* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download NTE2107 - NTE Electronics Inc
Electrical ballast wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Electrical substation wikipedia , lookup
Power inverter wikipedia , lookup
History of electric power transmission wikipedia , lookup
Three-phase electric power wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Two-port network wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Current source wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Surge protector wikipedia , lookup
Power electronics wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Alternating current wikipedia , lookup
Stray voltage wikipedia , lookup
Voltage regulator wikipedia , lookup
Power MOSFET wikipedia , lookup
Voltage optimisation wikipedia , lookup
Current mirror wikipedia , lookup
Mains electricity wikipedia , lookup
Switched-mode power supply wikipedia , lookup
NTE2107 Integrated Circuit NMOS, 4K Dynamic RAM (DRAM) Description: The NTE2107 is a 4096 word by 1 bit dynamic random access memory (RAM) that incorporates the latest memory design features and can be used in a wide variety of applications, from those which require very high speed to ones where low cost and large bit capacity are the primary criteria. The NTE2107 must be refreshed every 2ms. This can be accomplished by performing a read cycle at each of the 64 row addresses (A0 − A5). The chip select input can be either high or low for refresh. This device has been designed with minimum production costs as a prime criterion. It is fabricated using N−channel silicon gate MOS technology, which is an ideal choice for high density integrated circuits. The NTE2107 uses a single transistor cell to minimize the device area. The single cell, along with unique design features in the on−chip peripheral circuits, yeilds a high performance memory device. Features: D Organization: 4096 x 1 D Access Time: 200ns Min D Cycle Time: 400ns Min D Easy System Interface: One High Voltage Input − Chip Enable TTL Compatible − All Other Inputs and Outputs D Address Registers On−Chip D Simple Read−Modify−Write Operation D Industry Standard Pin Configuration Absolute Maximum Ratings: (Note 1) All Input or Output Voltages with Respect to the Most Negative Supply Voltage, VBB . . . . −0.3 to +25V Supply Voltages VDD, VCC, and VSS with Respect to VBB . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 to +20V Power Dissipation, PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.25W Operating Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to +70°C Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65° to +150°C Note 1. “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. Except for “Operating Temperature Range” they are not meant to imply that the devices should be operated at these limits. The table of “Electrical Characteristics” provides conditions for actual device operation. Recommended Operating Conditions: Parameter Min Typ Max Unit VDD Voltage 10.8 − 13.2 V VCC Voltage 4.5 − 5.5 V VBB Voltage −5.5 − −4.5 V 0 − 70 °C Operating Temperature Range Electrical Characteristics: (Note 2, TA = 0° to +70°C, VDD = +12V ±10%, VCC = +5V ±10%, VSS = 0V, VBB (Note 3) = −5V ±10% unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit ILI VIN = 0V to VINmax, (All Inputs Except CE) − 0.01 10 µA ILC VIN = 0V to VIHCmax − 0.01 10 µA Output Leakage Current Up for High Impedance State |ILO| CE = VILC or CS = VIH, VO = 0V to 5.25V − 0.01 10 µA VDD Supply Current During CE “OFF” IDD1 CE = −1V to +6V, Note 4 − 110 300 µA VDD Supply Current During CE “ON” IDD2 CE = VIHC, TA = +25°C − 20 40 mA IDD AV1 Cycle Time = 400ns, tce = 230ns, TA = +25°C − 35 60 mA IDD AV2 Cycle Time = 1000ns, tce = 230ns, TA = +25°C − 15 30 mA − 0.01 10 µA − 5 100 µA −1.0 − 0.6 V Input Load Current Average VDD Current VCC Supply Current During CE “OFF” ICC1 CE = VILC or CS = VIH, Note 5 VBB Supply Current Average IBB Input Low Voltage VIL Input High Voltage VIH 2.4 − VCC+1 V CE Input Low Voltage VILC −1.0 − 1.0 V CE Input High Voltage VIHC VDD−1 − VDD+1 V Output Low Voltage VOL IOL = 2mA 0.0 − 0.45 V Output High Voltage VOH IOH = −2mA 2.4 − VCC V tT = 20ns Note 2.,Typical values are for TA = +25°C and nominal power supply voltages. Note 3. The only requirement for the sequence of applying voltage to the device is that VDD, VCC, and VSS should never be 0.3V more negative than VBB. Note 4. The IDD and ICC current flow to VSS. The IBB current is the sum of all leakage currents. Note 5. During CE “ON” VCC supply current is dependent on output loading, VCC is connected to output buffer only. AC Electrical Characteristics: (TA = 0° to +70°C, VDD = +12V ±10%, VCC = +5V ±10%, VBB = −5V ±10% unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit − − 2 ms 0 − − ns Read, Write, Read/Modify/Write, and Refresh Cycle Time Between Refresh tREF Address to CE Set−Up Time tAC Address Hold Time tAH 50 − − ns CE “OFF” Time tCC 130 − − ns CE Transition Time tT 10 − 40 ns CE “OFF” to Output High Impedance State tCF 0 − − ns 400 − − ns 230 − 3000 ns tAC is Measured From End of Address Transition Read Cycle Cycle Time tCY CE “ON” Time tCE CE Output Delay tCO − − 180 ns Address to Output Access tACC − − 200 ns CE to WE tWL 0 − − ns WE to CE “ON” tWC 0 − − ns CLOAD = 50pF, Load = 1 TTL Gate, Ref = 2V, tACC = tAC + tCO + 1 tT AC Electrical Characteristics (Cont’d): Parameter (TA = 0° to +70°C, VDD = +12V ±10%, VCC = +5V ±10%, VBB = −5V ±10% unless otherwise specified) Symbol Test Conditions Min Typ Max Unit Write Cycle Cycle Time tCY 400 − − ns CE “ON” Time tCE 230 − 3000 ns WE to CE “OFF” tW 150 − − ns CE to WE tCW 100 − − ns tT = 20ns DIN to CE Set−Up tD 150 − − ns DIN Hold Time tDH 0 − − ns WE Pulse Width tWP 50 − − ns Read Modify Write (RMW) Cycle Time tRWC − − ns CE Width During RMW tCRW tt = 20ns, CLOAD = 50pF, Load = 1 TTL Gate, 520 Ref = 2V 2V, tACC = tAC + tCO + 1 tT 350 − 3000 ns WE to CE “ON” tWC 0 − − ns WE to CE “OFF” tW 150 − − ns WE Pulse Width tWP 50 − − ns DIN to CD Set−Up tD 150 − − ns DIN Hold Time tDH 0 − − ns CE to Output Delay tCO − − 180 ns WE to DOUT Invalid tWD 0 − − ns Access Time tACC − − 200 ns Read/Modify/Write Cycle Capacitance (TA = +25°C, Note 6) Address capacitance, CS CAD VIN = VSS − 2 − pF CE Capacitance CCE VIN = VSS − 15 − pF Data Output Capacitance COUT VOUT = 0V − 5 − pF DIN and WE Capacitance CIN VIN = VSS − 4 − pF Note 6. Capacitance measured with Boonton Meter of effective capacitance calculated from the equation C = I∆t/∆V with the current equal to a constant 20mA. Pin Connection Diagram VBB 1 22 VSS A9 2 21 A8 A10 3 20 A7 A11 4 19 A6 CS 5 18 VDD DIN 6 17 CE DOUT 7 16 N.C. A0 8 15 A5 A1 9 14 A4 A2 10 13 A3 VCC 11 12 WE Block Diagram R/W Control WE (12) CS (5) CS Latch A11 (4) A10 (3) A9 (2) 6 A8 (21) Address Latch A7 (20) A6 (19) A5 (15) A4 (14) 6 I/O Buffer Column Decoder (1:64) A3 (13) 6 A2 (10) Sense Amplifiers (64) A1 (9) Row Decoded (1:64) A0 (8) 6 Timing & Control CE (17) VDD (18) +12V VSS (22) 0V VBB (1) −5V VCC (11) +5V DIN (6) DOUT (7) Memory Array 4096 Bits Memory Inverts From Data In to Data Out 1.106 (28.0) Max 1.067 (27.1) 11 1 .389 (9.9) Max 12 13 .455 (11.3) .051 (1.3) .035 (0.89) .199 (5.0) Max .100 (2.54) .100 (2.54) 15°