Download NTE2107 - NTE Electronics Inc

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Electrical ballast wikipedia , lookup

Flip-flop (electronics) wikipedia , lookup

Electrical substation wikipedia , lookup

Power inverter wikipedia , lookup

History of electric power transmission wikipedia , lookup

Three-phase electric power wikipedia , lookup

Islanding wikipedia , lookup

Variable-frequency drive wikipedia , lookup

TRIAC wikipedia , lookup

Two-port network wikipedia , lookup

P–n diode wikipedia , lookup

Ohm's law wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Triode wikipedia , lookup

Current source wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Surge protector wikipedia , lookup

Rectifier wikipedia , lookup

Power electronics wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Schmitt trigger wikipedia , lookup

Alternating current wikipedia , lookup

Stray voltage wikipedia , lookup

Voltage regulator wikipedia , lookup

Power MOSFET wikipedia , lookup

Voltage optimisation wikipedia , lookup

Current mirror wikipedia , lookup

Mains electricity wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Buck converter wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
NTE2107
Integrated Circuit
NMOS, 4K Dynamic RAM (DRAM)
Description:
The NTE2107 is a 4096 word by 1 bit dynamic random access memory (RAM) that incorporates the
latest memory design features and can be used in a wide variety of applications, from those which
require very high speed to ones where low cost and large bit capacity are the primary criteria.
The NTE2107 must be refreshed every 2ms. This can be accomplished by performing a read cycle
at each of the 64 row addresses (A0 − A5). The chip select input can be either high or low for refresh.
This device has been designed with minimum production costs as a prime criterion. It is fabricated
using N−channel silicon gate MOS technology, which is an ideal choice for high density integrated
circuits. The NTE2107 uses a single transistor cell to minimize the device area. The single cell, along
with unique design features in the on−chip peripheral circuits, yeilds a high performance memory device.
Features:
D Organization: 4096 x 1
D Access Time: 200ns Min
D Cycle Time: 400ns Min
D Easy System Interface:
One High Voltage Input − Chip Enable
TTL Compatible − All Other Inputs and Outputs
D Address Registers On−Chip
D Simple Read−Modify−Write Operation
D Industry Standard Pin Configuration
Absolute Maximum Ratings: (Note 1)
All Input or Output Voltages with Respect to the Most Negative Supply Voltage, VBB . . . . −0.3 to +25V
Supply Voltages VDD, VCC, and VSS with Respect to VBB . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 to +20V
Power Dissipation, PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.25W
Operating Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to +70°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65° to +150°C
Note 1. “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot
be guaranteed. Except for “Operating Temperature Range” they are not meant to imply that
the devices should be operated at these limits. The table of “Electrical Characteristics” provides conditions for actual device operation.
Recommended Operating Conditions:
Parameter
Min
Typ
Max
Unit
VDD Voltage
10.8
−
13.2
V
VCC Voltage
4.5
−
5.5
V
VBB Voltage
−5.5
−
−4.5
V
0
−
70
°C
Operating Temperature Range
Electrical Characteristics: (Note 2, TA = 0° to +70°C, VDD = +12V ±10%, VCC = +5V ±10%,
VSS = 0V, VBB (Note 3) = −5V ±10% unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
ILI
VIN = 0V to VINmax, (All Inputs Except CE)
−
0.01
10
µA
ILC
VIN = 0V to VIHCmax
−
0.01
10
µA
Output Leakage Current Up
for High Impedance State
|ILO|
CE = VILC or CS = VIH, VO = 0V to 5.25V
−
0.01
10
µA
VDD Supply Current During
CE “OFF”
IDD1
CE = −1V to +6V, Note 4
−
110
300
µA
VDD Supply Current During
CE “ON”
IDD2
CE = VIHC, TA = +25°C
−
20
40
mA
IDD AV1 Cycle Time = 400ns, tce = 230ns, TA = +25°C
−
35
60
mA
IDD AV2 Cycle Time = 1000ns, tce = 230ns, TA = +25°C
−
15
30
mA
−
0.01
10
µA
−
5
100
µA
−1.0
−
0.6
V
Input Load Current
Average VDD Current
VCC Supply Current During
CE “OFF”
ICC1
CE = VILC or CS = VIH, Note 5
VBB Supply Current Average
IBB
Input Low Voltage
VIL
Input High Voltage
VIH
2.4
−
VCC+1
V
CE Input Low Voltage
VILC
−1.0
−
1.0
V
CE Input High Voltage
VIHC
VDD−1
−
VDD+1
V
Output Low Voltage
VOL
IOL = 2mA
0.0
−
0.45
V
Output High Voltage
VOH
IOH = −2mA
2.4
−
VCC
V
tT = 20ns
Note 2.,Typical values are for TA = +25°C and nominal power supply voltages.
Note 3. The only requirement for the sequence of applying voltage to the device is that VDD, VCC,
and VSS should never be 0.3V more negative than VBB.
Note 4. The IDD and ICC current flow to VSS. The IBB current is the sum of all leakage currents.
Note 5. During CE “ON” VCC supply current is dependent on output loading, VCC is connected to output buffer only.
AC Electrical Characteristics: (TA = 0° to +70°C, VDD = +12V ±10%, VCC = +5V ±10%,
VBB = −5V ±10% unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
−
−
2
ms
0
−
−
ns
Read, Write, Read/Modify/Write, and Refresh Cycle
Time Between Refresh
tREF
Address to CE Set−Up Time
tAC
Address Hold Time
tAH
50
−
−
ns
CE “OFF” Time
tCC
130
−
−
ns
CE Transition Time
tT
10
−
40
ns
CE “OFF” to Output High
Impedance State
tCF
0
−
−
ns
400
−
−
ns
230
−
3000
ns
tAC is Measured From End of Address Transition
Read Cycle
Cycle Time
tCY
CE “ON” Time
tCE
CE Output Delay
tCO
−
−
180
ns
Address to Output Access
tACC
−
−
200
ns
CE to WE
tWL
0
−
−
ns
WE to CE “ON”
tWC
0
−
−
ns
CLOAD = 50pF, Load = 1 TTL Gate, Ref = 2V,
tACC = tAC + tCO + 1 tT
AC Electrical Characteristics (Cont’d):
Parameter
(TA = 0° to +70°C, VDD = +12V ±10%, VCC = +5V ±10%,
VBB = −5V ±10% unless otherwise specified)
Symbol
Test Conditions
Min Typ Max
Unit
Write Cycle
Cycle Time
tCY
400
−
−
ns
CE “ON” Time
tCE
230
−
3000
ns
WE to CE “OFF”
tW
150
−
−
ns
CE to WE
tCW
100
−
−
ns
tT = 20ns
DIN to CE Set−Up
tD
150
−
−
ns
DIN Hold Time
tDH
0
−
−
ns
WE Pulse Width
tWP
50
−
−
ns
Read Modify Write (RMW) Cycle Time
tRWC
−
−
ns
CE Width During RMW
tCRW
tt = 20ns, CLOAD = 50pF, Load = 1 TTL Gate, 520
Ref = 2V
2V, tACC = tAC + tCO + 1 tT
350
−
3000
ns
WE to CE “ON”
tWC
0
−
−
ns
WE to CE “OFF”
tW
150
−
−
ns
WE Pulse Width
tWP
50
−
−
ns
DIN to CD Set−Up
tD
150
−
−
ns
DIN Hold Time
tDH
0
−
−
ns
CE to Output Delay
tCO
−
−
180
ns
WE to DOUT Invalid
tWD
0
−
−
ns
Access Time
tACC
−
−
200
ns
Read/Modify/Write Cycle
Capacitance (TA = +25°C, Note 6)
Address capacitance, CS
CAD
VIN = VSS
−
2
−
pF
CE Capacitance
CCE
VIN = VSS
−
15
−
pF
Data Output Capacitance
COUT
VOUT = 0V
−
5
−
pF
DIN and WE Capacitance
CIN
VIN = VSS
−
4
−
pF
Note 6. Capacitance measured with Boonton Meter of effective capacitance calculated from the
equation C = I∆t/∆V with the current equal to a constant 20mA.
Pin Connection Diagram
VBB 1
22 VSS
A9 2
21 A8
A10 3
20 A7
A11 4
19 A6
CS 5
18 VDD
DIN 6
17 CE
DOUT 7
16 N.C.
A0 8
15 A5
A1 9
14 A4
A2 10
13 A3
VCC 11
12 WE
Block Diagram
R/W
Control
WE (12)
CS (5)
CS
Latch
A11 (4)
A10 (3)
A9 (2)
6
A8 (21)
Address Latch
A7 (20)
A6 (19)
A5 (15)
A4 (14)
6
I/O
Buffer
Column Decoder (1:64)
A3 (13)
6
A2 (10)
Sense Amplifiers (64)
A1 (9)
Row Decoded (1:64)
A0 (8)
6
Timing
&
Control
CE (17)
VDD (18)
+12V
VSS (22)
0V
VBB (1)
−5V
VCC (11)
+5V
DIN
(6)
DOUT
(7)
Memory
Array
4096 Bits
Memory Inverts From Data In to Data Out
1.106 (28.0) Max
1.067 (27.1)
11
1
.389 (9.9)
Max
12
13
.455
(11.3)
.051 (1.3)
.035 (0.89)
.199 (5.0) Max
.100 (2.54)
.100 (2.54)
15°