline    Review Data Source Mine Association Rule with XLMiner   Binary matrix Item list COMP1942 2 Review  Transaction   Itemset   A set of items, e.g. a, b, c, d A set of items, e.g. {a, b}, {a, b, c} Support (of an itemset {a, b, c})  Number of transactions that contain the itemset {a, b, c} COMP1942 3 Review (cont.)  Association rule   Confidence    Antecedent -> Consequent, e.g., {a, b} -> c support (of the {antecedent, consequent}) / support of {antecedent} E.g., support (of {a, b, c}) / support (of {a, b}) Lift ratio  Confidence / Expected confidence COMP1942 4 Summary (Lift=Conf./Expected Conf.) Support Support , # of rules  COMP1942 Confidence # of rules Lift ratio Confidence, # of rules  5 Outline    Review Data Source Mine Association Rule with XLMiner   Binary matrix Item list COMP1942 6 Data source  Dataset is a set of transactions   A transaction is a set of items Two formats   Binary matrix Item list COMP1942 7 Data source formats  Binary matrix Transaction: {A, D} COMP1942  Item list Transaction 8 Outline    Review Data Source Mine Association Rule with XLMiner   Binary matrix Item list COMP1942 9 Mine Association Rule in XLMiner  Two ways to access association rule   “Add-ins” Tag  XLMiner  Affinity  Association Rules “XLMiner Platform” Tag  Associate  Association Rules COMP1942 10 Steps     Step Step Step Step COMP1942 1: 2: 3: 4: Specify the data range. Specify the data format. Specify the parameters. Analyze the mining results. 11 Binary matrix Example     Data source: rule.xls. Data range: $B$1:$F$6. Data format: Binary matrix. Parameters:   Minimum Support = 3 Minimum Confidence = 50% COMP1942 12 Binary matrix Example: Steps 1-3 Data range Parameters Data format COMP1942 13 Binary matrix Example: Step 4 Rule 1:D  A COMP1942 14 Item list Example     Data source: Shopping-Items.xls. Data range: $A$3:$G$1003. Data format: Item list. Parameters:   Minimum Support = 200 Minimum Confidence = 80% COMP1942 15 Item list Example: Steps 1-3 Data range Data format COMP1942 Parameters 16 Item list Example: Step 4 Rule 1: { heineken, soda } cracker COMP1942 17 Exercise     Data source: Shopping-Items.xls. Data range: $A$3:$G$1003. Data format: Item list. Parameters:   Minimum Support = 150 Minimum Confidence = 90% COMP1942 18