Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MASS MOVEMENTS What are landslides? Video clip1 Video clip 2 Video clip 3 Video clip 4 Video clip 5 Video clip 6 Video clip 7 Video clip 8 Preventing Landslides Preventing Landslides 2 Preventing Landslides 3 RATES OF WEATHERING Factors of Rates of Weathering 1. Parent Material (The rocks themselves) - Igneous and metamorphic most resistant, sedimentary least resistant because of pores. 2. Surface Area 3. Climate - Warm and wet = chemical weathering Cold and Dry = mechanical weathering EROSION EROSION - The breakup and removal of rock by moving natural agents ((ice), wind, water) Mass Movements • General term used for rock fragments moving down a slope • What is causing this erosion to occur? • Can happen either FAST OR SLOW 1. Weight—material’s weight resulting from gravity (pulls material down the slope 2. Resistance—material’s resistance to sliding or flowing 3. Trigger—such as an earthquake 4. Water—too little water will cause the grains of soil to not stick together BUT too much water makes a slope unstable Mass Movement occurs when forces pulling material down a slope are STRONGER than the material’s resistance to sliding, flowing, or falling. Water Max angle = angle of repose Internal cohesion 2. Water Pore water pressure = liquefaction Causes of Mass Movements Shear stress “slide component=weight” Gravity Shear strength “stick component=resistance” Causes of Mass Movements Think of factors that could either reduce the shear strength or increase shear stress. Shear Strength Shear Stress Increase in water content of slope Increase in slope angle Removal of overlying material Shocks & vibrations Weathering Loading the slope with additional weight Alternating layers of varying rock types/lithology Undercutting the slope Burrowing animals Removal of vegetation Causes of Mass Movements Shear Strength Shear Stress Increase in water content of slope Increase in slope angle Removal of overlying material Shocks & vibrations (Aberfan, Vaiont Dam & Nevado del Ruiz) (Mt St Helens & Elm) (Nevados de Huascaran & Mt St Helens) Weathering (Mam Tor, & Avon Gorge) Alternating layers of varying rock types/lithology (Mam Tor, Vaiont Dam & Holbeck Hall Hotel) Burrowing animals Removal of vegetation (Sarno) Loading the slope with additional weight (Vaiont Dam) Undercutting the slope 1.CREEPS- slow, steady downhill flow (tilting) -noticeable over many years -Solifluction- mud-like liquid produced when water is released from melting permafrost (warm season) 2.FLOWS-as if they were a thick liquid (can be slow or fast) -Earthflows-slow -Mudflows-fast (common in volcanic regions Mudflow - Fast movement of large masses of mud. Occur in dry, mountainous regions during fast, heavy rainfalls or volcanic eruptions 3. SLIDES- rapid, downslope movement when thin block of material detaches from underlying bedrock -landslide-no internal mixing -Slump-landslide material rotates and slides across -Avalanches- mountain regions with snow 4. FALLS- rock falls occur in high elevations -rocks bounce and roll down, they produce TALUS- cone-shaped pile of course debris at the base of the slope Landslides • Sudden movement of masses of loose rocks. • Triggered by: • Earthquakes • Rainfall • Thaws • Volcanoes Rockfall - Rocks falling from a steep cliff. This is the most rapid type of mass movement. Talus Slopes - Large piles of rock that break off and pile up at the bottom of a hill Types of Mass Movement FALL SLIDE SLUMP FLOW Nevado del Ruiz Mudflow 1985 Vaiont Dam, North Italy, 1963 • limestones inter-bedded with sands and clays. • bedding planes that parallel the syncline structure, dipping steeply into the valley from both sides. • Some of the limestone beds had caverns, due to chemical weathering by groundwater • During August & September, 1963, heavy rains drenched the area adding weight to the rocks above the dam & increasing pore water pressure • Oct 9, 1963 at 10:41 P.M. the south wall of the valley failed and slid into the reservoir behind the dam. •The landslide had moved along the clay layers that parallel the bedding planes in the northern wall of the valley • Filling of the reservoir had also increased fluid pressure in the pore spaces of the rock. Vaiont Dam, North Italy, 1963 Vaiont Dam, North Italy, 1963 Syncline structure Aberfan, South Wales 1966 Nevados de Huascaran, Peru, 1970 • magnitude 7.7 earthquake • shaking lasted for 45 seconds, • large block fell from the 6 000m peak • became a debris avalanche sliding across the snow covered glacier at velocities up to 335 km/hr. • hit a small hill and was launched into the air as an airborne debris avalanche. • blocks the size of large houses fell on real houses for another 4 km. • recombined and continued as a debris flow, burying the town of Yungay Nevados de Huascaran, Peru, 1970 Mt St Helens, USA 1980 • Magma moved high into the cone of Mount St. Helens and inflated the volcano's north side outward by at least 150 m. This dramatic deformation was called the "bulge.“ This increased the shear stress. • Within minutes of a magnitude 5.1 earthquake at 8:32 a.m., a huge landslide completely removed the bulge, the summit, and inner core of Mount St. Helens, and triggered a series of massive explosions. • As the landslide moved down the volcano at a velocity of nearly 300 km/hr, the explosions grew in size and speed and a low eruption cloud began to form above the summit area Holbeck Hall Hotel, Scarborough, 1993 • Boulder clay • Dry & cracked due to 4 years of drought • Above average rainfall in spring & early summer of 1993 • Cracked clay increased its permeability allowing water in • Saturated clay is unstable • Increase in weight • Increase in pore water pressure • Dissolves cement Holbeck Hall Hotel, Scarborough, 1993 Sarno, Italy, 1998 -mudflow Sarno Human activities contribute to the factors that cause Mass Movement: Deforestation Building– avoid building structures on steep and unstable slopes Mass Movement Stabilisation 1.Drainage This increases the shear strength of the materials by reducing the pore-water pressure 2.Terracing (benches) and drainage Re-grading the slope to produce more stable angles Mass Movement Stabilisation 3.Loading the toe and retaining walls Material deposited at the slope foot (toe) reduces the shear stress. Retaining walls are used to stabilise the upper slope. In this case a steel-mesh curtain is used. Mass Movement Stabilisation 4.Stabilisation by retaining wall and anchoring The toe is stabilised by retaining wall. The upper slope has rock anchors and mesh curtains. Drains improve water movement and shotcrete is used to reduce infiltration into the hillside. Mass Movement Stabilisation 5.Toe stabilisation and hazard-resistant design The toe is stabilised by gabions. The railway line is protected by hazard-resistant design structure. Controlling Mass Movements Portway, Avon Gorge Limestone interbedded with mudstones Well jointed limestone Loose rock causes rockfall Frost shattering weathering Steep cliff Portway (main road at base of Avon Gorge) Portway, Avon Gorge Extensive network of steel nets Bolts to hold frost-shattered rock together Alpine canopy covered with soil & vegetation Mechanisms/Causes Management/Control 1. 1. Slope Stabilisation Shear strength • benching • pore water pressure • rock anchors • removal of overlying material • mesh curtains • weathering • dental masonry • lithology differences • burrowing animals • removal of vegetation 2. Shear stress • shotcrete Mass Movements of Soil & Rock 2. Retaining Structures • earth embankments • gabions • retaining walls • slope angle • vibrations & shocks • loading slopes • undercutting of slope Prediction/Monitoring 3. Drainage Control • hazard mapping • underground drains • surveying/site investigations • gravel-filled trenching • measurement of creep/strain • shotcrete • measurement of groundwater pressures