* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Network Layer
Asynchronous Transfer Mode wikipedia , lookup
Distributed firewall wikipedia , lookup
IEEE 802.1aq wikipedia , lookup
Deep packet inspection wikipedia , lookup
Wake-on-LAN wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
Network tap wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Computer network wikipedia , lookup
List of wireless community networks by region wikipedia , lookup
Internet protocol suite wikipedia , lookup
Zero-configuration networking wikipedia , lookup
Airborne Networking wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Chapter 4 Network Layer All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Network Layer 4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-2 IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format: fixed-length 40 byte header no fragmentation allowed Network Layer 4-3 IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data Network Layer 4-4 Other Changes from IPv4 Checksum: removed entirely to reduce processing time at each hop Options: allowed, but outside of header, indicated by “Next Header” field ICMPv6: new version of ICMP additional message types, e.g. “Packet Too Big” multicast group management functions Network Layer 4-5 Transition From IPv4 To IPv6 Not all routers can be upgraded simultaneous no “flag days” How will the network operate with mixed IPv4 and IPv6 routers? Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers Network Layer 4-6 Tunneling Logical view: Physical view: E F IPv6 IPv6 IPv6 A B E F IPv6 IPv6 IPv6 IPv6 A B IPv6 tunnel IPv4 IPv4 Network Layer 4-7 Tunneling Logical view: Physical view: A B IPv6 IPv6 A B C IPv6 IPv6 IPv4 Flow: X Src: A Dest: F data A-to-B: IPv6 E F IPv6 IPv6 D E F IPv4 IPv6 IPv6 tunnel Src:B Dest: E Src:B Dest: E Flow: X Src: A Dest: F Flow: X Src: A Dest: F data data B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4 Flow: X Src: A Dest: F data E-to-F: IPv6 Network Layer 4-8 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-9 Hierarchical Routing Our routing study thus far - idealization all routers identical network “flat” … not true in practice scale: with 200 million destinations: can’t store all dest’s in routing tables! routing table exchange would swamp links! administrative autonomy internet = network of networks each network admin may want to control routing in its own network Network Layer 4-10 Hierarchical Routing aggregate routers into regions, “autonomous systems” (AS) routers in same AS run same routing protocol Gateway router Direct link to router in another AS “intra-AS” routing protocol routers in different AS can run different intraAS routing protocol Network Layer 4-11 Interconnected ASes 3c 3a 3b AS3 1a 2a 1c 1d 1b Intra-AS Routing algorithm 2c AS2 AS1 Inter-AS Routing algorithm Forwarding table 2b forwarding table configured by both intra- and inter-AS routing algorithm intra-AS sets entries for internal dests inter-AS & intra-As sets entries for external dests Network Layer 4-12 Inter-AS tasks AS1 must: 1. learn which dests are reachable through AS2, which through AS3 2. propagate this reachability info to all routers in AS1 Job of inter-AS routing! suppose router in AS1 receives datagram destined outside of AS1: router should forward packet to gateway router, but which one? 3c 3b 3a AS3 1a 2a 1c 1d 1b 2c AS2 2b AS1 Network Layer 4-13 Example: Setting forwarding table in router 1d suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c) but not via AS2. inter-AS protocol propagates reachability info to all internal routers. router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c. installs forwarding table entry (x,I) x 3c 3a 3b AS3 1a 2a 1c 1d 1b AS1 2c 2b AS2 Network Layer 4-14 Example: Choosing among multiple ASes now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2. to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x. this is also job of inter-AS routing protocol! x 3c 3a 3b AS3 1a 2a 1c 1d 1b 2c AS2 2b AS1 Network Layer 4-15 Example: Choosing among multiple ASes now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2. to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x. this is also job of inter-AS routing protocol! hot potato routing: send packet towards closest of two routers. Learn from inter-AS protocol that subnet x is reachable via multiple gateways Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways Hot potato routing: Choose the gateway that has the smallest least cost Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table Network Layer 4-16 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-17 Intra-AS Routing also known as Interior Gateway Protocols (IGP) most common Intra-AS routing protocols: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco proprietary) Network Layer 4-18 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-19 RIP ( Routing Information Protocol) distance vector algorithm included in BSD-UNIX Distribution in 1982 distance metric: # of hops (max = 15 hops) From router A to subnets: u v A z C B D w x y destination hops u 1 v 2 w 2 x 3 y 3 z 2 Network Layer 4-20 RIP advertisements distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) each advertisement: list of up to 25 destination subnets within AS Network Layer 4-21 RIP: Example z w A x D B y C Destination Network w y z x …. Next Router Num. of hops to dest. …. .... A B B -- 2 2 7 1 Routing/Forwarding table in D Network Layer 4-22 RIP: Example Dest w x z …. Next C … w hops 1 1 4 ... A Advertisement from A to D z x Destination Network w y z x …. D B C y Next Router Num. of hops to dest. …. .... A B B A -- Routing/Forwarding table in D 2 2 7 5 1 Network Layer 4-23 RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead routes via neighbor invalidated new advertisements sent to neighbors neighbors in turn send out new advertisements (if tables changed) link failure info quickly (?) propagates to entire net poison reverse used to prevent ping-pong loops (infinite distance = 16 hops) Network Layer 4-24 RIP Table processing RIP routing tables managed by application-level process called route-d (daemon) advertisements sent in UDP packets, periodically repeated routed routed Transprt (UDP) network (IP) link physical Transprt (UDP) forwarding table forwarding table network (IP) link physical Network Layer 4-25 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-26 OSPF (Open Shortest Path First) “open”: publicly available uses Link State algorithm LS packet dissemination topology map at each node route computation using Dijkstra’s algorithm OSPF advertisement carries one entry per neighbor router advertisements disseminated to entire AS (via flooding) carried in OSPF messages directly over IP (rather than TCP or UDP Network Layer 4-27 OSPF “advanced” features (not in RIP) security: all OSPF messages authenticated (to prevent malicious intrusion) multiple same-cost paths allowed (only one path in RIP) For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time) integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topology data base as OSPF hierarchical OSPF in large domains. Network Layer 4-28 Hierarchical OSPF Network Layer 4-29 Hierarchical OSPF two-level hierarchy: local area, backbone. Link-state advertisements only in area each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers. backbone routers: run OSPF routing limited to backbone. boundary routers: connect to other AS’s. Network Layer 4-30 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer 4-31 Internet inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. 2. 3. Obtain subnet reachability information from neighboring ASs. Propagate reachability information to all ASinternal routers. Determine “good” routes to subnets based on reachability information and policy. allows subnet to advertise its existence to rest of Internet: “I am here” Network Layer 4-32 BGP basics pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions BGP sessions need not correspond to physical links. when AS2 advertises a prefix to AS1: AS2 promises it will forward datagrams towards that prefix. AS2 can aggregate prefixes in its advertisement eBGP session 3c 3a 3b AS3 1a AS1 iBGP session 2a 1c 1d 1b 2c AS2 2b Network Layer 4-33 Distributing reachability info using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. 1c can then use iBGP do distribute new prefix info to all routers in AS1 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session when router learns of new prefix, it creates entry for prefix in its forwarding table. eBGP session 3c 3a 3b AS3 1a AS1 iBGP session 2a 1c 1d 1b 2c AS2 2b Network Layer 4-34 Path attributes & BGP routes advertised prefix includes BGP attributes. prefix + attributes = “route” two important attributes: AS-PATH: contains ASs through which prefix advertisement has passed: e.g, AS 67, AS 17 NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS) when gateway router receives route advertisement, uses import policy to accept/decline. Network Layer 4-35 BGP route selection router may learn about more than 1 route to some prefix. Router must select route. elimination rules: 1. 2. 3. 4. local preference value attribute: policy decision shortest AS-PATH closest NEXT-HOP router: hot potato routing additional criteria Network Layer 4-36 BGP messages BGP messages exchanged using TCP. BGP messages: OPEN: opens TCP connection to peer and authenticates sender UPDATE: advertises new path (or withdraws old) KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request NOTIFICATION: reports errors in previous msg; also used to close connection Network Layer 4-37 BGP routing policy legend: B W X A provider network customer network: C Y A,B,C are provider networks X,W,Y are customer (of provider networks) X is dual-homed: attached to two networks X does not want to route from B via X to C .. so X will not advertise to B a route to C Network Layer 4-38 BGP routing policy (2) legend: B W X A provider network customer network: C Y A advertises path AW to B B advertises path BAW to X Should B advertise path BAW to C? No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers B wants to force C to route to w via A B wants to route only to/from its customers! Network Layer 4-39 Why different Intra- and Inter-AS routing ? Policy: Inter-AS: admin wants control over how its traffic routed, who routes through its net. Intra-AS: single admin, so no policy decisions needed Scale: hierarchical routing saves table size, reduced update traffic Performance: Intra-AS: can focus on performance Inter-AS: policy may dominate over performance Network Layer 4-40