Download Experiments PossionS + PossionHC Mouse Retinal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Data (Star Trek) wikipedia , lookup

Incomplete Nature wikipedia , lookup

Pattern recognition wikipedia , lookup

Time series wikipedia , lookup

Transcript
國立雲林科技大學
National Yunlin University of Science and Technology
Poisson-Based Self-Organizing Feature
Maps and Hierarchical Clustering for
Serial Analysis of Gene Expression Data
Presenter : Shao-Wei Cheng
Authors : Haiying Wang, Huiru Zheng, and Francisco Azuaje
TCBB 2007
Intelligent Database Systems Lab
Outline

Motivation

Objective

Methodology

Experiments and Results

Conclusion

Personal Comments
N.Y.U.S.T.
I. M.
2
Intelligent Database Systems Lab
Motivation
N.Y.U.S.T.
I. M.

Serial analysis of gene expression (SAGE)

PoissonC is an adaptation the k-means. But PoissonC fails
to provide users with a platform to explore complex
relationships between clusters.

SOM can be used for visualization. But SOM has shown
poor performance on SAGE data analysis by euclidean
distance.
Intelligent Database Systems Lab
Objectives

To implement and evaluate an adaptation of the SOM
algorithm (PoissonS)
incorporates Poisson-statistics-based distance function into the SOM
learning process to support SAGE data analysis.


N.Y.U.S.T.
I. M.
To integrate Poisson-based distance into a hierarchical
clustering system (PoissonHC)
Be combined with PoissonS to further improve pattern discovery and
visualization for large SAGE data sets.

4
Intelligent Database Systems Lab
Methodology

Poisson distribution

PoissonS
N.Y.U.S.T.
I. M.
Intelligent Database Systems Lab
Methodology

N.Y.U.S.T.
I. M.
PoissonHC
Intelligent Database Systems Lab
Experiments


N.Y.U.S.T.
I. M.
Data sets

Synthetic Data

Mouse Retinal SAGE Data

Human Cancer SAGE Data
Compared algorithms:

SOM with Euclidean distance

SOM with Pearson Correlation
Intelligent Database Systems Lab
Experiments

N.Y.U.S.T.
I. M.
PossionS

Synthetic Data
Euclidean distance
Pearson Correlation
Intelligent Database Systems Lab
Experiments

N.Y.U.S.T.
I. M.
PossionHC

Mouse Retinal SAGE Data
Euclidean distance
Pearson Correlation
Intelligent Database Systems Lab
Experiments

SAGE libraries
N.Y.U.S.T.
I. M.
PossionHC

Human Cancer
SAGE tags
Intelligent Database Systems Lab
Experiments

N.Y.U.S.T.
I. M.
PossionS + PossionHC  Mouse Retinal SAGE Data
Intelligent Database Systems Lab
Conclusion

N.Y.U.S.T.
I. M.
By incorporating a Poisson statistics-based distance into
the SOM learning algorithm and hierarchical clustering
techniques, significant improvements in pattern discovery
and visualization for SAGE data are accomplished.
12
Intelligent Database Systems Lab
Personal Comments

Advantage


Incorporates Poisson-statistics-based distance function into the SOM
and hierarchical clustering.
Drawback


N.Y.U.S.T.
I. M.
Can’t determine the optimal number of clusters automatically.
Application

Clustering about SAGE data. .
13
Intelligent Database Systems Lab