Download detection of transits of extrasolar planets with GAIA

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Detection of transits of extrasolar
planets with the GAIA new design
Noël Robichon
DASGAL - CNRS UMR 6633
depth of a transit
m ≈ F/F = (RP/R*)2
QuickTime™ et un décompresseur
GIF sont requis pour visualiser
cette image.
REarth = 0.1 RJup = 0.01 RSun
Earth : m=10-4
Jupiter : m=10-2
HD 209458 : m=1.7 10-2
sG > 10-3  only Jupiter size objects with GAIA
duration of a transit
a
Vcirc = 2pa/P
Dt = 2R*/Vcirc
2R*
( if RP<<R* )
to the
observer
Dt/P = R*/pa = R*/pM*1/3P2/3
Earth : P = 1 yr  Dt/P = 1.5 10-3
Jupiter : P = 11.3 yr  Dt/P = 1.3 10-4
HD 209458 : P = 3.5 days  Dt/P = 3.2 10-2
GAIA : # of observations 150-300  P < 10 days
geometric probability of observation
star
2R*
planet
a
q
cone of transit
visibility
pgeo=p(q<2R*/a)=2sin(R*/2a)
pgeo=R*/a=R*/M*1/3P2/3 (if RP<<R*)
Earth  pgeo = 5 10-3
Jupiter  pgeo = 4 10-4
HD 209458  pgeo = 0.1
 in favor of very short periods
Simulations
• mass-MV and mass-radius relations from litterature
• photometric error sG(G)
• RP=1RJup or 1.3 RJup
Monte Carlo simulation in bins of (b, G, MV, P)
• Galaxy model (Haywood)  N*(b, G, MV)
• scanning law of the satellite  PNobs/transit(b, N)
• probability of having an observable transit star
 Pobs (P, MV) = Pgeo(MV, P) x 0.01 log(P+/P-)/log(10)
• probability of detecting the transit Pdetec(N, G, MV)
less than 10 % of false detection and N>5 or 7 (3 or 4 ≠ epochs)
Number of transited stars if RP = 1.3 RJup
Npts/transits>max(5, N(#false/#true<10%))
# of stars with transiting planet
10 4
1000
MG bins
4
5
6
7
8
9
10
>11
100
10
1
2
4
6
8
Period
10
12
14
16
TOTAL: 29000 stars
Number of transited stars if RP = 1.0 RJup
Npts/transits>max(5, N(#false/#true<10%))
# of stars with transiting planet
10 4
1000
MG bins
4
5
6
7
8
9
10
>11
100
10
1
2
4
6
8
Period
10
12
14
16
TOTAL: 10300 stars
Number of transited stars as a function of G
RP = 1.3 RJup Npts/transits>max(5, N(#false/#true<10%))
# of stars with transiting planet
10 4
MG bins
1000
4
5
6
7
8
9
10
>11
100
10
1
13
14
15
16
G
17
18
19
20
Summary of the results from simulations
RP = 1.0 RJup Npts/transit>5
10300
RP = 1.3 RJup Npts/transit>5
29000
RP = 1.0 RJup Npts/transit>7
5800
RP = 1.3 RJup Npts/transit>7
15500
Conclusions
• simulation predict 5.103 to 30.103 detectable transits
things to improve:
• countings of the Galaxy model -> less transited stars
• better limits in G and MV -> more transited stars
• better precision in AF photometry -> more transited stars
• take account of variable stars: spots, grazing eclipsing binaries...
• detection algorithm
• recovering unbiased planet distribution = f(P, MP, M*…)
unknowns:
• statistics: % of HJ = f(ST)?
• properties of planets: radii? Pmin?…
Photometric precision
sF/F = (RON2+SKY+F)1/2/F
0,1
sG per AF CCD
sG per AF transit (9 CCDs)
smag per MBP transit
(sum of 10 bands + MSM)
G2 star RP=1.3 RJup
0,01
smag
G2 star RP=1 RJup
0.001 mag has been
quadratically added
in the simulation
0,001
0,0001
8
10
12
14
16
G
18
20
22
-0,01
-0,01
-0,005
-0,005
0
0
-0.000572226
-0.000572226
Simulation of HD 209458 for two different TC
0,005
0,005
0,01
0,01
0,015
0,015
0,02
0,02
0
0,2
0,4
0,6
0.802909
0,8
1
0
0,2
0,4
0,6
0.802909
0,8
1
distribution of number of points during a transit
25
P=10.25 days (dt/P = 1.7%)
b = +5° (170 points)
20
percentage
15
P=3 days (dt/P = 3%)
b = +35° (280 points)
10
5
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
# of points
distribution of periods of known systems
# of stars with planet
20
4 % of stars have
an planetary system
15
 1 % have a planet
with P < 30 days
10
minimum period observed:
3 days
5
0
0,5
1
1,5
2
2,5
log P (days)
3
probability of having N points greater than ps
1
p=1.5
0,01
0,0001
p=2
10 -6
10 -8
p=3
p=2.5
10 -10
0
5
10
N
15
20
Related documents