Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Survey

Document related concepts

Golden ratio wikipedia, lookup

Euler angles wikipedia, lookup

Systolic geometry wikipedia, lookup

Perceived visual angle wikipedia, lookup

Reuleaux triangle wikipedia, lookup

Rational trigonometry wikipedia, lookup

History of trigonometry wikipedia, lookup

Euclidean geometry wikipedia, lookup

Trigonometric functions wikipedia, lookup

Incircle and excircles of a triangle wikipedia, lookup

Transcript

Goal: to use inequalities involving angles and sides of triangles Activities: 1. Open GSP 4.06 and complete all steps and answer all questions for GSP Triangle Inequality Activity. 2. View Lesson 5-5 Powerpoint and take notes. 3. Work through the following links 1. Khan Academy 2. Rags to Riches 3. Quia 4. Visual Representation 4. Summary: In your notes, explain the three concepts explored in class today relating measures of sides and angles in triangles. Triangle Inequality Theorem The sum of the lengths of any two sides of a triangle is greater than the length of the third side Inequalities in One Triangle They have to be able to reach!! 3 2 4 3 6 3 3 6 6 Note that there is only one situation that you can have a triangle; when the sum of two sides of the triangle are greater than the third. Triangle Inequality Theorem A AB + AC > BC AB + BC > AC AC + BC > AB B C Triangle Inequality Theorem Biggest Side Opposite Biggest Angle A Medium Side Opposite Medium Angle Smallest Side Opposite Smallest Angle 3 5 B C m<B is greater than m<C Triangle Inequality Theorem Converse is true also A Biggest Angle Opposite _____________ Medium Angle Opposite ______________ Smallest Angle Opposite _______________ 65 30 C Angle A > Angle B > Angle C So CB >AC > AB B Example: List the measures of the sides of the triangle, in order of least to greatest. B <A = 2x + 1 <B = 4x <C = 4x -11 Solving for x: A C 2x +1 + 4x + 4x - 11 =180 Note: Picture is not to scale Plugging back into our Angles: <A = 39o; <B = 76; <C = 65 10x - 10 = 180 10x = 190 X = 19 Therefore, BC < AB < AC Using the Exterior Angle Inequality Example: Solve the inequality if AB + AC > BC C (x+3) + (x+ 2) > 3x - 2 x+3 2x + 5 > 3x - 2 x<7 3x - 2 A x+2 B Example: Determine if the following lengths are legs of triangles A) 4, 9, 5 B) 9, 5, 5 We choose the smallest two of the three sides and add them together. Comparing the sum to the third side: 4+5 ? 9 5+5 ? 9 9>9 10 > 9 Since the sum is not greater than the third side, this is not a triangle Since the sum is greater than the third side, this is a triangle Example: a triangle has side lengths of 6 and 12; what are the possible lengths of the third side? B 12 6 A C X=? 12 + 6 = 18 12 – 6 = 6 Therefore: 6 < X < 18 Return to Homepage