Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
cob19480_es.indd Page Sec1:2 10/31/09 8:03:24 PM user-s180 ▼ /Volumes/MHDQ-New/MHDQ146/MHDQ146-ES Fundamental Identities ▼ Reciprocal Identities Ratio Identities 1 sec ⫽ cos sin tan ⫽ cos csc ⫽ 1 sin cot ⫽ Pythagorean Identities 2 ▼ cos sin Cofunction Identities ▼ cosa ⫺ b ⫽ sin 2 cos1 ⫾ 2 ⫽ cos cos ⫿ sin sin tan a ⫺ b ⫽ cot 2 cota ⫺ b ⫽ tan 2 sin1 ⫾ 2 ⫽ sin cos ⫾ cos sin seca ⫺ b ⫽ csc 2 csca ⫺ b ⫽ sec 2 tan1 ⫾ 2 ⫽ Half-Angle Identities ▼ 1 ⫺ cos2 2 cos122 ⫽ cos2 ⫺ sin2 1 ⫹ cos cos a b ⫽ ⫾ 2 A 2 cos2 ⫽ 1 ⫹ cos2 2 1 ⫺ cos tan a b ⫽ 2 sin tan2 ⫽ 1 ⫺ cos2 1 ⫹ cos2 sin 1 ⫹ cos ▼ sin ⫹ sin ⫽ 2sin a cos sin ⫽ 1 冤sin1 ⫹ 2 ⫺ sin1 ⫺ 2冥 2 sin ⫺ sin ⫽ 2cos a Area of a Triangle 1 Area ⫽ bc sin A 2 ISBN: 0-07-351948-0 Author: John W. Coburn & J.D.Herdlick Title: Trigonometry, 2e c B Front endsheets Color: 5 Pages: 2, 3 0 1 0 — 1 — 6 4 3 2 1 2 13 2 1 13 2 2 13 13 12 2 12 2 1 12 12 1 13 2 1 2 13 2 13 2 1 13 1 0 — 1 — 0 B 45 √2x A 45 1x 1x C ⫺ ⫹ b sina b 2 2 (degrees cancel) 180° 30 A 180° (radians cancel) By Side Length Right x r r sec , x 0 x Obtuse Equilateral Isoceles Scalene y (x, y) y r y tan , x 0 x r csc , y 0 y x cot , y 0 y sin a2 ⫽ b2 ⫹ c2 ⫺ 2bc cos A 2 ▼ adj hyp sin opp hyp hyp csc opp tan c2 ⫽ a2 ⫹ b2 ⫺ 2ab cos C r x x sin t y 1 sec t ; x 0 x 1 csc t ; y 0 y adj (x, y) For any real number t and point P1x, y2 on the unit circle associated with t: y tan t ; x 0 x x cot t ; y 0 y opp adj cot opp Trigonometric Functions of a Real Number cos t x hyp opp adj 2 b ⫽ a ⫹ c ⫺ 2ac cos B r y Right Triangle Trigonometry hyp sec adj Law of Cosines C √3x radians to degrees: multiply by Trigonometry and the Coordinate Plane cos ▼ 1x Triangle Classifications Acute ⫺ ⫹ bcos a b 2 2 60 2x Degree and Radian Conversions By Angle Measure ▼ B cos 2 a cot ⫹ ⫺ cos ⫺ cos ⫽ ⫺2sin a b sina b 2 2 C A sec For right ^ ABC with indicated sides adjacent and opposite to acute angle : ▼ b csc ⫺ ⫹ b cos a b cos ⫹ cos ⫽ 2cos a 2 2 Law of Sines sin B sin A sin C ⫽ ⫽ a c b tan degrees to radians: multiply by Sum-to-Product Identities 1 冤sin1 ⫹ 2 ⫹ sin1 ⫺ 2冥 2 1 冤cos1 ⫺ 2 ⫺ cos1 ⫹ 2冥 2 cos For P1x, y2 a point on the terminal side of an angle in standard position: sin cos ⫽ sin sin ⫽ ▼ Power Reduction Identities sin2 ⫽ Product-to-Sum Identities 90° ▼ 1 ⫺ cos sin a b ⫽ ⫾ 2 A 2 1 cos cos ⫽ 冤cos1 ⫹ 2 ⫹ cos1 ⫺ 2冥 2 ▼ tan ⫾ tan 1 ⫿ tan tan sin122 ⫽ 2sin cos ⫽ 60° Sum and Difference Identities ⫺ b ⫽ cos 2 ⫽ 1 ⫺ 2sin2 ▼ tan1⫺2 ⫽ ⫺tan sin a ▼ 30° 45° 2 sin 0° 0 cos1⫺2 ⫽ cos 1 ⫹ cot ⫽ csc Double-Angle Identities sin1⫺2 ⫽ ⫺sin tan2 ⫹ 1 ⫽ sec2 2 ⫽ 2cos2 ⫺ 1 ▼ 2 sin ⫹ cos ⫽ 1 1 cot ⫽ tan ▼ Identities due to Symmetry Special Triangles and Special Angles t r1 1 cob19480_es.indd Page Sec1:3 10/31/09 8:03:26 PM user-s180 ▼ ▼ /Volumes/MHDQ-New/MHDQ146/MHDQ146-ES Special Constants 3.1416 1.5708 2 1.0472 3 e 2.7183 12 1.4142 13 1.7321 0.7854 4 12 0.7071 2 0.5236 6 13 0.8660 2 0.2618 12 13 0.5774 3 s Arcs and Sectors For a circle of radius r and angle in radians: arc length: s r r 1 area of sector: A r 2 2 Graphs of the Trigonometric Functions y csc t y y sec t y 2 4 , 1 y cos t 2 3 2 t 2 t 2 3 2 2 2 1 1 4 Domain: t 僆 1q, q2 Range: sin t 僆 31, 1 4 Domain: t 僆 1q, q2 Range: cos t 僆 3 1, 14 y cot t Domain: t 12k 12; k 僆 Z 2 Range: tan t 僆 R Transformations of Basic Trig Graphs Transformation of y ⴝ f 1x2 Given Function y f 1x2 For y A sin c B ax C bd D B S S y Af c B ax horizontal shift, opposite direction of sign north/south reflections; vertical stretches and compressions ▼ y tan t 4 y sin t ▼ y 1 1 S ▼ vertical shift, same direction as sign C C 2 b d D we have: amplitude: ƒ A ƒ , period: , horizontal shift: , vertical shift: D B B B The Inverse Trigonometric Functions For y sin t with t 僆 c , d and y 僆 31, 1 4 , the inverse function is y sin1t, where t 僆 31, 1 4 and y 僆 c , d . 2 2 2 2 For y cos t with t 僆 30, 4 and y 僆 31, 1 4 , the inverse function is y cos1t, where t 僆 31, 1 4 and y 僆 30, 4 . For y tan t with t 僆 a , b and y 僆 R, the inverse function is y tan1t, where t 僆 R and y 僆 a , b. 2 2 2 2 y sin1 t 1, 1 2 1 2 1, 2 3 2 1 2 1 2 ISBN: 0-07-351948-0 Author: John W. Coburn & J.D.Herdlick Title: Trigonometry, 2e y (1, ) y y 2 t 2 1 y (1, 0) Front endsheets Color: 5 Pages: 4, 5 2 1 y cos1 t 2 2 3 t y tan1 t 1, 4 1 2 3 y 2 t 3 2 t cob19480_es.indd Page 4 11/3/09 3:44:05 PM user-s180 ▼ Commonly used, small case Greek letters ▼ /Volumes/MHDQ-New/MHDQ146/MHDQ146-ES alpha zeta rho ▼ beta theta sigma delta mu psi epsilon pi omega Trigonometric Form Products and Quotients ƒ z ƒ ⫽ 2a ⫹ b z ⫽ r 1cos ⫹ i sin 2 distance from (0, 0) to (a, b) where r ⫽ ƒ z ƒ z1z2 ⫽ r1r2 3cos1 1 ⫹ 2 2 ⫹ i sin1 1 ⫹ 2 2 4 z1 r1 ⫽ 3cos1 1 ⫺ 2 2 ⫹ i sin1 1 ⫺ 2 2 4 z2 r2 2 2 ▼ n z n ⫽ r n 1cos n ⫹ i sin n 2 for positive integers n n 1 z ⫽ 1 r acos a2 ⫺ b2 ⫽ 1a ⫹ b21a ⫺ b2 a2 ⫹ b2 is prime over the real numbers a3 ⫺ b3 ⫽ 1a ⫺ b21a2 ⫹ ab ⫹ b2 2 a3 ⫹ b3 ⫽ 1a ⫹ b21a2 ⫺ ab ⫹ b2 2 8a, b9 ⱍvⱍ r ⫽ tan⫺1 ` a x y ⫽ logb x 3 b ⫽ x logb b ⫽ x x r logb MN ⫽ logb M ⫹ logb N logb ▼ y x b logb 1 ⫽ 0 logb x logc x ⫽ logb c ⫽x M ⫽ logb M ⫺ logb N N a 2 2 A ⫽ r r 2 C ⫽ 2r ⫽ d b a 2 b A⫽ 2 ab 3 a b P(x, y) x logb x Circle a ⫹b ⫽c 2 b Right Parabolic Segment C ⬇ 221a ⫹ b 2 y logb b ⫽ 1 b Pythagorean Theorem C A A ⫽ ab y `, x Z 0 x 1 A ⫽ bh 2 c Ellipse 2 h h Right Triangle B A ⫹ B ⫹ C ⫽ 180° Logarithms and Logarithmic Properties y b a Triangle a h A ⫽ 1a ⫹ b2 2 Sum of angles b P(x, y) in rectangular coordinates can be represented as P(r, ) in polar coordinates: r ⫽ 2x 2 ⫹ y 2 Trapezoid s P ⫽ ns a A⫽ P 2 s A ⫽ s2 h Triangle Regular Polygon P ⫽ 4s l y Polar Coordinates y ⫽ r sin Square w A ⫽ bh u v • Given the nonzero vectors u and v and angle between them, cos ⫽ • . ƒuƒ ƒvƒ x ⫽ r cos Formulas from Plane Geometry: P S perimeter, C S circumference, A S area Parallelogram defined as: u • v ⫽ Ha, bI • Hc, dI ⫽ ac ⫹ bd. logb MP ⫽ P # logb M Applications of Exponentials and Logarithms ▼ A S amount accumulated P S initial deposit, P S periodic payment n S compounding periods/year r S interest rate per year r R S interest rate per time period a b n t S time in years Formulas from Solid Geometry: S S surface area, V S volume Rectangular Solid Cube Right Circular Cylinder V ⫽ lwh V ⫽ s3 V ⫽ r 2h S ⫽ lw ⫹ lh ⫹ wh S ⫽ 6s2 S ⫽ 2r1r ⫹ h2 Right Circular Cone Right Square Pyramid Sphere 1 V ⫽ r2h 3 1 V ⫽ s2h 3 S ⫽ r 1r ⫹ 2r 2 ⫹ h2 2 S ⫽ s 2 ⫹ s2s 2 ⫹ 4h2 V⫽ 4 3 r 3 S ⫽ 4r 2 Formulas from Analytical Geometry: P1 S (x1, y1), P2 S (x2, y2) Distance between P1 and P2 d ⫽ 21x2 ⫺ x1 2 2 ⫹ 1y2 ⫺ y1 2 2 Slope of Line Containing P1 and P2 m⫽ ¢y y2 ⫺ y1 ⫽ x2 ⫺ x1 ¢x Interest Compounded n Times per Year Interest Compounded Continuously r nt A ⫽ P a1 ⫹ b n Equation of Line Containing P1 and P2 Equation of Line Containing P1 and P2 A ⫽ Pert Point-Slope Form Slope-Intercept Form (slope m, y-intercept b) Payments Required to Accumulate Amount A y ⫺ y1 ⫽ m1x ⫺ x1 2 y ⫽ mx ⫹ b, where b ⫽ y1 ⫺ mx1 AR P⫽ 11 ⫹ R2 nt ⫺ 1 Parallel Lines Perpendicular Lines Accumulated Value of an Annuity P A ⫽ 冤11 ⫹ R2 nt ⫺ 1冥 R Topics from Algebra ▼ abx 2 ⫹ 1ad ⫹ bc2 x ⫹ cd ⫽ 1ax ⫹ c21bx ⫹ d2 A ⫽ lw Vectors and the Dot Product • Given the vectors u ⫽ Ha, bI and v ⫽ Hc, dI, their dot product is denoted u • v and is ▼ x 2 ⫹ 1c ⫹ d2 x ⫹ cd ⫽ 1x ⫹ c21x ⫹ d2 P ⫽ 2l ⫹ 2w ⫹ 2k ⫹ 2k ⫹ i sin b for k ⫽ 0, 1, 2, p , n ⫺ 1 n n • For a position vector, v ⫽ Ha, bI and angle as shown, a ⫽ ƒ v ƒ cos and b ⫽ ƒ v ƒ sin , b where r ⫽ tan⫺1 ` ` and ƒ v ƒ ⫽ 2a2 ⫹ b2. a v • For any nonzero vector v ⫽ Ha, bI ⫽ ai ⫹ bj, the vector u ⫽ is a unit vector in the ƒvƒ same direction as v. ▼ a2 ⫺ 2ab ⫹ b2 ⫽ 1a ⫺ b2 2 Rectangle Roots and the nth Roots Theorem Powers and DeMoivres Theorem ▼ a2 ⫹ 2ab ⫹ b2 ⫽ 1a ⫹ b2 2 Complex Numbers z ⴝ a ⴙ bi Absolute Value ▼ gamma lambda phi Special Factorizations Slopes Are Equal: m1 ⫽ m2 Special Products 1a ⫹ b2 2 ⫽ a2 ⫹ 2ab ⫹ b2 1a ⫺ b2 2 ⫽ a2 ⫺ 2ab ⫹ b2 1a ⫹ b2 3 ⫽ a3 ⫹ 3a2b ⫹ 3ab2 ⫹ b3 1a ⫺ b2 3 ⫽ a3 ⫺ 3a2b ⫹ 3ab2 ⫺ b3 1x ⫹ c21x ⫹ d2 ⫽ x 2 ⫹ 1c ⫹ d2 x ⫹ cd 1ax ⫹ c21bx ⫹ d2 ⫽ abx 2 ⫹ 1ad ⫹ bc2 x ⫹ cd ISBN: 0-07-351948-0 Author: John W. Coburn & J.D.Herdlick Title: Trigonometry, 2e Back endsheets Color: 5 Pages: 6, 7 Slopes Have a Product of ⫺1: m1 ⫽ ⫺ 1 m2 or m1m2 ⫽ ⫺1 Intersecting Lines Dependent (Coincident) Lines Slopes Are Unequal: m1 ⫽ m2 Slopes and y-Intercepts Are Equal: m1 ⫽ m2, b1 ⫽ b2