Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C2 Chapter 10 Solutions Resource sheet 1 1. i. a. sin 90 1 c. sin 45 a 4 1 2 2 2 e. sin 0 0 2. i. 4 2 0 2 Special angles: b. sin 60 a 2 d. sin 30 a 0 3 2 a 3 1 1 a 1 2 2 (5) opp a adj a cos hyp c hyp c Hence cos sin , as required. sin [5] (1) (1) ii. Using the triangle (which exists for 0 90 ) 90 90 Since cos sin , it follows that cos 90 sin (1) cos 90 sin is also true when 0 or 90 since cos 90 sin 0 0 and cos 0 sin 90 1 (2) a b , tan 90 tan b a b a Hence tan 90 tan 1 as required. a b for all angles 0 90 . iii. Using the triangle, tan (2) (1) When 0 or 90 , one of the terms in the product tan 90 tan is undefined. (2) 3. i. sin 30 4 cos 60 1 1 5 4 2 2 2 (3) 2 3 1 ii. 2sin 60 cos 60 2 2 2 3 1 1 2 2 2 iii. 5 tan 60 cos 30 5 3 3 15 2 2 (1) (2) (3) [10] 1 1 iv. sin 45 cos 45 2 2 2 2 (1) 2 2 2 2 v. sin 60 3cos 30 2 3 3 3 2 2 2 3 vi. (2) 2 2 (1) 12 (2) 3 3 1 2 sin 45 1 2 tan 30 2 3 (1) 3 1 2 4. i. a tan 30 tan 45 a (2) tan 45 1 1 tan 30 [18] (1) 3 a 3 ii. a 2 tan 30 3 2 1 3 3 3 3 tan 60 3 Hence a 2 tan 30 tan 60 , as required. 3 1 3 1 3 3 3 3 iii. a3 tan 30 (1) (1) (1) (1) 3 (1) (1) [7] C2 Chapter 10 graphs: Resource sheet 5 More trigonometrical Solutions 1. i. y y sin 3 x 1 O 60 360 120 x -1 (2) ii. a. sin3x 0 for 0 x 360 has solution x 60 , 120 ,180, 240, 300 (2) b. sin 3x 1 for 0 x 360 has solution x 30 , 150 , 270 [Accept any method e.g. by a substitution] 2. i. Stretch along the x-axis scale factor 1 2 0.5 (2) (2) ii. y y cos x O 360 x y cos 0.5x iii. 3. i. x 240 cos x 0.5 , cos 0.5x 0.5 (2) Hence the graphs intersect at 240 , 0.5 , as required. (1) From the sketch over the range 0 x 360 , cos x cos0.5x 240 x 360 Hence the solution to the inequality is 240 x 360 (2) sin cos 2sin cos sin 0 2sin tan 2sin sin 2cos 1 0 (1) [6] sin 0 or cos Hence 0 , 60 ,180 1 2 (2) (2) ii. y 60 , 3 y 2sin 2 O 90 x 180 ,0 y tan (3) 4. i. y y sin 4 x 1 O 90 x -1 (2) ii. The line y k intersects the graph y sin 4 x in exactly two places for only. k 1 (2) C2 Chapter 10 equations Resource sheet 2 Solution of trigonometric 70 solutions 1. Using appropriate graphs or any other method: i. sin x 0 x 0, 180 , 360 (2) ii. cos x 0 x 90 , 270 iii. 2sin x 1 sin x (2) 1 x 30 , 150 2 iv. 3tan x 3 tan x 3 1 3 3 x 30 , 210 (2) 12 3 4 2 v. 4 cos x 12 cos x x 30 , 330 vi. 2 3 sin x 3 sin x (2) 3 2 3 (2) 3 2 x 60 , 120 2. Answers are given to one decimal place. i. tan x 4 x 104.0 , 76.0 3 4 x 48.6 , 131.4 (2) [12] (2) ii. 4sin x 3 sin x 4 5 x 36.9 (2) iii. 5cos x 1 3 cos x iv. 1 tan x 1 0 tan x 2 2 x 63.4 , 116.6 (2) (2) [8] 3. i. sin 2 cos2 1 sin 1 cos2 Hence sin 1 54 9 25 (1) 2 3 5 Since 90 180 , sin 0 and so sin (2) 3 , as required. 5 3 sin 3 5 ii. tan 4 . cos 5 4 4. i. 1 2 30 , 150 (1) (2) [6] sin 2 0.25 sin 1 3 30 , 150 (4) ii. 3tan 2 1 tan iii. (4) 1 1 2 cos 2 cos 2 45 , 135 5. 2cos2 cos 1 0 2cos 1 cos 1 0 1 , 1 2 60 ,180 ,300 cos 6. i. Replacing cos 2 with 1 sin 2 results in 2sin 2 3sin 1 0 2sin 2 3sin 1 0 2sin 1sin 1 0 1 sin , 1 2 30 , 90 , 150 ii. Replacing sin 2 with 1 cos 2 results in 5cos 2 8cos 4 0 (4) [12] (1) (1) (2) (2) (1) (1) (2) (2) [4] 5cos2 8cos 4 0 5cos 2 cos 2 0 2 , 2 no real values 5 66.4 , 293.6 (1 decimal place) sin 3 3 tan iii. 2sin 3cos cos 2 2 cos 56.3 , 236.3 (1 decimal place) iv. 2 tan 1 1 0 2 tan 2 cos 2 cos cos sin 1 cos 4 sin 1 4 194.5 , 345.5 v. 2 tan 3 sin 3 0 2 sin cos sin 2sin 2 3cos 0 (1) (1) (2) (2) (1) (1) (1) (1) (2) (1) (1) Replacing sin 2 with 1 cos 2 results in 2 cos 2 3cos 2 0 (2) 2cos2 3cos 2 0 2cos 1 cos 2 0 (1) 1 , 2 no real values 2 120 , 240 (1 decimal place) cos (1) (2) [28] C2 Chapter 10 angles: Resource sheet 3 Triangles without right 20 Solutions 1. i. x 12 sin130 sin 25 12 sin130 21.75... sin 25 (2) x 21.8 cm (1 decimal place) (1) x ii. The missing angle 180 78 37 65 Hence x 19 19 x sin 65 17.60.. sin 65 sin 78 sin 78 x 17.6 mm (1 decimal place) (1) (2) (1) [7] 2. i. sin120 sin 180 120 sin 60 ii. Area 3 2 1 1 ab sin C 16 5 sin120 2 2 3 40 20 3 cm2 , as required. 2 iii. a. AB 2 52 162 2 5 16 cos120 361 Hence AB 361 19 cm, as required. b. 52 192 162 2 19 16 cos 192 162 52 cos 0.9736.... 2 19 16 cos1 0.9736... 13.17... 13 (nearest whole degree) iv. a. The angle of CB against the North line is 120 90 30 Hence the bearing of B from C is 030 b. The angle of BA against the North line is 180 30 13 223 Hence the bearing of A from B is 223 (nearest whole degree) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) [13] C2 Chapter 10 Resource sheet 4 2 120 3 Circular measure: Solutions c 1. i. ii. 5 c 112.5 8 iv. 1 28.6 (1 decimal place) 2 c iii. 2.3c 131.8 (1 decimal place) 2. i. 2 40 c 9 iii. 220 (4) 3 ii. 135 c 4 11 c 9 iv. 12.5 5 c 72 3. i. arc length AB r 0.8 8 6.4 cm, as required. ii. Perimeter = (arc length AB) + BC + CA (4) (1) (1) 6.4 2 8 36.10... 36.1 cm (1 decimal place) (1) iii. Triangle ABC is isosceles with equal angles at A and B A C 0.8 B Hence 2 0.8 0.2 0.1 2 (2) 20 4. i. A 1 2 1 r 92 56.7 2 2 1.4c , as required. Area of ABC Hence (2) 1 2 1 r sin 92 sin1.4 2 2 39.910... cm2 (1) Area ABC 39.910... 0.70389... 70% , as required. Sector area 56.7 (1) ii. AB 2 92 92 2 9 9 cos1.4 134.46... Hence AB 134.46... 11.59 11.6 cm (1 decimal place) [Accept alternative method e.g. using the fact triangle ABC is isosceles] (1) (1) (1)