Download Things to Remember - Westhampton Beach School District

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of logarithms wikipedia , lookup

Vincent's theorem wikipedia , lookup

Location arithmetic wikipedia , lookup

List of important publications in mathematics wikipedia , lookup

Big O notation wikipedia , lookup

Addition wikipedia , lookup

Factorization of polynomials over finite fields wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Factorization wikipedia , lookup

Elementary algebra wikipedia , lookup

Elementary mathematics wikipedia , lookup

History of algebra wikipedia , lookup

System of polynomial equations wikipedia , lookup

Transcript
Things to Remember
Linear Functions
Exponent Rules
π‘₯0 = 1
1
(π‘₯ π‘Ž )𝑏 = π‘₯ π‘Žπ‘
π‘₯ βˆ’π‘Ž = π‘Ž
π‘₯
π‘Ž
𝑏
π‘Ž+𝑏
(π‘₯ βˆ™ 𝑦)π‘Ž = π‘₯ π‘Ž 𝑦 π‘Ž
π‘₯ βˆ™π‘₯ =π‘₯
π‘₯π‘Ž
π‘₯𝑏
π‘Ž
π‘₯𝑏
= π‘₯ π‘Žβˆ’π‘
𝑏
π‘₯ π‘Ž
π‘₯π‘Ž
𝑦
π‘¦π‘Ž
( ) =
π‘Ž
𝑏
= ( √π‘₯ ) = √π‘₯ π‘Ž
Simplify Polynomials
β€˜like’ terms: same variable & same exponent
( ) + ( ) οƒ  drop the parentheses then combine like terms
( ) – ( ) οƒ  change to add the opposite
( ) ( ) οƒ  distribute
( ) ÷ ( ) οƒ  long division (may have a remainder)
* order of operations (PEMDAS) when given just numbers
Factor Polynomials
1. GCF (negative included)
2. Number of terms
2 terms οƒ  DOTS
3 terms οƒ  rainbow
4 terms οƒ  grouping
Graph a Line y = mx + b
Δ𝑦
m οƒ  slope =
Ξ”π‘₯
b οƒ  y-intercept @ (0, b)
(x,y) οƒ  a point on the line
Absolute Value y = |x|
Solve a System
2 Linear Equations
algebraic (elimination/substitution)
graphic (identify slope & y-intercept)
number of solutions: 0, 1, ο‚₯
Linear-Quadratic Equations
algebraic (substitution)
graphic (table with turning point)
number of solutions: 0, 1, 2
Quadratic Equations
algebraic (substitution)
graphic
number of solutions: 0, 1, 2, ο‚₯
Linear-Circle Equations
algebraic (substitution)
graphic (center & radius)
number of solutions: 0, 1, 2
Quadratic-Circle Equat
algebraic(substitution)
graphic
# of sol: 0, 1, 2, 3, 4
Functions
domain: all possible x values (input)
range: all possible y values (output)
relation: need 2 variables
function: passes the vertical line test
one-to-one: passes the horizontal line test
onto: all members of range are used
evaluate: plug it in!
composite: (𝑔 ∘ 𝑓)(π‘₯) = 𝑔(𝑓(π‘₯))
inverse: flip the graph over y=x
transform: y = A(Bx – C) + D
A: vertical stretch
B: horizontal compression
C: horizontal shift
D: vertical shift
Sequences
Arithmetic: add a constant to get to next term
Ex: 5, 7, 9, …
Recursion: pattern
Explicit: Specific term
an+1 = an + d
an = a1 + (n – 1)d
a1 = 5; an+1 = an + 2
a15 = 5+(15-1)(2) = 33
Geometric: multiply to get to next term
Ex: 5, 10, 20, …
Recursive:
Explicit:
an+1 = r(an)
a1 = 5; an+1 = 2(an)
Summation: The sum of the first n terms
n-1
an=a1(r)
a15=5(2)
15-1
Sn =
= 81,920
π‘Ž1 βˆ’ π‘Ž1 π‘Ÿ 𝑛
S15 =
1βˆ’π‘Ÿ
5 – 5(2)15
1βˆ’2
= 65,531
Rational Equations
Undefined: A fraction is undefined when
the denominator is 0.
Simplify
Add/Subtract: common denominator
Multiply: factor to reduce
Divide: change to multiply the reciprocal
Complex Fractions:
old school: one fraction on top, one fraction on bottom;
keep-change-flip
master blaster: use Least Common Denominator
2
4
2
4
βˆ’
βˆ’
π‘₯ 2 π‘₯ = [π‘₯ 2 π‘₯ ] βˆ™ π‘₯ 2 = 2 βˆ’ 4π‘₯ = 2(1 βˆ’ 2π‘₯) = βˆ’1
4
2
4
2
4π‘₯ βˆ’ 2
2(2π‘₯ βˆ’ 1)
βˆ’
βˆ’
π‘₯ π‘₯2
π‘₯ π‘₯2
Solve:
old school: (simplify both sides then cross-multiply)
master blaster: blast each piece with LCD
1
1
5
+ = 2
π‘š2 βˆ’π‘š
π‘š
π‘š βˆ’π‘š
1
1
5
[ 2
+
= 2
] βˆ™ π‘š(π‘š βˆ’ 1)
π‘š βˆ’π‘š π‘š
π‘š βˆ’π‘š
1 + (m – 1) = 5
m = 5 Check your answer for extraneous roots!
Things to Remember
Radicals
Imaginary Numbers
Simplify a radical: the index tells how many of a kind are needed to exit the
radical
√81π‘Ž2 𝑏 3 = √9 βˆ™ 9 βˆ™ π‘Ž βˆ™ π‘Ž βˆ™ 𝑏 βˆ™ 𝑏 βˆ™ 𝑏 = 9π‘Žπ‘βˆšπ‘
3
3
3
√81π‘Ž2 𝑏 3 = √9 βˆ™ 9 βˆ™ π‘Ž βˆ™ π‘Ž βˆ™ 𝑏 βˆ™ 𝑏 βˆ™ 𝑏 = 𝑏 √81π‘Ž2
Simplify an Expression
Add/Subtract: combine like radicals
Ex: 3√2 + 4√2 βˆ’ 8√3 = 7√2 βˆ’ 8√3
Multiply/Divide: coefficients; radicands; simplify
Ex: 5√2(3√6) = 15√12 = 15(2√3) = 30√3
Ex: 20√40 ÷ 5√5 = 4√8 = 4(2√2) = 8√2
Rationalize (the denominator):
βˆšβˆ’1 = 𝑖
cycle: i0 = 1 i1 = I
i2 = -1 i3 = -i
complex numbers: a + bi οƒ  β€˜a’ is real
part and β€˜bi’ is imaginary part
Ex:
Ex:
5
√2
=
5
3 + √6
5
√2
=
β‹…
√2
√2
5
=
3 + √6
2𝑖
βˆ™
3 βˆ’ √6
=
=
=
=
=
5(3 – √6)
9βˆ’3√6+3√6βˆ’6
=
5
49
4
5±7
16
π‘₯=
4
, x={3,
2
}
2𝑖
2(βˆ’1)
2
3+𝑖
5
βˆ™
3βˆ’π‘–
3+𝑖
3βˆ’π‘–
15βˆ’5𝑖
=
5(3βˆ’π‘–)
9βˆ’3𝑖+3π‘–βˆ’π‘– 2
9βˆ’(βˆ’1)
15βˆ’5𝑖
3
2
10
βˆ’
1
2
𝑖
3
5±7
4
12 βˆ’2
π‘₯={ , }
π‘₯=
βˆ’1
𝑖
5(3 – √6)
Solve:
1. Get one radical by itself, then get rid of it
2. Get the other radical by itself, then get rid of it
3. Get x by itself
4. Check your answer(s)!
Quadratic
Solve 2x2 – 5x = 3
Factoring
Complete the Square
Quadratic Formula
2π‘₯ 2 5π‘₯
3
2x2-5x-3=0
βˆ’π‘ ± βˆšπ‘ 2 βˆ’ 4π‘Žπ‘
βˆ’
=
π‘₯=
(2x + 1)(x – 3) = 0
2
2
2
2π‘Ž
5
25
3
0 = 2x+1
x-3=0
βˆ’(βˆ’5) ± √(βˆ’5)2 βˆ’ 4(2)(βˆ’3)
2
π‘₯ βˆ’ π‘₯+
=
π‘₯=
βˆ’1
2(2)
2
16
2
=π‘₯
x=3
2
25
+
5 ± √25 + 24
16
π‘₯=
2
4
5
49
5 ± √49
(π‘₯ βˆ’ ) =
π‘₯=
4
16
4
π‘₯ = ±βˆš
2𝑖
5
Ex:
5√2
2
3 βˆ’βˆš6
Simplify an Expression
Add/Subtract: like parts
Ex: 3 + 5i – 7 = -4 + 5i Multiply/Divide:
Ex: 8 + 6𝑖 ÷ 2 = 8 + 3i
Rationalize (the denominator):
3
3
𝑖
3𝑖
3𝑖
3
Ex: =
βˆ™ = 2=
= βˆ’ 𝑖
4
x = {3,
4
βˆ’1
2
}
Quadratic Roots at y = 0
Nature of Roots
b2 - 4ac < 0 οƒ  2 imaginary roots
b2 - 4ac = 0 οƒ  1 real root, rational
b2 - 4ac > 0 οƒ  2 real roots
rational if perfect square
irrational if not perfect square
βˆ’π‘
Sum of Roots =
π‘Ž
Product of Roots =
𝑐
π‘Ž
Circles
Center-Radius Form: (x – h)2 + (y – k)2 = r2
center at (h, k)
radius at r
Complete the Square (double)
x2 – 6x + y2 + 8y = 0
x2 – 6x + 9 + y2 + 8y + 16 = 0 + 9 + 16
(x – 3)2 + (y + 4)2 = 25
center at (3, -4)
radius of 5
Things to Remember
Exponential Functions
Logarithmic Functions
Simplify
Expressions
Ex: 6π‘₯ βˆ™ 6𝑦 = 6π‘₯+𝑦
Ex:
6π‘₯
6𝑦
= 6π‘₯βˆ’π‘¦
Solve an Equation
Ex: 2π‘₯ = 25
x=5
Ex: 5x=7
log(5)x=log(7)
x log(5) = log(7)
x=
log(7)
log(5)
Ex: 82 = 42π‘₯+1
(23 )2 = (22 )2π‘₯+1
26 = 24x+2
6 = 4x + 2
4 = 4x
1=x
Convert
exp οƒŸοƒ  log
xa = b οƒŸοƒ  logx(b) = a
Base 10
log(π‘₯) = π‘™π‘œπ‘”10 (π‘₯)
Simplify Expression
log(x) + log(y)=log(xy)
π‘₯
log(x) - log(y)=log( )
𝑦
log(x)n=nβˆ™log(x)
Solve an Equation
Ex: log(x) + log(8) =
log(24)
log(8x) = log(24)
8x = 24 οƒ  x = 3
Ex: log(x2) = 2 + log(3)
log(x2) – log(3) = 2
π‘₯2
Change of base formula
log(π‘Ž)
π‘™π‘œπ‘”π‘ (π‘Ž) =
log( ) = 2
3
log(𝑏)
2
10 =
100 =
Right Triangles
Pythagorean’s Theorem
SohCahToa
Specials
Functions
sin πœƒ = 𝑦
cos πœƒ = π‘₯
sin πœƒ 𝑦
tan πœƒ =
=
cos πœƒ π‘₯
1
1
csc πœƒ =
=
sin πœƒ 𝑦
1
1
sec πœƒ =
=
cos πœƒ π‘₯
1
π‘₯
cot πœƒ =
=
tan πœƒ 𝑦
Reference Angles
Sinusoids
Co-Functions are complementary!
sin(20°)=cos(70°)
tan(5°)=cot(85°)
sec(90°)=csc(0°)
y = A sin B(x + C) + D
amplitude = |A|
2πœ‹
frequency = B period =
𝐡
horizontal shift (right/left)= C
vertical shift (up/down)= D
The Unit Circle
Trigonometric Graphs
Quadrant I
Radians
120° =
120 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 
1
βˆ™
πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 
180 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 
=
2
3
Inverse Functions
πœ‹
√3
sin-1( ) = 60°
2
πœ‹
πœ‹ π‘Ÿπ‘Žπ‘‘ 180 𝑑𝑒𝑔
π‘Ÿπ‘Žπ‘‘ =
βˆ™
= 30°
6
6
πœ‹ π‘Ÿπ‘Žπ‘‘
arccos (
√2
) = 45°
2
π‘₯2
3
π‘₯2
3
οƒ  x = √300
Things to Remember
Probability
(organize) Sample Space
- Tree Diagram
- Two-Way Frequency Table
- Venn Diagram
Independence
P(A) = P(A|B)
Rules
P(A and B) = P(A∩B)
= P(A)βˆ™P(B) for independent events
= P(A)βˆ™P(B|A) for dependent events
P(not A) = P(AC) = 1-P(A)
P(A or B) = P(AβˆͺB) = P(A) + P(B) - P(A∩B)
𝑃(𝐴∩𝐡)
P(A given B) = P(A|B) =
𝑃(𝐡)
Statistics
calculator
enter list: stat-edit
examine: stat-calc-1 var stats
sort list: stat-sortA
skewed
(positive) right
symmetric
(negative) left
Normal Distribution
standardized --> π‘₯Μ… = 0
z-score =
normalcdf(lower boundary, upper boundary)
central tendency: median
variability: IQR = Q3-Q1
observational studies
- unbiased sample randomly selected
- population: the entire set of observations that can be made
- sample: a piece of the population (β‰ˆ 10% of population)
- survey asks questions
central tendency: mean(π‘₯Μ… )
normalcdf(lower boundary, upper boundary, π‘₯Μ… , Sx)
variability: standard deviation (Sx)
experimental studies
- impose treatment (cause) to find a response (effect)
- subjects are randomly assigned a treatment