Download ppt

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ESE534
Computer Organization
Day 6: September 21, 2016
Energy, Power, Reliability
1
Penn ESE534 Fall 2016 -- Mehta & DeHon
Today
• Energy tradeoffs
• Voltage limits and leakage
• Variations
• [more of the gory transistor equations…]
2
Penn ESE534 Fall 2016 -- Mehta & DeHon
At Issue
• Many now argue energy will be the
ultimate scaling limit
– (not lithography, costs, …)
• Proliferation of portable and handheld
devices
– …battery size and life biggest issues
• Cooling, energy costs may dominate cost
of electronics
– Even server room applications
3
Penn ESE534 Fall 2016 -- Mehta & DeHon
Preclass 1
• 1GHz case
– Voltage?
– Energy per Operation?
– Power required for 2 processors?
• 2GHz case
– Voltage?
– Energy per Operation?
– Power required for 1 processor?
4
Penn ESE534 Fall 2016 -- Mehta & DeHon
Preclass 1 Lesson
• What does Preclass 1 result tell us?
5
Penn ESE534 Fall 2016 -- Mehta & DeHon
Energy and Delay
1
2
E  CV
2
tgd=Q/I=(CV)/I
Id,sat=(mCOX/2)(W/L)(Vgs-VTH
2
)
6
Penn ESE534 Fall 2016 -- Mehta & DeHon
Energy/Delay Tradeoff
• EV2
• tgd1/V
1
E  CV 2
2
tgd=(CV)/I
Id,sat (Vgs-VTH)2
• We can trade speed (latency) for energy
• E×(tgd)2 constant
Martin et al. Power-Aware Computing, Kluwer 2001
http://caltechcstr.library.caltech.edu/308/
7
Penn ESE534 Fall 2016 -- Mehta & DeHon
Area/Time Tradeoff
• Also have Area-Time tradeoffs
– HW2 spatial vs temporal multipliers
– See more next week
• Compensate slowdown with additional
parallelism
– For throughput problems
• …trade Area for Energy  Architectural Option
8
Penn ESE534 Fall 2016 -- Mehta & DeHon
Question
• By how much can we reduce energy?
• What limits us?
9
Penn ESE534 Fall 2016 -- Mehta & DeHon
Challenge: Power
10
Penn ESE534 Fall 2016 -- Mehta & DeHon
Origin of Power Challenge
• Limited capacity to remove heat
– ~100W/cm2 force air
– 1-10W/cm2 ambient
• Transistors per chip grow at Moore’s Law rate
= (1/F)2
• Energy/transistor must decrease at this rate
to keep constant power density
• P/tr  CV2f
• E/tr  CV2
– …but V scaling more slowly than F
11
Penn ESE534 Fall 2016 -- Mehta & DeHon
ITRS Vdd Scaling:
More slowly than F
12
Penn ESE534 Fall 2016 -- Mehta & DeHon
ITRS CV2 Scaling:
More slowly than (1/F)2
13
Penn ESE534 Fall 2016 -- Mehta & DeHon
Origin of Power Challenge
• Transistors per chip
grow at Moore’s
Law rate = (1/F)2
• Energy/transistor
must decrease at
this rate to keep
constant
• E/tr  CV2
14
Penn ESE534 Fall 2016 -- Mehta & DeHon
15
Penn ESE534 Fall 2016 -- Mehta & DeHon
Intel Power Density
16
Penn ESE534 Fall 2016 -- Mehta & DeHon
Impact
Power Limits Integration
Density Limit
Constant Power Limit
45nm
32nm
22nm
16nm
11nm
Source: Carter/Intel
17
Penn ESE534 Fall 2016 -- Mehta & DeHon
17
Impact
• Power density is limiting scaling
– Can already place more transistors on a chip than
we can afford to turn on!
• Power is potential challenge/limiter for all
future chips.
– Only turn on small percentage of transistors?
– Operate those transistors as much slower
frequency?
– Find a way to drop Vdd?
18
Penn ESE534 Fall 2016 -- Mehta & DeHon
How far can we reduce Vdd?
19
Penn ESE534 Fall 2016 -- Mehta & DeHon
Limits
• Ability to turn off the transistor
• Parameter Variations
• Noise (not covered today)
20
Penn ESE534 Fall 2016 -- Mehta & DeHon
MOSFET Conduction
From: http://en.wikipedia.org/wiki/File:IvsV_mosfet.png
Penn ESE534 Fall 2016 -- Mehta & DeHon
21
Transistor Conduction
gate
drain
src
channel
• Three regions
– Subthreshold (Vgs<VTH)
– Linear (Vgs>VTH) and (Vds < (Vgs-VTH))
– Saturation (Vgs>VTH) and (Vds > (Vgs-VTH))
22
Penn ESE534 Fall 2016 -- Mehta & DeHon
Saturation Region
• (Vgs>VTH)
• (Vds > (Vgs-VTH))
Ids,sat=(mCOX/2)(W/L)(Vgs-VTH
2
)
23
Penn ESE534 Fall 2016 -- Mehta & DeHon
Linear Region
• (Vgs>VTH)
• (Vds < (Vgs-VTH))
Ids,lin=(mCOX)(W/L)((Vgs-VTH)Vds-(Vds)2/2)
24
Penn ESE534 Fall 2016 -- Mehta & DeHon
Subthreshold Region
• (Vgs<VTH)
V

Isub  IVT 10
gs VTH
/ S
S  (ln( 10))kT / q
[Frank, IBM J. R&D v46n2/3p235]
25
Penn ESE534 Fall 2016 -- Mehta & DeHon
IDS vs. VGS
26
Penn ESE370 Fall2014 -- DeHon
Operating a Transistor
• Concerned about Ion and Ioff
• Ion drive (saturation) current for charging
– Determines speed: Tgd = CV/I
• Ioff leakage current
– Determines leakage power/energy:
• Pleak = V×Ileak
• Eleak = V×Ileak×Tcycle
27
Penn ESE534 Fall 2016 -- Mehta & DeHon
Leakage
• To avoid leakage want Ioff very small
• Switch V from Vdd to 0
• Vgs in off state is 0 (Vgs<VTH)
V

Isub  IVT 10
gs VTH
Ioff  IVT 10
/ S
VTH  / S 
28
Penn ESE534 Fall 2016 -- Mehta & DeHon
Leakage
Ioff  IVT 10
•
•
•
•
VTH  / S 
S90mV for single gate
S70mV for double gate
For lowest leakage, want S small, VTH large
4 orders of magnitude IVT/IoffVTH>280mV
Leakage limits VTH in turn limits Vdd 29
Penn ESE534 Fall 2016 -- Mehta & DeHon
How maximize Ion/Ioff ?
• Maximize Ion/Ioff – for given Vdd ? EswCV2
• Get to pick VTH
Id,sat=(mCOX/2)(W/L)(Vgs-VTH
2
)
Id,lin=(mCOX)(W/L)(Vgs-VTH)Vds-(Vds)2/2
V

Isub  IVT 10
gs VTH
Penn ESE534 Fall 2016 -- Mehta & DeHon
/ S
30
IDS vs. VGS
31
Penn ESE370 Fall2014 -- DeHon
Preclass 2
• E = Esw + Eleak
• Eleak = V×Ileak×Tcycle
• EswCV2
V

Isub  IVT 10
gs VTH
• Ichip-leak = Ndevices ×Itr-leak
32
Penn ESE534 Fall 2016 -- Mehta & DeHon
/ S
Preclass 2
• Eleak(V) ?
• Tcycle(V)?
33
Penn ESE534 Fall 2016 -- Mehta & DeHon
In Class
• Assign calculations
– SIMD – each student computes for a
different Voltage
• Collect results on board
• Group: Identify minimum energy point
and discuss
34
Penn ESE534 Fall 2016 -- Mehta & DeHon
Graph for In Class
36
Penn ESE534 Fall 2016 -- Mehta & DeHon
Impact
• Subthreshold slope prevents us from
scaling voltage down arbitrarily.
• Induces a minimum operating energy.
37
Penn ESE534 Fall 2016 -- Mehta & DeHon
Challenge: Variation
38
Penn ESE534 Fall 2016 -- Mehta & DeHon
Statistical
Dopant
Count and
Placement
39
Penn ESE534 Fall 2016 -- Mehta & DeHon
[Bernstein et al, IBM JRD 2006]
Vth Variability @ 65nm
40
Penn ESE534 Fall 2016 -- Mehta & DeHon
[Bernstein et al, IBM JRD 2006]
Variation
• Fewer dopants, atoms  increasing Variation
• How do we deal with variation?
% variation in VTH
(From ITRS prediction)
41
Penn ESE534 Fall 2016 -- Mehta & DeHon
41
Impact of Variation?
• Higher VTH?
– Not drive as strongly  slower
– Id,sat (Vgs-VTH)2
• Lower VTH?
– Not turn off as well  leaks more
Ioff  IVT 10
VTH  / S 
42
Penn ESE534 Fall 2016 -- Mehta & DeHon
Variation
• Margin for expected variation
• Must assume VTH can be any value in range
Ion,min=Ion(Vth,max)
Probability Distribution
Id,sat (Vgs-VTH)2
Vgs = Vdd
VTH
43
Penn ESE534 Fall 2016 -- Mehta & DeHon
Margining
• Must raise Vdd to increase drive strength
• Increase energy
Ion,min=Ion(Vth,max)
Probability Distribution
Id,sat (Vgs-VTH)2
Vgs = Vdd
VTH
44
Penn ESE534 Fall 2016 -- Mehta & DeHon
Variation
• Increasing variation forces higher voltages
– On top of our leakage limits
45
Penn ESE534 Fall 2016 -- Mehta & DeHon
45
• Margins growing due to
increasing variation
Probability Distribution
Variations
Old
New
Delay
• Margined value may be worse than older
technology?
46
Penn ESE534 Fall 2016 -- Mehta & DeHon
End of Energy Scaling?
Black nominal
Grey with variation
[Bol et al., IEEE TR VLSI Sys 17(10):1508—1519]47
Penn ESE534 Fall 2016 -- Mehta & DeHon
Minimum Energy vs Technology
• Similar
experiment for
FPGA logic
6
5
4
3
Energy Increase
Energy Increase
2
• …and a hint at
how to mitigate
Energy Decrease
1
[Mehta PhD thesis 2012 (refined from FPGA 2012)]
Penn ESE534 Fall 2016 -- Mehta & DeHon
48
Chips Growing
• Larger chips (billions of transistors) 
sample further out on distribution curve
From: http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg
49
Penn ESE534 Fall 2016 -- Mehta & DeHon
Big Ideas
• Can trade time for energy
– … area for energy
• Variation and leakage limit voltage scaling
• Power major limiter going forward
– Can put more transistors on a chip than can switch
• Continued scaling demands
– Deal with noisier components
• High variation
• … other noise sources
50
Penn ESE534 Fall 2016 -- Mehta & DeHon
Admin
• Homework 2 due Tonight
• Reading for Monday on web
• Homework 3 due next Wednesday
51
Penn ESE534 Fall 2016 -- Mehta & DeHon