Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
IRF830 ® N - CHANNEL 500V - 1.35Ω - 4.5A - TO-220 PowerMESH MOSFET TYPE IRF830 ■ V DSS R DS(on) ID 500 V < 1.5 Ω 4.5 A TYPICAL RDS(on) = 1.35 Ω EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY LOW INTRINSIC CAPACITANCES GATE CHARGE MINIMIZED ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O ■ ■ ■ ■ DESCRIPTION This power MOSFET is designed using the company’s consolidated strip layout-based MESH OVERLAY process. This technology matches and improves the performances compared with standard parts from various sources. APPLICATIONS HIGH CURRENT, HIGH SPEED SWITCHING ■ SWITH MODE POWER SUPPLIES (SMPS) ■ DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVER 3 1 2 TO-220 ■ INTERNAL SCHEMATIC DIAGRAM ABSOLUTE MAXIMUM RATINGS Symbol V DS V DGR Parameter Value Unit Drain-source Voltage (V GS = 0) 500 V Drain- gate Voltage (R GS = 20 kΩ) 500 V Gate-source Voltage ± 20 V ID Drain Current (continuous) at T c = 25 o C 4.5 A ID Drain Current (continuous) at T c = 100 o C 2.9 A Drain Current (pulsed) 18 A V GS IDM (•) P tot dv/dt( 1 ) T stg Tj Total Dissipation at T c = 25 o C 100 W Derating Factor 0.8 W/ o C 3.5 V/ns Peak Diode Recovery voltage slope Storage Temperature Max. Operating Junction Temperature -65 to 150 o C 150 o C (•) Pulse width limited by safe operating area (1) ISD ≤ 4.5A, di/dt ≤ 75 A/µs, VDD ≤ V(BR)DSS, Tj ≤ TJMAX First Digit of the Datecode Being Z or K Identifies Silicon Characterized in this Datasheet August 1998 1/8 IRF830 THERMAL DATA R thj-case Rthj-amb R thc-sink Tl Thermal Resistance Junction-case Max Thermal Resistance Junction-ambient Max Thermal Resistance Case-sink Typ Maximum Lead Temperature For Soldering Purpose o 1.25 62.5 0.5 300 C/W oC/W o C/W o C Max Value Unit 4.5 A AVALANCHE CHARACTERISTICS Symbol I AR Parameter Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T j max) ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O E AS Single Pulse Avalanche Energy (starting T j = 25 o C, I D = I AR , VDD = 50 V) 290 mJ ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) OFF Symbol V (BR)DSS I DSS I GSS Parameter Drain-source Breakdown Voltage Test Conditions I D = 250 µA Zero Gate Voltage V DS = Max Rating Drain Current (V GS = 0) V DS = Max Rating Gate-body Leakage Current (V DS = 0) Min. Typ. Max. 500 VGS = 0 Unit V o T c = 125 C V GS = ± 20 V 1 50 µA µA ± 100 nA ON (∗) Symbol Parameter Test Conditions V GS(th) Gate Threshold Voltage V DS = VGS ID = 250 µA R DS(on) Static Drain-source On Resistance V GS = 10V I D = 2.7 A ID(on) On State Drain Current V DS > I D(on) x R DS(on)max V GS = 10 V Min. Typ. Max. Unit 2 3 4 V 1.35 1.5 Ω 4.5 A DYNAMIC Symbol g fs (∗) C iss C oss C rss 2/8 Parameter Test Conditions Forward Transconductance V DS > I D(on) x R DS(on)max Input Capacitance Output Capacitance Reverse Transfer Capacitance V DS = 25 V f = 1 MHz I D = 2.7 A V GS = 0 Min. Typ. 2.5 Max. Unit S 610 120 10 pF pF pF IRF830 ELECTRICAL CHARACTERISTICS (continued) SWITCHING ON Symbol Parameter Test Conditions t d(on) tr Turn-on Time Rise Time V DD = 250 V I D = 2.9 A R G = 4.7 Ω V GS = 10 V (see test circuit, figure 3) Qg Q gs Q gd Total Gate Charge Gate-Source Charge Gate-Drain Charge V DD = 400 V Min. Typ. Max. 11.5 8 I D = 3 A V GS = 10 V 22 7.2 8 Unit ns ns 30 nC nC nC SWITCHING OFF ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Symbol t r(Voff) tf tc Parameter Off-voltage Rise Time Fall Time Cross-over Time Test Conditions Min. V DD = 400 V I D = 4.5 A R G = 4.7 Ω V GS = 10 V (see test circuit, figure 5) Typ. Max. Unit ns ns ns 7 5 15 SOURCE DRAIN DIODE Symbol I SD I SDM (•) V SD (∗) t rr Q rr I RRM Parameter Test Conditions Min. Typ. Source-drain Current Source-drain Current (pulsed) Forward On Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current I SD = 4.5 A V GS = 0 I SD = 4.5 A di/dt = 100 A/µs o V DD = 100 V T j = 150 C (see test circuit, figure 5) Max. Unit 4.5 18 A A 1.6 V 435 ns 3.3 µC 15 A (∗) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 % (•) Pulse width limited by safe operating area Safe Operating Area Thermal Impedance 3/8 IRF830 Output Characteristics Transfer Characteristics ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Transconductance Static Drain-source On Resistance Gate Charge vs Gate-source Voltage Capacitance Variations 4/8 IRF830 Normalized Gate Threshold Voltage vs Temperature Normalized On Resistance vs Temperature ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Source-drain Diode Forward Characteristics 5/8 IRF830 Fig. 1: Unclamped Inductive Load Test Circuit Fig. 1: Unclamped Inductive Waveform ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Fig. 3: Switching Times Test Circuits For Resistive Load Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times 6/8 Fig. 4: Gate Charge test Circuit IRF830 TO-220 MECHANICAL DATA mm DIM. MIN. inch TYP. MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 D1 0.107 1.27 0.050 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O G 4.95 5.15 0.194 0.203 G1 2.4 2.7 0.094 0.106 H2 10.0 10.40 0.393 L2 0.409 16.4 L4 0.645 13.0 14.0 0.511 0.551 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.2 6.6 0.244 0.260 L9 3.5 3.93 0.137 0.154 DIA. 3.75 3.85 0.147 0.151 D1 C D A E L5 H2 G G1 F1 L2 F2 F Dia. L5 L9 L7 L6 L4 P011C 7/8 IRF830 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. . 8/8