Download Solutions - NLCS Maths Department

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
C2 Chapter 10
Solutions
Resource sheet 1
1. i. a. sin 90  1 
c. sin 45 
 a  4
1
2

2
2
e. sin 0  0 
2. i.
4
2
0
2
Special angles:
b. sin 60 
 a  2
d. sin 30 
 a  0
3
2
 a  3
1
1

 a  1
2 2
(5)
opp a
adj a

cos  

hyp c
hyp c
Hence cos   sin  , as required.
sin  
[5]
(1)
(1)
ii. Using the triangle (which exists for 0    90 )     90    90  
Since cos   sin  , it follows that cos  90     sin 
(1)
cos  90     sin  is also true when   0 or 90 since cos 90  sin 0  0
and cos 0  sin 90  1
(2)
a
b
, tan  90     tan  
b
a
b a
Hence tan  90    tan     1 as required.
a b
for all angles 0    90 .
iii. Using the triangle, tan  
(2)
(1)
When   0 or   90 , one of the terms in the product tan  90    tan  is
undefined.
(2)
3. i.
sin 30  4 cos 60 
1
1 5
 4 
2
2 2
(3)
2
 3 1
ii. 2sin 60  cos 60  2 
 
 2  2
3 1
  1
2 2
2
iii. 5 tan 60 cos 30  5 3 
3 15

2
2
(1)
(2)
(3)
[10]
1 
 1
iv.  sin 45  cos 45   


2
 2
2
2
(1)
2
 2 

 2
 2
v.
 sin 60  3cos 30 
2
 3
3
 
 3

2 
 2

 2 3
vi.
(2)

2
2
(1)
 12
(2)
3
3
1
 2 sin 45  1  2 
tan 30
2
3
(1)
 3 1  2
4. i.
a tan 30  tan 45  a 
(2)
tan 45
1

1
tan 30
 
[18]
(1)
3
 a 3
ii. a 2 tan 30 

 3 
2
1
3
3
 3
3
tan 60  3
Hence a 2 tan 30  tan 60 , as required.
 3 
1
3
1
 3 3
3
3
iii. a3 tan 30 
(1)
(1)
(1)
(1)
3
(1)
(1)
[7]
C2 Chapter 10
graphs:
Resource sheet 5
More trigonometrical
Solutions
1. i.
y
y  sin 3 x
1
O
60 
360 
120 
x
-1
(2)
ii. a. sin3x  0 for 0  x  360 has solution x  60 , 120 ,180, 240, 300
(2)
b. sin 3x  1 for 0  x  360 has solution x  30 , 150 , 270
[Accept any method e.g. by a substitution]
2. i. Stretch along the x-axis scale factor
1
2
0.5
(2)
(2)
ii.
y
y  cos x
O
360 
x
y  cos  0.5x 
iii.
3. i.
x  240  cos x  0.5 , cos  0.5x   0.5
(2)
Hence the graphs intersect at  240 ,  0.5 , as required.
(1)
From the sketch over the range 0  x  360 ,
cos x  cos0.5x  240  x  360
Hence the solution to the inequality is 240  x  360
(2)
sin 
cos 
 2sin  cos   sin   0
2sin   tan   2sin  
 sin   2cos 1  0
(1)
[6]
 sin   0 or cos  
Hence   0 , 60 ,180
1
2
(2)
(2)
ii.
y
 60 , 3 
y  2sin 
2
O
90 
x
180 ,0
y  tan 
(3)
4. i.
y
y  sin 4 x
1
O
90 
x
-1
(2)
ii. The line y  k intersects the graph y  sin 4 x in exactly two places for
only.
k  1
(2)
C2 Chapter 10
equations
Resource sheet 2
Solution of trigonometric
70
solutions
1. Using appropriate graphs or any other method:
i.
sin x  0  x  0, 180 , 360
(2)
ii. cos x  0  x  90 , 270
iii. 2sin x  1  sin x 
(2)
1
 x  30 , 150
2
iv. 3tan x  3  tan x 
3
1

3
3
 x  30 , 210
(2)
12
3

4
2
v. 4 cos x  12  cos x 
 x  30 , 330
vi. 2 3 sin x  3  sin x 
(2)
3
2 3

(2)
3
2
 x  60 , 120
2. Answers are given to one decimal place.
i. tan x  4  x  104.0 , 76.0
3
4
 x  48.6 , 131.4
(2)
[12]
(2)
ii. 4sin x  3  sin x 
4
5
x  36.9
(2)
iii. 5cos x  1  3  cos x 
iv.
1
tan x  1  0  tan x  2
2
 x  63.4 , 116.6
(2)
(2)
[8]
3. i.
sin 2   cos2   1  sin    1  cos2 
Hence sin    1    54 

9
25

(1)
2
3
5
Since 90    180 , sin   0 and so sin  
(2)
3
, as required.
5
3

sin 
3
5
ii. tan  
 4  .
cos    5 
4
4. i.
1
2
   30 ,  150
(1)
(2)
[6]
sin 2   0.25  sin   
1
3
   30 ,  150
(4)
ii. 3tan 2   1  tan   
iii.
(4)
1
1
 2  cos   
2
cos 
2
   45 ,  135
5. 2cos2   cos 1  0   2cos 1 cos  1  0
1
, 1
2
   60 ,180 ,300
 cos  
6. i. Replacing cos 2  with 1  sin 2  results in 2sin 2   3sin   1  0
2sin 2   3sin   1  0   2sin  1sin  1  0
1
 sin   , 1
2
   30 , 90 , 150
ii. Replacing sin 2  with 1  cos 2  results in 5cos 2   8cos   4  0
(4)
[12]
(1)
(1)
(2)
(2)
(1)
(1)
(2)
(2)
[4]
5cos2   8cos  4  0  5cos  2 cos  2  0
2
,  2   no real values 
5
   66.4 , 293.6 (1 decimal place)
sin  3
3
  tan  
iii. 2sin   3cos  
cos  2
2
 cos  
   56.3 , 236.3 (1 decimal place)
iv.
2 tan  
1
1
 0  2 tan   
2 cos 
2 cos 
 cos  
sin 
1

cos 
4
 sin   
1
4
   194.5 , 345.5
v. 2 tan  
3
sin 
3
0  2

sin 
cos 
sin 
 2sin 2   3cos   0
(1)
(1)
(2)
(2)
(1)
(1)
(1)
(1)
(2)
(1)
(1)
Replacing sin 2  with 1  cos 2  results in 2 cos 2   3cos   2  0
(2)
2cos2   3cos  2  0   2cos   1 cos   2   0
(1)
1
, 2   no real values 
2
   120 , 240 (1 decimal place)
 cos   
(1)
(2)
[28]
C2 Chapter 10
angles:
Resource sheet 3
Triangles without right
20
Solutions
1. i.
x
12

sin130 sin 25
12
 sin130  21.75...
sin 25
(2)
 x  21.8 cm (1 decimal place)
(1)
 x
ii. The missing angle  180   78  37  65
Hence
x
19
19

 x
 sin 65  17.60..
sin 65 sin 78
sin 78
 x  17.6 mm (1 decimal place)
(1)
(2)
(1)
[7]
2. i. sin120  sin 180 120
 sin 60 
ii. Area 
3
2
1
1
ab sin C  16  5  sin120
2
2
3
 40 
 20 3 cm2 , as required.
2
iii. a. AB 2  52  162  2  5 16  cos120
 361
Hence AB  361  19 cm, as required.
b. 52  192  162  2 19 16  cos 
192  162  52
 cos  
 0.9736....
2 19 16
   cos1  0.9736...  13.17...
 13 (nearest whole degree)
iv. a. The angle of CB against the North line is 120  90  30
Hence the bearing of B from C is 030
b. The angle of BA against the North line is 180  30  13  223
Hence the bearing of A from B is 223 (nearest whole degree)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(1)
(2)
(2)
[13]
C2 Chapter 10
Resource sheet 4
2
 120
3
Circular measure: Solutions
c
1. i.
ii.
5 c
  112.5
8
iv.
1
 28.6 (1 decimal place)
2
c
iii. 2.3c  131.8 (1 decimal place)
2. i.
2
40   c
9
iii. 220 
(4)
3
ii. 135   c
4
11 c

9
iv. 12.5 
5 c

72
3. i. arc length AB  r  0.8  8  6.4 cm, as required.
ii. Perimeter = (arc length AB) + BC + CA
(4)
(1)
(1)
 6.4  2  8  36.10...
 36.1 cm (1 decimal place)
(1)
iii. Triangle ABC is isosceles with equal angles  at A and B
A

C
0.8

B
Hence 2  0.8     
0.2
 0.1
2
(2)
20
4. i.
A
1 2
1
r    92    56.7
2
2
   1.4c , as required.
Area of ABC 
Hence
(2)
1 2
1
r sin    92  sin1.4
2
2
 39.910... cm2
(1)
Area ABC 39.910...

 0.70389...  70% , as required.
Sector area
56.7
(1)
ii. AB 2  92  92  2  9  9  cos1.4
 134.46...
Hence AB  134.46...  11.59
 11.6 cm (1 decimal place)
[Accept alternative method e.g. using the fact triangle ABC is isosceles]
(1)
(1)
(1)
Related documents