Download Roots and Radical Expressions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Location arithmetic wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Factorization wikipedia , lookup

Vincent's theorem wikipedia , lookup

Elementary mathematics wikipedia , lookup

Transcript
Roots and Radical
Expressions
Basic Introduction and Rules
The basic definitions of radical expressions:
index
power
π‘Žπ‘›
=𝑏 ↔
Radical sign
𝑛
radicand
𝑏=π‘Ž
What are the real-number roots of each radical expression?
3
a) 343
Because the prime factors of 343 are 7*7*7, 7 is the third (cube)
root of 343.
On the graphing calculator, press MATH, 4, 343, Enter to get 7.
b)
4
1
625
What is the prime factorization of 1?
We are looking for groups of 4 (the index), so we get 1*1*1*1.
What is the prime factorization of 625?
When we take the factor tree all the way to all prime numbers,
we get 5*5*5*5.
b)
4
1βˆ—1βˆ—1βˆ—1
5βˆ—5βˆ—5βˆ—5
1
5
=
Since we have one GROUP of four 1’s in the numerator, and one
1
1
GROUP of four 5’s in the denominator, the fourth root of
=
625
5
In this case, we must remember that since we took an even
root, there will be both a positive and a negative answer.
4
1
625
=
1
±
5
Another way to express the fact that there could be two answers
is to use the absolute value sign.
1
5
is the same thing as
1
± .
5
What are the real-number roots of each radical expression?
b)
4
1
625
We MUST use absolute value signs EVERY time that we take an
EVEN root and get an ODD powered answer.
1
th
In this case, we took the 4 root (even) and got to the first
5
power, (odd).
We can leave out the absolute value signs if we are told to
assume that all variables are positive.
What are the real-number roots of each radical expression?
3
c) βˆ’0.064
On the graphing calculator, press MATH, 4, -0.064, Enter to get
-0.4.
d) βˆ’25
Because 52 = 25 and (βˆ’5)2 = 25, neither 5 nor βˆ’5 are real
number square roots of βˆ’25.
There are no REAL-number square roots of -25.
On the graphing calculator, press 2nd, π‘₯ 2 , -25, Enter to get
ERR:NONREAL ANS. Again, there is no real square root of -25.
Find the real-number roots of each radical expression.
1)
4)
3
169
πŸπŸ‘
1
βˆ’
8
𝟏
βˆ’
𝟐
5)
𝑡𝑢𝑡𝑬
8)
βˆ’
7)
4
25
10) βˆ’0.0001 𝑡𝑢𝑡𝑬
4
2)
11)
3
729
πŸ—
3)
𝟐
𝟏𝟏
6)
4
0.1296 𝟎. πŸ”
9)
5
1
243
4
121
𝟏
πŸ‘
12)
4
0.0016
3
125
216
3
βˆ’0.343 βˆ’πŸŽ. πŸ•
3
8
125
𝟎. 𝟐
πŸ“
πŸ”
𝟐
πŸ“
𝑛
You can not assume that π‘Žπ‘› = π‘Ž.
For example, (βˆ’6)2 = 36 = 6, and βˆ’6.
This leads to the following property for any real number π‘Ž.
𝑛
If 𝑛 is odd, π‘Žπ‘› = π‘Ž
𝑛
If 𝑛 is even, π‘Žπ‘› = π‘Ž .
Again, we use absolute value signs if we took an EVEN power and got an
ODD power answer.
What is the simplified form of each radical expression?
a)
3
1000π‘₯ 3 𝑦 9
b)
4
256𝑔8
β„Ž4 π‘˜ 16
What is the simplified form of each radical expression?
a)
3
1000π‘₯ 3 𝑦 9
πŸ‘
𝟏𝟎 βˆ— 𝟏𝟎 βˆ— 𝟏𝟎 βˆ— 𝒙 βˆ— 𝒙 βˆ— 𝒙 βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š
πŸ‘
𝟏𝟎 βˆ— 𝟏𝟎 βˆ— 𝟏𝟎 βˆ— 𝒙 βˆ— 𝒙 βˆ— 𝒙 βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š βˆ— π’š
We have 1 group of 3 10’s, 1 group of 3 x’s, and 3 groups of 3 y’s.
These all come out from inside the radical.
𝟏𝟎 βˆ— 𝒙 βˆ— π’š βˆ— π’š βˆ— π’š
πŸπŸŽπ’™π’šπŸ‘
What is the simplified form of each radical expression?
4
b)
256𝑔8
β„Ž4 π‘˜ 16
πŸ’
πŸ’
π’‰βˆ—π’‰βˆ—π’‰βˆ—π’‰βˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œ
πŸ’
πŸ’
πŸ’βˆ—πŸ’βˆ—πŸ’βˆ—πŸ’βˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆ
πŸ’βˆ—πŸ’βˆ—πŸ’βˆ—πŸ’βˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆβˆ—π’ˆ
π’‰βˆ—π’‰βˆ—π’‰βˆ—π’‰βˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œβˆ—π’Œ
πŸ’π’ˆπŸ
𝒉 π’ŒπŸ’
To convert from radical form to rational exponents, place the power of the
radicand in the numerator, over the index.
𝑛
π‘š
𝑛
π‘Žπ‘š = π‘Ž .
4
2
For example, π‘₯ 4 = π‘₯ = π‘₯ 2 .
Rewrite the following radicals into rational exponents.
4
3
4
2
1) π‘₯ 𝑦𝑧
2) π‘₯ 4 𝑦 5 𝑧 7
πŸ’ 𝟏 𝟐
π’™πŸ‘ π’šπŸ‘ π’›πŸ‘
4)
πŸ’ πŸ“ πŸ•
π’™πŸ’ π’šπŸ’ π’›πŸ’
π‘Ž5 𝑏𝑐 2
πŸ“ 𝟏 𝟐
π’‚πŸ π’ƒπŸ π’„πŸ
=
πŸ“ 𝟏
π’‚πŸ π’ƒπŸ 𝒄
=
πŸ“ πŸ•
π’™π’šπŸ’ π’›πŸ’
3)
7
π‘₯ 14 𝑦𝑧 2
πŸπŸ’ 𝟏 𝟐
𝒙 πŸ• π’šπŸ• π’›πŸ•
=
𝟏 𝟐
𝟐
𝒙 π’šπŸ• π’›πŸ•
To convert from rational exponent form to radical form, reverse the process.
π‘š
𝑛
π‘Ž =
𝑛
π‘Žπ‘š .
3
2
For example, π‘₯ = π‘₯ 3 .
Rewrite the following rational exponents into radicals.
3
7
1) π‘₯ 𝑦
πŸ•
5
7
π’™πŸ‘ π’šπŸ“
3
4
1 7
4 4
2) π‘₯ 𝑦 𝑧
πŸ’
π’™πŸ‘ π’šπ’›πŸ•
4
5
3 3
10 5
3) π‘Ž 𝑏 𝑐
𝟏𝟎
π’‚πŸ– π’ƒπŸ‘ π’„πŸ”
Classwork:
Complete the worksheet on simplifying radicals.
Homework:
Complete the worksheet on converting radicals to rationals and vice-versa.