Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Index Law s 1. Index notation Rather than write 2 · 2 · 2 · 2 · 2, we write such a product as 25 . 25 reads “two to the power of five”, “two raised to five” or “two with index five”. If n is a positive integer, then an is the product of n factors of a i.e., an = |a · a · a{z· a . . . a} n factors a is the base. n is the power, index or exponent. Other examples: 52 reads “five to the power of two”, “five raised to two” or “five squared”. 73 reads “seven to the power of three”, “seven raised to three” or “seven cubed”. Exercises - Set A 1. What is the last digit of 3100 ? (Hint: Consider 31 , 32 , 33 , 34 , 35 , 36 . . . and look for a pattern.) 2. What is the last digit of 7200 ? 2. Negative bases So far we have only considered positive bases raised to a power. We will now look at negative bases. Consider the statements below: (−1)1 = −1 2 (−1) = (−1) · (−1) = 1 (−1)3 = (−1) · (−1) · (−1) = −1 (−1)4 = (−1) · (−1) · (−1) · (−1) = 1 (−2)1 = −2 (−2)2 = (−2) · (−2) = 4 (−2)3 = (−2) · (−2) · (−2) = −8 (−2)4 = (−2) · (−2) · (−2) · (−2) = 16 In he pattern above it can be seen that: A negative base raised to an odd power is negative; whereas a negative base raised to an even power is positive. 1 Index law s - 3 o E SO 2 Be careful: to a power. (−2)4 = 16, but −24 = −16, so always use brackets when raising a negative base Exercises - Set B 1. Simplify: a) (−1)17 b) −54 c) (−2)5 a) 2, 86 2. Find using your calculator: b) (−5)5 d) −(−3)2 c) −94 d) (−1, 14)23 3. Find using your calculator, correct to 3 decimal places: a) (2, 6 + 3, 7)4 3 3, 2 + 1, 92 d) 1, 47 b) 8, 63 − 4, 23 4 0, 52 e) 0, 09·, 14 c) 12, 4 · 10.74 a) 648 3, 624 3. Index laws Recall the following index laws where the indices m and n are positive integers: am · an = am+n To multiply numbers with the same base, keep the base and add the indices. am = am−n an To divide numbers with the same base, keep the base and subtract the indices. (am )n = am·n When raising a power to a power, keep the base and multiply the indices. (a · b)n = an · bn a an = n b b The power of a product is the product of the powers. The power of a quotient is the quotient of the powers. Exercises - Set C 1. Simplify using the index laws (leave your answer in index form): a) 22 · 24 b) 114 · 11 c) 1315 · 136 d) 172 · 175 e) f) g) 149 : 144 h) 98 : 92 25 22 56 5 i) (22 )4 j) (104 )2 k) (93 )7 l) (74 )5 m) 63 · 53 n) 84 : 24 o) 57 · 37 p) (63 )2 · 96 q) (83 )3 · 82 r) (102 )5 : 210 s) (62 )3 · 6 t) (73 )4 : (72 )4 4. Zero and negative indices Look at this example: 23 8 = =1 23 8 D pto. M atemáticas. IES Jovellanos. 2012 Index law s - 3 o E SO 3 23 = 23−3 = 20 . 23 But, applying the second index law: 20 = 1. So, we deduce that: a0 = 1, for all a 6= 0. In general: 72 7·7 1 1 = = = 3 75 7·7·7·7·7 7·7·7 7 72 But, applying the second index law: = 72−5 = 7−3 . 75 1 So, we deduce that: 7−3 = 3 . 7 Now, look at this example: In general, if a is any non-zero number, and n is an integer, then: • a−n = 1 an (i.e., an and a−n are reciprocals of one another). • In particular, a−1 = 1 a and a −n b = n b . a Example 1 Simplify, giving answers in simplest rational form: −2 3 −2 a) 5 b) c) 80 − 8−1 5 a) 5−2 = 1 1 = 52 25 b) −2 2 3 5 52 25 = = 2 = 5 3 3 9 c) 80 − 8−1 = 1 − 1 7 = 8 8 Exercises - Set D 1. Simplify, giving answers in simplest rational form: a) 5 − 70 b) 60 − 20 c) (6 − 2)0 d) 4−1 e) 3−2 −1 1 i) 3 f) 3−3 −1 2 j) 5 h) 2−4 m) 20 + 21 + 2−1 n) 1 21 g) 10−5 −2 3 k) 4 −2 1 o) + 2−1 3 −3 l) 50 − 5−1 p) −2 4 4 1 − 3 2 2. Write as powers of 2, 3 or 5: a) 8 f) 1 125 b) 1 8 g) 32 c) 9 h) 1 32 d) 1 9 i) 81 e) 125 j) 1 81 D pto. M atemáticas. IES Jovellanos. 2012 Index law s - 3 o E SO 4 Exercises - Set E 1. Simplify: a) 73 · 72 b) 54 · 53 c) a7 · a2 d) a4 · a e) b8 · b5 f) a3 · an g) b7 · bm h) m4 · m2 · m3 k) 77 : 74 l) 59 52 b10 m) 7 b 1113 119 p5 n) m p i) j) o) a6 a2 ya y5 p) b2x : b q) (32 )4 r) (53 )5 s) (24 )7 t) (a5 )2 u) (p4 )5 v) (b5 )n w) (xy )3 x) (a2x )5 2. Express in simplest form with a prime number base: a) 8 b) 25 c) 27 d) 43 e) 92 f) 3a · 9 g) 5t : 5 h) 3n · 9n k) (54 )x−1 l) 2x · 22−x 3x+1 3x−1 4y n) x 8 16 2x 2y m) x 4 i) j) o) 3x+1 31−x p) 2t · 4t 8t−1 3. Remove the brackets of: a) (a · b)3 b) (a · c)4 c) (b · c)5 d) (a · b · c)3 e) (2a)4 f) (5b)2 g) (3n)4 i) (4abc)3 j) h) (2bc)3 5 2c l) d a 3 k) b m 4 n 4. Express the following in simplest form, without brackets: a) (2b4 )3 3 4 m e) 2n2 b) (5a4 b)2 4 2 4a f) b2 c) (−6b2 )2 3 −2a2 g) b2 d) (−2a)3 2 −3p2 h) q3 5. Rational indices Look at this example: 1 1 1 1 Since 3 2 · 3 2 = 3 2 + 2 = 31 = 3, and √ 1 3 2 = 3. √ √ 3 · 3 = 3 also, then, by direct comparison: √ √ √ 1 1 1 Likewise, 2 3 · 2 3 · 2 3 = 21 = 2, compared with 3 2 · 3 2 · 3 2 = 2, suggests: √ 1 2 3 = 3 2. √ √ 1 In general: an = n a ( n a reads “the nth root of a”) m 1 Also: a n = (am ) n = √ n am D pto. M atemáticas. IES Jovellanos. 2012 Index law s - 3 o E SO 5 Example 2 Write as a single power of 2: √ 1 a) 3 2 b) √ 2 a) √ 3 c) √ 5 4 1 1 1 b) √ = 1 = 2− 2 2 22 1 2 = 23 c) √ √ 2 5 5 4 = 22 = 2 5 Exercises - Set F 1. Write as a single power of 2: √ √ 1 a) 5 2 b) √ c) 2 2 5 2 √ √ 4 f) 2 · 3 2 g) √ h) ( 2)3 2 2. Write as a single power of 3: √ √ 1 a) 3 3 b) √ c) 4 3 3 3 √ d) 4 2 1 i) √ 3 16 √ d) 3 3 1 e) √ 3 2 1 j) √ 8 1 e) √ 9 3 3. Write the following in the form ax where a is a prime number and x is rational: √ √ √ √ √ a) 3 7 b) 4 27 c) 5 16 d) 3 32 e) 7 49 1 f) √ 3 7 1 g) √ 4 27 1 h) √ 5 16 1 i) √ 3 32 1 j) √ 7 49 ✁✃✁✃✁✃✁✃✁✃✁✃✁✃ D pto. M atemáticas. IES Jovellanos. 2012