Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Transcript

1.Find the critical value zc necessary to form a confidence interval at the given level of confidence. a.90% b.97% a) zc = 1.645 b) zc = 2.17 2.A group of 40 bowlers showed that their average score was 192. The population standard deviation is known to be 8. a.Find the margin of error E for a 95% confidence interval. Round your answer to the nearest tenths. b.Construct a 95% confidence interval for the mean score, ? of all bowlers. a) Margin of error, E = zc*σ/√n = 1.96*8/√40 = 2.479 = 2.5 b) A 95% confidence interval for the mean score is given by (Xbar – E, Xbar + E) = (192 – 2.5, 192 + 2.5) = (189.5, 194.5) 3. In order to fairly set flat rates for auto mechanics, a shop foreman needs to estimate the average time it takes to replace a fuel pump in a car. How large a sample must he select if he wants to be 99% confident that the true average time is within 15 minutes of the sample average? Assume the standard deviation of all times is 30 minutes. The required sample size, n = (zc*σ/E)2 = (2.576*30/15)² = 26.54 = 27 4. In a random sample of 26 computers, the mean repair cost was $130 with a sample standard deviation of $36. Assume that the population is normally distributed a.Find the margin of error for a 95% confidence interval. b.Find a 95% co Since the population standard deviation is unknown, a Student’s t distribution with (n-1) = (26-1) = 25 degrees of freedom is used to construct the confidence interval. The critical value tc at a 95% confidence is 2.06 a) Margin of error, E = tc*s/√n = 2.06*36/√26 = 14.54 b) A 95% confidence interval for the mean repair cost is given by (Xbar – E, Xbar + E) = (130 – 14.54, 130 + 14.54) = ($115.46, $144.54)