Download Supplementary References 1. Cheung NK, Guo HF, Modak S

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Secreted frizzled-related protein 1 wikipedia , lookup

Transcript
Supplementary References
1. Cheung NK, Guo HF, Modak S, Cheung IY. Anti-idiotypic antibody facilitates scFv chimeric
immune receptor gene transduction and clonal expansion of human lymphocytes for tumor
therapy. Hybrid Hybridomics 2003;22:209-218.
2. Zhang T, Wu MR, Sentman CL. An NKp30-based chimeric antigen receptor promotes T cell
effector functions and antitumor efficacy in vivo. J Immunol 2012;189:2290-2299.
3. Shaffer DR, Savoldo B, Yi Z, et al. T cells redirected against CD70 for the immunotherapy of
CD70-positive malignancies. Blood 2011;117:4304-4314.
4. Emtage PC, Lo AS, Gomes EM, Liu DL, Gonzalo-Daganzo RM, Junghans RP. Secondgeneration anti-carcinoembryonic antigen designer T cells resist activation-induced cell death,
proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a
preclinical evaluation. Clin Cancer Res 2008;14:8112-8122.
5. Shibaguchi H, Luo NX, Kuroki M, et al. A fully human chimeric immune receptor for
retargeting T-cells to CEA-expressing tumor cells. Anticancer Res 2006;26:4067-4072.
6. Burns WR, Zhao Y, Frankel TL, et al. A high molecular weight melanoma-associated antigenspecific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer
Res 2010;70:3027-3033.
7. Morgan RA, Johnson LA, Davis JL, et al. Recognition of glioma stem cells by genetically
modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum
Gene Ther 2012;23:1043-1053.
8. Shen CJ, Yang YX, Han EQ, et al. Chimeric antigen receptor containing ICOS signaling
domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing
glioma. J Hematol Oncol 2013;6:33.
9. Zhou X, Li J, Wang Z, et al. Cellular immunotherapy for carcinoma using genetically
modified EGFR-specific T lymphocytes. Neoplasia 2013;15:544-553.
10. Chow KK, Naik S, Kakarla S, et al. T Cells Redirected to EphA2 for the Immunotherapy of
Glioblastoma. Mol Ther 2013;21:629-637.
11. Shirasu N, Yamada H, Shibaguchi H, Kuroki M, Kuroki M. Molecular characterization of a
fully human chimeric T-cell antigen receptor for tumor-associated antigen EpCAM. J Biomed
Biotechnol 2012;2012:853879.
12. Davies DM, Foster J, van der Stegen SJ, et al. Flexible targeting of ErbB dimers that drive
tumorigenesis by using genetically engineered T cells. Mol Med 2012;18:565-576.
13. Ahmed N, Salsman VS, Yvon E, et al. Immunotherapy for osteosarcoma: genetic
modification of T cells overcomes low levels of tumor antigen expression. Mol Ther
2009;17:1779-1787.
1
14. Zhao Y, Wang QJ, Yang S, et al. A herceptin-based chimeric antigen receptor with
modified signaling domains leads to enhanced survival of transduced T lymphocytes and
antitumor activity. J Immunol 2009;183:5563-5574.
15. Haynes NM, Trapani JA, Teng MW, et al. Single-chain antigen recognition receptors that
costimulate potent rejection of established experimental tumors. Blood 2002;100:3155-3163.
16. Kakarla S, Chow KK, Mata M, et al. Antitumor Effects of Chimeric Receptor Engineered
Human T Cells Directed to Tumor Stroma. Mol Ther 2013;
17. Schuberth PC, Hagedorn C, Jensen SM, et al. Treatment of malignant pleural
mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med
2013;11:187.
18. Tran E, Chinnasamy D, Yu Z, et al. Immune targeting of fibroblast activation protein
triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med
2013;210:1125-1135.
19. Song DG, Ye Q, Carpenito C, et al. In vivo persistence, tumor localization, and antitumor
activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (41BB). Cancer Res 2011;71:4617-4627.
20. Yvon E, Del Vecchio M, Savoldo B, et al. Immunotherapy of metastatic melanoma using
genetically engineered GD2-specific T cells. Clin Cancer Res 2009;15:5852-5860.
21. Kailayangiri S, Altvater B, Meltzer J, et al. The ganglioside antigen G(D2) is surfaceexpressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer
2012;106:1123-1133.
22. Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta
designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin
Cancer Res 2010;16:2769-2780.
23. Willemsen RA, Debets R, Hart E, Hoogenboom HR, Bolhuis RL, Chames P. A phage
display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for
retargeting of primary human T lymphocytes. Gene Ther 2001;8:1601-1608.
24. Willemsen RA, Ronteltap C, Chames P, Debets R, Bolhuis RL. T cell retargeting with
MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific
cytotoxicity and cytokine production. J Immunol 2005;174:7853-7858.
25. Huang G, Yu L, Cooper LJ, Hollomon M, Huls H, Kleinerman ES. Genetically modified T
cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the
regression of established osteosarcoma lung metastases. Cancer Res 2012;72:271-281.
26. Kong S, Sengupta S, Tyler B, et al. Suppression of human glioma xenografts with secondgeneration IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res
2012;18:5949-5960.
2
27. Westwood JA, Smyth MJ, Teng MW, et al. Adoptive transfer of T cells modified with a
humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc
Natl Acad Sci U S A 2005;102:19051-19056.
28. Lanitis E, Poussin M, Hagemann IS, et al. Redirected antitumor activity of primary human
lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther
2012;20:633-643.
29. Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts
with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad
Sci U S A 2009;106:3360-3365.
30. Wilkie S, Picco G, Foster J, et al. Retargeting of human T cells to tumor-associated MUC1:
the evolution of a chimeric antigen receptor. J Immunol 2008;180:4901-4909.
31. Chekmasova AA, Rao TD, Nikhamin Y, et al. Successful eradication of established
peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically
targeted to the MUC16 antigen. Clin Cancer Res 2010;16:3594-3606.
32. Barber A, Zhang T, DeMars LR, Conejo-Garcia J, Roby KF, Sentman CL. Chimeric
NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res
2007;67:5003-5008.
33. Song DG, Ye Q, Santoro S, Fang C, Best A, Powell DJ, Jr. Chimeric NKG2D CARexpressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase
inhibition. Hum Gene Ther 2013;24:295-305.
34. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity
and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol
2002;20:70-75.
35. Ma Q, Gomes EM, Lo AS, Junghans RP. Advanced generation anti-prostate specific
membrane antigen designer T Cells for prostate cancer immunotherapy. Prostate 2013;
36. Hudecek M, Lupo Stanghellini MT, Kosasih PL, et al. Receptor affinity and extracellular
domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor Tcells. Clin Cancer Res 2013;
37. Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, et al. Genetically engineered T cells
bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain
antibodies as targeting agents. Cancer Lett 2013;334:237-244.
38. Niederman TM, Ghogawala Z, Carter BS, Tompkins HS, Russell MM, Mulligan RC.
Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth
factor receptors. Proc Natl Acad Sci U S A 2002;99:7009-7014.
3
39.
Chinnasamy D, Yu Z, Theoret MR, et al. Gene therapy using genetically modified lymphocytes
targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest
2010;120:3953-3968.
4