Download Jovian Planet Systems

Document related concepts

History of Solar System formation and evolution hypotheses wikipedia , lookup

Late Heavy Bombardment wikipedia , lookup

Exploration of Jupiter wikipedia , lookup

Planets in astrology wikipedia , lookup

Formation and evolution of the Solar System wikipedia , lookup

Orrery wikipedia , lookup

Nice model wikipedia , lookup

Transcript
Chapter 11
Jovian Planet Systems
© 2010 Pearson Education, Inc.
11.1 A Different Kind of Planet
Our goals for learning:
• Are jovian planets all alike?
• What are jovian planets like on the inside?
• What is the weather like on jovian planets?
• Do jovian planets have magnetospheres like
Earth’s?
© 2010 Pearson Education, Inc.
Are jovian planets all alike?
© 2010 Pearson Education, Inc.
Jovian Planet Composition
• Jupiter and Saturn
– Mostly H and He gas
• Uranus and Neptune
– Mostly hydrogen compounds: water (H2O),
methane (CH4), ammonia (NH3)
– Some H, He, and rock
© 2010 Pearson Education, Inc.
Density Differences
• Uranus and Neptune
are denser than Saturn
because they have less
H/He, proportionately.
© 2010 Pearson Education, Inc.
Density Differences
• But that explanation
doesn’t work for
Jupiter….
© 2010 Pearson Education, Inc.
Sizes of Jovian Planets
• Adding mass to a
jovian planet
compresses the
underlying gas
layers.
© 2010 Pearson Education, Inc.
Sizes of Jovian Planets
• Greater compression
is why Jupiter is not
much larger than
Saturn even though it
is three times more
massive.
• Jovian planets with
even more mass can
be smaller than
Jupiter.
© 2010 Pearson Education, Inc.
Rotation and Shape
• Jovian planets are
not quite spherical
because of their
rapid rotation.
© 2010 Pearson Education, Inc.
What are jovian planets like on
the inside?
© 2010 Pearson Education, Inc.
Interiors of Jovian Planets
• No solid surface
• Layers under high pressure and temperatures
• Cores (~10 Earth masses) made of hydrogen
compounds, metals, and rock
• The layers are different for the different
planets. WHY?
© 2010 Pearson Education, Inc.
Inside Jupiter
• High pressures inside
Jupiter cause phase of
hydrogen to change
with depth.
• Hydrogen acts like a
metal at great depths
because its electrons
move freely.
© 2010 Pearson Education, Inc.
Inside Jupiter
• Core is thought to be
made of rock, metals,
and hydrogen
compounds.
• Core is about same
size as Earth but 10
times as massive.
© 2010 Pearson Education, Inc.
Comparing Jovian Interiors
• Models suggest cores of jovian planets have similar
composition.
• Lower pressures inside Uranus and Neptune mean no
metallic hydrogen.
© 2010 Pearson Education, Inc.
Jupiter’s Internal Heat
• Jupiter radiates
twice as much
energy as it receives
from the Sun.
• Energy probably
comes from slow
contraction of
interior (releasing
potential energy).
© 2010 Pearson Education, Inc.
Internal Heat of Other Planets
• Saturn also radiates twice as much energy
as it receives from the Sun.
• Energy probably comes from differentiation
(helium rain).
• Neptune emits nearly twice as much energy
as it receives, but the source of that energy
remains mysterious.
© 2010 Pearson Education, Inc.
What is the weather like on
jovian planets?
© 2010 Pearson Education, Inc.
Jupiter’s Atmosphere
• Hydrogen
compounds in
Jupiter form clouds.
• Different cloud
layers correspond to
freezing points of
different hydrogen
compounds.
© 2010 Pearson Education, Inc.
Jovian Planet Atmospheres
• Other jovian planets
have cloud layers
similar to Jupiter’s.
• Different
compounds make
clouds of different
colors.
© 2010 Pearson Education, Inc.
Jupiter’s
Colors
• Ammonium sulfide clouds (NH4SH) reflect red/brown.
• Ammonia, the highest, coldest layer, reflects white.
© 2010 Pearson Education, Inc.
Saturn’s
Colors
• Saturn’s layers are similar, but deeper in and
farther from the Sun (more subdued).
© 2010 Pearson Education, Inc.
Methane on Uranus and Neptune
• Methane gas of Neptune and Uranus absorbs red light
but transmits blue light.
• Blue light reflects off methane clouds, making those
planes look blue.
© 2010 Pearson Education, Inc.
Jupiter’s Bands
© 2010 Pearson Education, Inc.
Jupiter’s
Great
Red Spot
• Is a storm twice as wide as Earth
• Has existed for at least three centuries
© 2010 Pearson Education, Inc.
Weather on Jovian Planets
• All the jovian planets have strong winds and
storms.
© 2010 Pearson Education, Inc.
Do jovian planets have
magnetospheres like Earth’s?
© 2010 Pearson Education, Inc.
Jupiter’s Magnetosphere
• Jupiter’s strong magnetic field gives it an enormous
magnetosphere.
• Gases escaping Io feed the donut-shaped Io torus.
© 2010 Pearson Education, Inc.
Other Magnetospheres
• All jovian planets
have substantial
magnetospheres, but
Jupiter’s is the
largest by far.
© 2010 Pearson Education, Inc.
11.2 A Wealth of Worlds: Satellites of
Ice and Rock
Our goals for learning:
• What kinds of moons orbit the jovian
planets?
• Why are Jupiter’s Galilean moons so
geologically active?
• What is remarkable about Titan and other
major moons of the outer solar system?
• Why are small icy moons more geologically
active than small rocky planets?
© 2010 Pearson Education, Inc.
What kinds of moons orbit the
jovian planets?
© 2010 Pearson Education, Inc.
Sizes of Moons
• Small moons (< 300 km)
– No geological activity
• Medium-sized moons (300–1500 km)
– Geological activity in past
• Large moons (> 1500 km)
– Ongoing geological activity
© 2010 Pearson Education, Inc.
Medium and
Large Moons
• Enough self-gravity to
be spherical
• Have substantial
amounts of ice
• Formed in orbit
around jovian planets
• Circular orbits in same
direction as planet
rotation
© 2010 Pearson Education, Inc.
Small
Moons
• These are far more numerous than the medium and
large moons.
• They do not have enough gravity to be spherical:
Most are “potato-shaped.”
© 2010 Pearson Education, Inc.
Small
Moons
• They are captured asteroids or comets, so their
orbits do not follow usual patterns.
© 2010 Pearson Education, Inc.
Why are Jupiter’s Galilean
moons so geologically active?
© 2010 Pearson Education, Inc.
Io’s Volcanic Activity
• Io is the most volcanically active body in the
solar system, but why?
© 2010 Pearson Education, Inc.
Io’s Volcanoes
• Volcanic eruptions continue to change Io’s surface.
© 2010 Pearson Education, Inc.
Tidal Heating
Io is squished and
stretched as it orbits
Jupiter.
© 2010 Pearson Education, Inc.
But why is its
orbit so
elliptical?
Orbital
Resonances
Every 7 days,
these three
moons line up.
© 2010 Pearson Education, Inc.
The tugs add up over
time, making all
three orbits elliptical.
Europa’s Ocean: Waterworld?
© 2010 Pearson Education, Inc.
Tidal stresses crack Europa’s
surface ice.
© 2010 Pearson Education, Inc.
Europa’s interior also warmed by tidal heating.
© 2010 Pearson Education, Inc.
Ganymede
• Largest moon in
the solar system
• Clear evidence of
geological activity
• Tidal heating plus
heat from radioactive decay?
© 2010 Pearson Education, Inc.
Callisto
• “Classic” cratered
iceball
• No tidal heating,
no orbital
resonances
• But it has a
magnetic field!?
© 2010 Pearson Education, Inc.
What is remarkable about Titan
and other major moons of the
outer solar system?
© 2010 Pearson Education, Inc.
Titan’s Atmosphere
• Titan is the only
moon in the solar
system to have a
thick atmosphere.
• It consists mostly of
nitrogen with some
argon, methane, and
ethane.
© 2010 Pearson Education, Inc.
Titan’s Surface
• Huygens probe provided first look at Titan’s surface in
early 2005.
• It found liquid methane and “rocks” made of ice.
© 2010 Pearson Education, Inc.
Medium Moons of Saturn
• Almost all of them show evidence of past
volcanism and/or tectonics.
© 2010 Pearson Education, Inc.
Medium Moons of Saturn
• Ice fountains of
Enceladus suggest it may have
a subsurface ocean.
© 2010 Pearson Education, Inc.
Medium Moons of Uranus
• They have varying
amounts of
geological activity.
• Miranda has large
tectonic features and
few craters (possibly
indicating an
episode of tidal
heating in past).
© 2010 Pearson Education, Inc.
Neptune’s Moon Triton
• Similar to Pluto, but larger
• Evidence of past geological activity
© 2010 Pearson Education, Inc.
Why are small icy moons more geologically
active than small rocky planets?
© 2010 Pearson Education, Inc.
Rocky Planets versus Icy Moons
• Rock melts at higher
temperatures.
• Only large rocky
planets have enough
heat for activity.
© 2010 Pearson Education, Inc.
• Ice melts at lower
temperatures.
• Tidal heating can
melt internal ice,
driving activity.
11.3 Jovian Planet Rings
Our goals for learning:
• What are Saturn’s rings like?
• How do other jovian ring systems compare
to Saturn’s?
• Why do the jovian planets have rings?
© 2010 Pearson Education, Inc.
What are Saturn’s rings like?
© 2010 Pearson Education, Inc.
What are Saturn’s rings like?
• They are made up of numerous, tiny
individual particles.
• They orbit around Saturn’s equator.
• They are very thin.
© 2010 Pearson Education, Inc.
Spacecraft View of Ring Gaps
© 2010 Pearson Education, Inc.
Artist’s Conception of Rings Close-Up
© 2010 Pearson Education, Inc.
Gap Moons
• Some small moons
create gaps within
rings.
© 2010 Pearson Education, Inc.
Shepherd Moons
• A pair of small moons can force particles into a narrow ring.
© 2010 Pearson Education, Inc.
Resonance Gaps
• Orbital resonance
with a larger
moon can also
produce a gap.
© 2010 Pearson Education, Inc.
How do other jovian ring systems
compare to Saturn’s?
© 2010 Pearson Education, Inc.
Jovian Ring Systems
• All four jovian planets have ring systems.
• Others have smaller, darker ring particles than Saturn.
© 2010 Pearson Education, Inc.
Why do the jovian planets have
rings?
© 2010 Pearson Education, Inc.
Why do the jovian planets have
rings?
• They formed from dust created in impacts
on moons orbiting those planets.
How do we know?
© 2010 Pearson Education, Inc.
How do we know?
• Rings aren’t leftover from planet formation
because the particles are too small to have
survived for so long.
• There must be a continuous replacement of
tiny particles.
• The most likely source is impacts with
jovian moons.
© 2010 Pearson Education, Inc.
Ring Formation
• Jovian planets all have rings because they
possess many small moons close in.
• Impacts on these moons are random.
• Saturn’s incredible rings may be an “accident”
of our time.
© 2010 Pearson Education, Inc.