Download ppt

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Exactly solvable potentials and
Romanovski polynomials in quantum
mechanics.
David Edwin Álvarez Castillo
July 16, 2008
1
Classical Orthogonal Polynomials
•Legendre
•Laguerre
•Hermite
•Chebyshev
•Gegenbauer
Adrien Marie
Legendre
1752 - 1833
Edmond Nicolas
Laguerre
1834 - 1886
Charles
Hermite
1822-1901
•Jacobi
Pafnuty Lvovich
Chebyshev
1821 - 1894
Carl Gustav Jacobi
Leopold Bernhard
2
Gegenbauer 1849 - 1903 Jacobi 1804 - 1851
Exactly solvable potentials in
quantum mechanics
3
Hyperbolic Scarf Potential
Vh (z) = a2 + (b2 ¡ a2 ¡ a®)sech2 (®z) + b(2a + ®)sech(®z)t anh(®z);
4
Solution
Self-adjoint form
d
(¾(x)w(x)) = ¿(x)w(x) ;
dx
in terms of the Rodrigues formula
N n dn
yn (x) =
[w(x)¾n (x)] :
w(x) dx n
5
Real solutions in terms of Romanovski polynomials:
R0(1;¡ 1) (x) =
R1(1;¡ 1) (x) =
R2(1;¡ 1) (x) =
R3(1;¡ 1) (x) =
R(1;¡ 1) (x) =
4
1
¡ 1 ¡ 9x
¡ 6+ 16x + 56x2
16 + 84x ¡ 126x2 ¡ 210x3
20 ¡ 240x ¡ 360x2 + 480x3 + 360x4
6
7
4.3 Romanovski Polynomials and
the non spherical angular functions
Consider an electron in the following
potential
V2 (µ)
V (r; µ) = V1 (r ) +
;
r2
V2 (µ) = ¡ ccot (µ) ;
8
The angular equation from the SE has the
solution
Ãn = l (l + 1)¡
m
(¡ cot (µ)) =
(1 + cot (µ) 2 ) ¡
l ( l + 1)
2
e¡
l ( l + 1) t an ¡
1 (¡
(
)
cot ( µ)) R l (l + 1) + 12 ;¡ 2l (l + 1) (¡
l (l + 1) ¡ m
cot (µ)):
The total wave function is
Z lm (µ; ' ) = Ãn = l (l + 1)¡
(1 + cot (µ) 2 ) ¡
l ( l + 1)
2
e¡
im' =
(¡
cot
(µ))e
m
l ( l + 1) t an ¡
1 (¡
(
)
cot ( µ) ) R l ( l + 1) + 12 ;¡ 2l ( l + 1) (¡
l (l + 1)¡ m
cot (µ))ei m '
9
Relation between the associated Legendre functions and
Romanovski polynomials if c=0 (central potential)
P m (cos(µ)) = const (1 + cot 2 (µ)) ¡
l
l
2
R ( 0;¡
m+ l
l ) (¡
cot(µ))
10
Spherical Harmonics
VS
non spherical angular functions
j Y 0 (µ; ' ) j
0
j Z 0 (µ; ' ) j
0
11
j Y 0 (µ; ' ) j
j Z 0 (µ; ' ) j
j Y 1 (µ; ' ) j
j Z 1 (µ; ' ) j
1
1
1
1
12
j Y 0 (µ; ' ) j
j Z 0 (µ; ' ) j
j Y 1 (µ; ' ) j
j Z 1 (µ; ' ) j
2
2
2
2
13
Romanovski polynomials in the
trigonometric Rosen-Morse
vt R M
1
(z) = ¡ 2bcot z + l(l + 1)
;
sin2 (z)
² n = (n + l + 1) 2 ¡
r
z= ;
d
b2
( n + l + 1) 2
14
A taylor expansion shows
2b 2b
l(l + 1)
l(l + 1)
v(z) t R M ¼ ¡
+
z+
+
z2 + :::
z
3
z2
15
•First term: Coulomb.
•Second term: linear confinement.
•Third term: standard centrifugal barrier.
In this sense, Rosen-Morse I can be viewed as the
image of space-like gluon propagation in coordinate
space.*
*Compean, Kirchbach (2006).
15
Advantages of the RMt over the Coulomb potential +
lineal (QCD):
•Dynamical symmetry O(4),
•Exact solutions,
•Good description of nucleon’s spectrum.
Ãn
(cot ¡ 1
x) = (1 +
Cn(¡ (n+ l ) ; n2+bl ) (x)
´
x 2)¡
Rn(pn ;qn ) (x);
n+ l
2
e¡
b
n+ l
cot ¡
1 (x)
(¡
Cn
(n + l);
2b
n+ l
)
(x) ;
2b
; pn = (n + l ); n = 1; 2; :::
qn = ¡
n+ l
16
Baryon resonances in the traditional quark model. Circles, bricks, and triangles stand for nucleon, ¤, and ¢ states, respect ively. Di®erent colors mark
di®erent SU(6)SF £ O(3)L multiplets. Noticet hestrong multiplet intertwining
and t he largemass separat ion insidet hemult iplets. (Courtesy M. Kirchbach)
17
The nucleon excitation spectrum below 2 GeV.
(Courtesy M. Kirchbach)
18
The ¢ excitation spectrum below 2 GeV. (Courtesy M. Kirchbach)
19
Summary
The Romanovski polynomials appear as the solution of
the Schrodinger equation for the Hyperbolic Scarf
Potential and the Rosen-Morse trigonometric.
They define new non-spherical angular functions.
The Romanovski polynomials are the main designers of
non--spherical angular functions of a new type, which we
identified with components of the eigenvectors of the
infinite discrete unitary SU(1,1) representation,
( m 0= l ( l + 1) + 1 ) (µ; ' )g.
f D+
2
j = m+
References:
quant-ph/0603122
arXiv:0706.3897
quant-ph/0603232
1
2
20