Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Financial Engineering Zvi Wiener [email protected] 02-588-3049 FE-W http://pluto.mscc.huji.ac.il/~mswiener/zvi.html EMBAF Random Behavior of Assets Following Paul Wilmott, Introduces Quantitative Finance Chapter 6 FE-W http://pluto.mscc.huji.ac.il/~mswiener/zvi.html EMBAF Returns S i 1 Si Ri Si ri LnSi 1 LnSi Si 1 Si Si 1 Si Ln ri Ln Si Si Si 1 Si Si 1 Si Ln1 Si Si Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 3 Returns 1 R M M R i 1 i 1 2 Ri R ( R) M 1 i 1 M See file 6.Random Behavior of Assets.XLS Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 4 Normal Distribution N(, ) 0, 1 1 PDF ( x) e 2 Zvi Wiener FE-Wilmott-IntroQF Ch6 x2 2 slide 5 Normal Distribution N(, ) Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 6 Normal Distribution 1% quantile Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 7 Lognormal Distribution 0.6 0.5 0.4 0.3 0.2 0.1 1 Zvi Wiener 2 FE-Wilmott-IntroQF Ch6 3 4 slide 8 Covariance Shows how two random variables are connected For example: independent move together move in opposite directions covariance(X,Y) = Zvi Wiener E X X Y Y FE-Wilmott-IntroQF Ch6 slide 9 Correlation XY E X X Y Y ( X ) (Y ) -1 1 =0 independent =1 perfectly positively correlated = -1 perfectly negatively correlated Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 10 Properties E (A B) E ( A) E ( B) (A B) 2 ( A) ( B) 2Cov( A, B) 2 2 2 2 (A B) 2 ( A) ( B) 2( A) ( B) 2 Zvi Wiener 2 2 2 FE-Wilmott-IntroQF Ch6 slide 11 Time Aggregation T annualT T annual T Assuming normality Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 12 Time Aggregation Assume that yearly parameters of CPI are: mean = 5%, standard deviation (SD) = 2%. Then daily mean and SD of CPI changes are: 1 d y 0.02% 250 1 d y 0.1265% 250 Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 13 Volatility 1 2 Ri R ( M 1) t i 1 M Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 14 Simulation of a Random Walk Si 1 Si 1 t t z RAND () 6 1 12 A general formula Zvi Wiener See spreadsheet N 12 N RAND() N 1 2 FE-Wilmott-IntroQF Ch6 slide 15 Arithmetical Brownian Motion dS dt dW Geometrical Brownian Motion dS S dt S dW Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 16 Central Limit Theorem The mean of n independent and identically distributed variables converges to a normal distribution as n increases. 1 n X Xi n i 1 2 X N , n Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 17 Home Assignment Read chapter 6 in Wilmott. Follow Excel files coming with the book. Zvi Wiener FE-Wilmott-IntroQF Ch6 slide 18