Download Ch. 6 Random Behavior

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Financial Engineering
Zvi Wiener
[email protected]
02-588-3049
FE-W
http://pluto.mscc.huji.ac.il/~mswiener/zvi.html
EMBAF
Random Behavior of Assets
Following
Paul Wilmott, Introduces Quantitative Finance
Chapter 6
FE-W
http://pluto.mscc.huji.ac.il/~mswiener/zvi.html
EMBAF
Returns
S i 1  Si
Ri 
Si
ri  LnSi 1   LnSi 
 Si 1 
 Si  Si 1  Si 
  Ln
 
ri  Ln
Si
 Si 


 Si 1  Si  Si 1  Si
 
Ln1 

Si 
Si

Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 3
Returns
1
R
M
M
R
i 1
i
1
2
Ri  R 
 ( R) 

M  1 i 1
M
See file 6.Random Behavior of Assets.XLS
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 4
Normal Distribution N(, )
  0,
 1
1
PDF ( x) 
e
2
Zvi Wiener
FE-Wilmott-IntroQF Ch6
x2

2
slide 5
Normal Distribution N(, )


Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 6
Normal Distribution
1%
quantile
Zvi Wiener

FE-Wilmott-IntroQF Ch6
slide 7
Lognormal Distribution
0.6
0.5
0.4
0.3
0.2
0.1
1
Zvi Wiener
2
FE-Wilmott-IntroQF Ch6
3
4
slide 8
Covariance
Shows how two random variables are connected
For example:
independent
move together
move in opposite directions
covariance(X,Y) =
Zvi Wiener
E X  X Y  Y 
FE-Wilmott-IntroQF Ch6
slide 9
Correlation
 XY
E X  X Y  Y 

 ( X )  (Y )
-1    1
=0
independent
=1
perfectly positively correlated
 = -1
perfectly negatively correlated
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 10
Properties
E (A  B)  E ( A)  E ( B)
 (A  B) 
2
  ( A)    ( B)  2Cov( A, B)
2
2
2
2
 (A  B) 
2
  ( A)    ( B)  2( A) ( B) 
2
Zvi Wiener
2
2
2
FE-Wilmott-IntroQF Ch6
slide 11
Time Aggregation
T   annualT
 T   annual T
Assuming normality
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 12
Time Aggregation
Assume that yearly parameters of CPI are:
mean = 5%, standard deviation (SD) = 2%.
Then daily mean and SD of CPI changes are:
1
d   y
 0.02%
250
1
d  y
 0.1265%
250
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 13
Volatility
1
2
Ri  R 


( M  1) t i 1
M
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 14
Simulation of a Random Walk

Si 1  Si 1    t    t  z


  RAND ()   6
 1


12
A general formula
Zvi Wiener
See spreadsheet
N

12 
 N
   RAND()   
N  1
 2
FE-Wilmott-IntroQF Ch6
slide 15
Arithmetical Brownian Motion
dS    dt    dW
Geometrical Brownian Motion
dS    S  dt    S  dW
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 16
Central Limit Theorem
The mean of n independent and identically
distributed variables converges to a normal
distribution as n increases.
1 n
X   Xi
n i 1
 2 

X  N   ,
n 

Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 17
Home Assignment
Read chapter 6 in Wilmott.
Follow Excel files coming with the book.
Zvi Wiener
FE-Wilmott-IntroQF Ch6
slide 18
Related documents