Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
7.5 Graphs Radical Functions Graph of the Square Root x -1 0 1 4 x y x y i 0 1 2 Note: We cannot graph imaginary numbers on the coordinate plane. Therefore, the graph stops at x = 0. 5 4 3 2 1 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 1 2 3 4 5 Graph of the Cube Root x -4 -1 0 1 4 3 x y x 3 y -1.59 -1 0 1 1.59 Note: Since the index number is odd, we can graph the function for all x values. Therefore, the domain is all reals. 55 44 33 22 11 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 11 22 33 4 5 The General Equation The general form of the square root function is y a xh k The cube root function is y a3 x h k y a xh k f ( x) x Add a positive positive number to x. f ( x) x h Shift left h. Add a negative number to x. f ( x) x h Shift right h. Add a positive Add a negative number to the radical. number to the radical. f ( x) x k Up k. f ( x) x k Down k. y a xh k 3 f ( x) 3 x Add a positive positive number to x. f ( x) 3 x h Shift left h. Add a negative number to x. f ( x) 3 x h Shift right h. Add a positive Add a negative number to the radical. number to the radical. f ( x) 3 x k Up k. f ( x) 3 x k Down k. Changing a 10 8 6 4 2 f ( x) x 3 a is greater than 1 f ( x) 4 x 3 a is greater than 0 and less than 1. 13 f ( x) x 2 a is less than 0. f ( x ) 1 3 x -10 -8 -6 -4 -2 -2 -4 -6 -8 -10 2 4 6 8 10 Problems Describe how to obtain the graph of g from the graph of f. g ( x) x 5 f ( x) x Shift left 5 units. g ( x ) 3 x 10 f ( x) 3 x Reflect in y = 0, shift down 10 units. Problems State the domain and range. f ( x) x 6 x > -6, y > 0 f ( x ) 3 3 x 7 4 x, y all real numbers