Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
10thMathSumAngles Classroom Teacher: [00:02:00] Student: Teacher: Student: Teacher: [00:04:00] Student: Teacher: Student: Teacher: Student: Teacher: [00:06:00] Student: Teacher: Allrightgiveyouacoupleminutes,findthosemissingangles.Grabacalculatorifyou needit.Youguystakeanotherminute.[inaudible00:02:12]Yeah,buthowdoyouknow that?[inaudible00:02:26]Alittlemore,alittlemore.Youdon'thavetodrawthe [inaudible00:02:44] Ineedtostudy. Allright,yougottosubtractthis.[inaudible00:02:55][crosstalk00:03:27]Dothesetwo angleshave[inaudible00:03:40] No. Thesetwoangles,solet'sthinkaboutallthe[inaudible00:03:45].Insteadoftryingto measureeveryangle,whatdegreeisthis? [inaudible00:03:59] Allright,solet'strytofigureoutwhat[inaudible00:04:02].I'llgiveyouguysalittlebit moretime,seeingsomegoodanswershere,somegooddiagrams.[inaudible00:04:26] Let'stalkaboutit.Thisissomethingwe'vedonequiteawhileago.Weprovedthis quartertwomaybe,interioranglesofatriangle.Today,andIknowitdoesn'tsayiton thetitle,we'regoingtobeextendingthisintopolygons.Whathappensifwehavea four-sidedshapeorafive-sideshapeoraten-sidedshapeorathousand-sidedshape? We'regoingtoextrapolatefromthereandfigureoutwhataretheinterioranglesgoing toaddupto.Thenofcourse,justlikeyouguysdidforthese,findthosemissingpieces. Forthefirstguy,whatkindoftriangleisthis? Isosceles. Isosceles,ofcourse.Whichmeansthesetwoanglesare? Thesame. Congruent,yeahthesame.Wecanlabelthisx=degreesifwereallywantedto.Iknow manyofyoudon'tneedtowritethefullequation,buttobepreciselet'swriteitout.We knowthesumoftheinterioranglesisalwaysthesame,whichis180.Wetechnicallycan writethisfullequation.Whetheryouactuallydidthisornot,thisisthethoughtthatyou guyshadwhenyouweredoingthis.Basicallywehave34+X+X=that180.Ofcourse,what youguysactuallydidisyouminused34andthenyoudividedbytwo.Intheend,when wedidthat,whatdidwecomeoutwith? 73. 73degrees,good.Becausethisisanequation,oneofthegreatfeaturesthatwecan Student: Teacher: [00:08:00] Student: Teacher: Student: Teacher: exploitiswecancheckouranswer.Ifyouhave73,orsomethingelse,whatifyouhad72 oryougotadifferentanswer?Youcanaddthemup.Youcanaddup73and73and34 andchecktoseeifthatis180.Nowagain,thisoneisfairlystraightforward,soprobably notnecessary,butthatisawayofchecking,suchasonatest,justtomakesurethatyou gotitright. Secondone,righttriangle,sameidea.Wehaveour64+90+something=180,andStudent, whatdidthatactuallycomeoutto? 26degrees. 26degrees,soundsaboutright.Fairlystraightforward,it'sbasicarithmetic.Sometimes youhavetobecleverbecausecertainanglesarecongruentandtheydon'tgiveyouone ofthoseangles,becausethatwouldjustgiveyoutheanswer,soyourequationneedsto beabitmorecomplicated,butingeneralit'sadditionandsubtraction.Wewillgetonto someofthoseequations,lateron,whereit'slike64+Xor2X-3,andyouhavetomake thosebiggerequations.Wetalkedaboutthatinourreviewlastclass,butforthemost part,alotofthemathyou'regoingtodotodayissimplyadditionandsubtraction.Nota bigdeal,shouldbeprettygood. Nohomeworklasttime,huh?Ihavenotgradedyourtestyet.Iwilldothoseassoonas possible.Ifyoureallywanttogetideaofwhatyouhave,comeseemeafterclasstoday. WecangothroughitandIdon'tthinkIcangradeitthatquickly,butwecantalkaboutit andseewhatyouguysactuallygot.I'lltrytodothatthisweekend,assoonaspossible. Todaywe'regoingtobeinvestigatingandthenwritingdownourlasttheorem,which hastodowiththeinterioranglesofanyshape,notjustatriangle,butwhatabouta four-sided,five-sided,six-sidedshape?We'regoingtostartwithalittleactivity,sograb yourbooks.Opentoablankpage,whichIguessisthenextpage.Graboneofthe protractorsthatIputonyourdesk.What'syourquestion? CanIgetmybook? Yes,goaheadit'sfine.We'regoingtoinvestigate,andifyouactuallylookinsideyour workbook,onpage149,there'salittletable.We'regoingtofillthatoutlater,somaybe youjustwanttokeepthatofftotheside.Itlookslikethis,bytheway.Canwedouble check?Isit159? 150. Thereisoneon150,butIthinkthere'sanotheroneon149.Check149.Isthattheone? No,thereyougo.Okay,yes.There'salotoftableshere.We'renotgoingtofillthemall out.There'sbasicallytwoideaswe'regoingtodo.Firstofall,we'regoingtoinvestigate, andthisistheinductivereasoning.We'regoingtophysicallydrawsomeofthese polygons.We'regoingtomeasuretheirangles,whichagain,isnotthemostaccurate wayofdoingit,becausewe'rejustgoingtomakethemup,andwearegoingtoaddup 10thMathSumAngles Classroom Page 2 of 16 [00:10:00] [00:12:00] [00:14:00] [00:16:00] thoseangles.We'regoingtotrytocomeupwithanidea,comeupwithatheoryabout howtheseanglesarerelatedinsideabunchofdifferentpolygons. Thebookwantedyoutodoallofthem,andobviouslythat'sgoingtotakeforever,soI justbrokeyouguysupbytwopolygons.Ialternatedthemsoyou'renotdoingamillion differentsides.Onyourtablethereshouldbeastickynote.It'llsaypolygonwith9and5 sides,or7and4sides,whatever,justtwodifferentpolygons.Whatyouneedtodois justlikeIdidoverhere.Makeapolygonwiththatnumberofsides,andthenmakethe secondpolygonwiththatnumberofsides.Justmakethemstraight.Usethestraight edge.Theydon'thavetobeperfect.Theydon'thavetoberegular.Theydon'thaveto haveanyparticularlength. Justmakethemandthen,asaccuratelyasyoucan,butroundedtothenearestwhole number,pleasemeasurethoseanglesandaddthemup.We'lltakeacoupleminutes hereandseewhatyouguyscando.Youcanworkwithapersonatyourtable,butdraw them,measurethem,andthencompare.Seeifyouguysgotthesamemeasurements foreachoftheseitems.Takeacoupleminutes.They'renotgoingtocomeoutperfect, butwe'llgetthemcloseenough.[crosstalk00:10:58] Yeah?Youhaveyoursixside,nowyouneedtomeasure[inaudible00:11:49].You're doinggood.Youlineitupasmuchaspossibleandthenyouwanttoseewherethis ends.[inaudible00:12:06]Youhavetostartfromthisside. Pleasebecarefulguys,theprotractorhas2sidestoit.Right?Oneofthemcountingup, oneofthemcountingdown,lookattheangleandseeifit'sacuterorobtuseandthat willbeaneasywaytoswitchtotellwhichsideyoushouldbeusing,right?Justbe carefulthat.Iswitchthatupallthetime.[crosstalk00:12:40] Letmegiveyouoneofthese.It'skindofhardtomeasure[crosstalk00:12:46].Basically, youaddthisandlineitupwiththesidetoseeiftheothersideaddsup.Ascloseasyou can,I'mnotsurehowaccuratethisisgoingtobe.Wewilltryit,thenwewilldothe rhythm.Thiswillbeinterestingtoseehowcloseyouguyswillget.[inaudible00:13:35] Ascloseasyoucanget.Getatleastoneofthosedownandmeasureitbeforeyoustart thesecondonejustsowecangetalittlebitaheadhere. Youstartatthecornerandlineitup.Thisis[inaudible00:14:06]Right?Thenyourother angleiscomingoffthisside.Theeasiestwayistouseanotherobtusetostraightenit andthenlineitup.No,nothat'snotobtuse.[inaudible00:14:46]Yeah,thetenthskind of[inaudible00:14:51].Itdoesn'thavetobethat.It'sgettingcloseguys.Let'stakeone moreminuteandgetatleast1downandstartaddingupthoseangles.Let'sdoasmany aswecanonourtableandthenwe'llfindtheexactangle. Onceyougetoneofyouranswers,startthetable.I'llgiveyou1moreminuteandthen we'llbedone.Getatleast1down.[inaudible00:16:22]Whatdoyoudo?[inaudible 00:16:36]Putthatontheendandthenyoulineupthislinewith[inaudible00:16:41] Thenyouwantthisline,youcannotseeitalltheway.Thatwouldneedtocomefrom 10thMathSumAngles Classroom Page 3 of 16 [00:18:00] Student: Teacher: Student: Teacher: Student: Teacher: Student: Teacher: Student: Teacher: Student: Teacher: [00:20:00] thisside.[crosstalk00:17:14]Allright,dowehaveacoupleangleswecanputuphere?I knowthegiantonesarekindoftricky. Howaboutthetriangle?Wealreadyknowthatone,yeah?Howaboutthetriangle? Whatdoesthataddupto?Isawacouplepeopledothequadrilateral,the4sidedone, althoughwe'vealreadytalkedaboutthatandsowhatdoesthatonecomeoutto?360. Alright,Isawacouplepeopledoingthepentagon.Studentyouhadthatone,whatdid thataddupto? 541,butI'mthinkingitmaybe540. 541,butyouarethinkingitmaybe540.Let'sjustsurveyeveryone.Doesanyonehave anothersumyoucandorightnow?Anythingbigger?Student,youcananswer.Which onewasthat?77?87? 87. 87?Okay.Thereisapatternhere.It'skindofhardtofind,allright?Whenyou're measuringthings,you'renotgettingexactangles,becauseyou'rejustmakingthisup. Thisisaproblem.However,whenpeoplehadlookedatthisthroughouthistorythey noticedthattherewassomethinghappening.Therewassomesortofpattern.When theytook2differentpentagons,andtheymeasuredtheangles,theywereallaround 541,540,539.Theywereallaroundthesamesortofarea.Wereyougoingtosay something? Igot880. 880?Okay.Theywererelatedinsomeway.Youguyscanseethataswegethigherup here,thesenumberseemtogetbigger,whichkindofmakessensethere'smoreangles. Thereissomesortofpattern.[inaudible00:19:35] Igot1280. Forwhichone? Forthis87. 1020?Youguyswanttoseetherealanswers? Isitaddingby1? Itisaddingbysomething.Itisadding.Let's...BeforeIevenshowyouguysthis,let'stry somethingelse.Thisisinefficientbecausewehavetoliterallymeasureeverysingle length.Wealreadyknowafact.Wealreadyknowsomethingaboutpolygonsatleast simplepolygons.Thatis...Triangleshaveameasure.IfIdrawatriangleandIaddupthe 10thMathSumAngles Classroom Page 4 of 16 Class: Teacher: Class: Teacher: [00:22:00] Class: Teacher: Class: anglesofanytriangle?Whatdoesitcomeoutto? 180. 180.DoesitmatterhowIdrawit?Doesitmatterit'sshape,it'ssize?Noright?Thisisa factthatwehaveproven.We'veproveditseveraldifferentways.ThewayIrememberis theparallellines,youcandrawalittletriangleinsideit.Therearelotsofwaysofproving it.Hereiswhatwewanttodo,let'sseeifwecantakethosepolygons,theonesyoujust drew,anddividethemupintotriangles.Here'sthething,youcannotjustdividethem upintoanytriangles,thatwillnotwork.Youneedtodividethemupnice.Wecanshow youexamples.We'lltakethisguy.I'mgoingtodividethisupintotriangles.Youguystell meifIdidthisright. No. Here'stheproblem,Iwantthetrianglestohelpmefindtheinteriorangles.These trianglesandthisisn'tevenatriangle...Trianglesdonothavetheverticesatthe quartersofthisshape,whichmeanstheverticesaregoingtobeabletoequalthe cornersoftheshape.IwoulddoisIwanttodrawitnicely.I'mgoingtoshowyouguysa tricksoyouguyscanusethisonyourdiagram.Thetrickis,pick1vertices.Highlight1 verticesontheshapethatyoujustdrew,doesn'tmatter...Anyone.Thenconnectthat verticestoeveryothervertices. Clearlytheadjacentonesarealreadyconnected,sonotnecessary.Forthese,connectit andthenconnectit.Forthisone,Iguessthere'sonly1,connect.AlrightI'mgoingtofive youguysaminute.Thiswillbemucheasierthantryingtoaddupallthestuff.Takeyour 2shapesandconnectonecornertoalltheothercornersthatyoucan.Thencountup thenumberoftriangles.Giveitatry.Anytimeyoudrawit,itcancomeupkindofweird, justmakesureitconnectstothecorners.[crosstalk00:22:24]Thethingis,thisoneis alreadyconnected.[inaudible00:22:51]Idon'tknowtheanswersquiteyet.Youare [inaudible00:23:03]. Allright,let'sfilloutourtable.Dependingonwhatyouguyshad,usethemall.Turnto page150.Thisisthemuchbetterwayofinvestigatingthis,itdoesnotrequirethatyou measureanyangles,justlikeatriangle.Itdoesnotrequirethatyoumeasureanyangles. Let'sfillthisguyout.Numberofsides,verysimple.DoesitstopatoctagonordoIcut thatoff? Thelastone'sobtuse. We'rejustgoingtoseethepatternyoucanextendthisasfarasyouguyswant.Now numberoftrianglesformedto5diagonals.Foratriangle,Iassumethat's1.Howabout foraquadrilateral? 2. 10thMathSumAngles Classroom Page 5 of 16 Teacher: Class: Teacher: [00:24:00] Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: [00:26:00] 2.Howaboutforapentagon? 3. Hexagon? 4. Nowwhatisthesumoftheinterioranglesof1triangle? 28. Okay,soI'mjustgoingtodothat.Nowlet'sthinkaboutthis.Thetrianglesmakethe polygon.Thetriangle'scornersmakethecornerofthepart.IfIaddupalloffthose cornersandallthedifferentsides.Whichinfactisaddingupalloftheanglesinsidethe triangles,Ishouldgetthefullsumoftheinteriorangles.Foratriangleobviouslyit's180. Howaboutforaquadrilateral? 360. Howaboutforapentagon? 540. Okay,keepgoing.Filloutthetable.Followthepattern.Mucheasierthan measurements.Bytheway,youguyswillbeusingthistablequiteabitfortoday,soyou don'thavetocalculateiteverysingletime.Makesureit'sallfilledout.Don'twriteon thisonebutyoucanuseit.[crosstalk00:25:29]Allrighthexagon? 720. 720.Hectagon? 900. 900.Octagon? [crosstalk00:25:46] Idon'tknowwhy.That'snotevenatime.WhatamIdoing?Let'stakethisaside.You guysrecognizethesenumbers?Youeverseenthesebefore?Anyoneskateboard? No. 10thMathSumAngles Classroom Page 6 of 16 Teacher: Class: Teacher: Student: Teacher: [00:28:00] [00:30:00] Class: Teacher: Class: Teacher: Youguysknowthesenumbers?TonyHawk,superfamousfordoinghe900,no?Ithink onsnowboardsandstufftheydo1080'sandmore,somethinglikethat.Thisis somethingthatissortoffamiliartomanyofyou,right?IntheXgames,orinthe Olympicsorwhatever...Whensomeonespinsonaskateboardorsnowboardorski'sor whatever,theydon'tusuallylandsideways.That'snotusuallyagoodwaytoland.They areusuallylandingforwardorbackwards,whichisaspinof180.Ifyoukeepadding180, aswe'vedonehere,yougetthosemultiples.Whatcomesafter1080?Whatcomesafter 1080?12?Theykeepgoing.Obviously,youcanmakethisgoonaslongasyouwant. Youcanfindanyofthem.That'skindoftiteousjustadding180forever.IfIsaid,"All right,Ihavethis100sidedpolygon.Howarewegoingtofindtheangles?"Kindofalot. Let'sseeifwecanfigureoutabettermethodfordoingthis. Here'swhatwejustdiduptothis.Youcanseethetriangles.Youcanseethesidesofthe polygonsandthereissomemethodhere.Ifyouguyscouldanswerthosequestionson thebottomofthatpage.Howmanytriangleswouldyouneedfora22sidedfigure? Whatwouldtheanglesbe?Thenseeifyoucancomeupwithasimpleformulaforthis andwe'lltalkaboutthisinasecond. Whatquestions? 4-7Iguess.Allrightgiveitatry. [inaudible00:27:39] Ifthat'stheangleorifthat'sthetrick.Imeanseeifitworksforoneofthese.[crosstalk 00:27:48][crosstalk00:29:10]AllrightIwanttoseesomegoodequationshere. [inaudible00:30:05]WhenIhad4sides,whatdidwedotothe4?[crosstalk00:30:22] No,notnecessary. Allright,letstakealook.Howmanyangles? 20. 20.Asyouguysnoticed,thepatternisminus2.There'sareasonforthisbutwedon't havetogointoittoday.Thesumoftheinteriorangles? 3,600. 3,600right?Youtakethat20andyoumultiplyitbythe180.Let'srightdownour theromhere,ofcourseyouwanttoputthisinyourbookafterwardssoyoucanuseit. Let'sjustwriteitdownhere.Basically,thetheromforthesumoftheinterioranglesof anypolygon...Theycallitan"N"sidedpolygon.IsawmanyofyouusingX,totally acceptable.TheofficialoneisN.Itsays,thesummeasuresoftheinterioranglesofa polygoninsidesisNminus2,keeptheparentheses,timesby180. Thatgivesyouthenumberoftrianglesthenyoutimesitbythe180,whichistheangles 10thMathSumAngles Classroom Page 7 of 16 [00:32:00] Class: Teacher: Class: Teacher: [00:34:00] [00:36:00] Student: Teacher: Student: Teacher: Student: insidethattriangle.Pleaseputitdownandthenlet'spractice.There'syourformulafor theday.Nowyoucanseehowwegotit.Thatiswhatweusefortherestofourclass.I shouldprobablyputthisontheboard.Allright,letsgivethisatry.Igotapolygonhere, somepolygon.Let'sfindthemissingangle.[inaudible00:32:37]You'vegot30seconds. Let'sseewhatyougot.Howmanysides?Let'sseewhatyougot?Allright,20seconds. Allright.What'dweget? 64. 64.Whatkindofshapeisthis? Quadrilateral. Quadrilateral.Youcountthesides,thereforewecheckourtable.It's60degrees,addall thoseupandthenminus360.Here'sanothertrickthatIliketodoguys.Sometimes,I forgetthetable.SometimesIforgetthestuff,here'swhatIlearnedtodo.Iwilljust literallydrawthetriangleonthepaper.NowIcansee,ohyeah,2triangles...180plus 180.Right?I'mdone.Thatisamuchnicerwaythanhavingtoreferenceatableor memorizesomething.Justgenerateitforyourselfasyouformulateit. OnelastthingtotalkaboutbeforeIletyouguyspractice.Wehavesomespecial polygons.Wehavesomepolygonsthatarenice.Thesearecalledregularpolygons.A regularpolygonisapolygonthatequalsides,equalangles.Weknowtheequilateral triangle.Weknowthesquare.Ofcourse,alltheotherpolygonshavethesameproperty. Theydon'thavefancynames.Wejustcallthemregularpolygons.Youcanseewehavea bunchofdifferenttypes.They'reallequal.Obviouslythey'reanglesaregettingbiggeras wego.Theyhavesomespecialpropertieshere.Themainpropertyistheiranglesare equallikewesaid,whichmeanswecankindthemeasureofaspecificanglewithout actuallyhavingtomeasurealltheotherangles.Thatworksoutprettygood. Allright,let'sseeifwecanfigurethisout.Igot2polygonshere.Workwithyourtable partners.Findmetheangleofthemeasureofasingleregularpolygon.Remember,they areallcongruent...Verysimilartohowyoudoanequilateraltriangle.[crosstalk 00:36:07]Iseepeoplewhogottheansweralready.Useyourtables,reference.Allright, Iseesomeanswersalready.Allright,Dustin? 72degrees. 72? Igot72. Howdidyouget72? Idivided[inaudible00:36:44] 10thMathSumAngles Classroom Page 8 of 16 Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: [00:38:00] Class: Teacher: Class: Teacher: Class: Teacher: Class: Ohokay.You'reontherighttrackthough.You'reontherighttrack.Hehadasumand divideditbyacertainnumberofsides.Ijustthinkhehasthewrongangles.Let'sfixit. Whatisthesumofthistypeofshape? 540. 540andwedivideitby? 5. 5becauseit's5sidesandthey'reallequal.Thatgivesus? 108. 108,verygood.108shouldbeforA.ForB,somethingyouhaddown? 135. 135.Whateverthisiswitha1080,somethinglikethat.Thataddsupcloseto1080and youdivideitby8.Thisistheotherthingyouguyswillsee.Theywillnotgiveyouany angles.Theywillgiveyouashapeandyouneedtodothedivisionyourselftofindthose angles.Thesearekindofnice.Inthebooktheyhavethistable.I'mtryingtothinkifwe havetimetodothis.YouknowIthinkwe'regoingtoskipthisfornow.Youcangenerate themasyougo.Wemayhavetimeattheendtofillthisout.Idon'twanttodoitright now. Basically,theywantyoutokindofgeneratethoseinteriorangles.Let'sjustputafewof theminheresinceyouguysknowsomeofthem.Wesaidthe8onewas...Wasit135? Forthe8sidedone?Wejustsaid135?Thenthepentagonwas108.Howabouta4sided shape?Youguysknowthisone.Whatdowecallaregularquadrilateral?What'sthe fancyname? [inaudible00:38:14] Whatdowecalltheshape? 90degree. Theyare90.Whatdowecallthatshape? Isn'titasquare? Ofcourse,asquare.Thenwehavethetriangle.Youguysknowthatone. 180.160. 10thMathSumAngles Classroom Page 9 of 16 Teacher: Class: Teacher: [00:40:00] [00:42:00] Again,don'tworryabouttherestoftheseyoucangeneratethemasneeded.We'lluse themlater.Ifyouwanttofillthisoutwhenwearedoingourpacketthat'sfine.Ijust wanttomoveonforasecondnow.Aswegoforwardyoucanfinditeachtime.Basically youjusthavetofindthatsumandthendivideitbyN,whateverthenumberofsidesare forthenumber.Iwanttotalkaboutonelastthing.Isawsomeofyouguysdrawing thingsthatlookedlikethis.Isthisapolygon? No. That'sfine.It'sapolygon.Howisitdifferentthanthenormalkindthatwedraw? Somethingabouttheshape,yeah?Somethingaboutit'sanglesactually.Ithasthese reflexanglesright?Thereflexanglesarebiggerthan180andthey'reinteriorlikethat. They'rekindofhardtomeasure.They'restillangles.Thisisstillapolygon.Thisisnota polygon.Whenyoudrawitsoitoverlapsthecorners.Thatsuddenlybecomesseparate polygons.Apolygonmusthaveacontinuousarea,whichmeansthatalltheareahere mustbeconnectedtoitself. I'mgoingtoshowyouguysalittleanimationjusttoprovetoyouguysthatthisworked. WhatI'vealwayslearnedorwhatthey'vealwayssaid...Iwaslookingatatextbook,they alwayssayusethesepolygonsright?Usethepolygon.Don'tusetheconcaveones.I'm like,"Wellwhynot?It'sstillapolygon."Ifoundsomeprogramthat'sgoingtoanimate this.Let'ssee.Let'sseeifitworks.Iwantyouguystolookdownhere.Thesearethe anglesthatthecomputerisjustmeasuringthemandthenit'saddingupthose3 numbers,solet'sseewhat'shappeninghere. Thatangleischanging.What'shappeningtothesum?Rocksolid.Youcanmakethem reallytiny,reallybig.Weknewthat,trianglesobviously.Let'slookatanothertypeof shape.Howaboutthisguy?Youcanseethesum,540asweknow.Let'smessitup, changeit.Evenifwemakeitcrazylikethis,rocksolid.Thisisthecoolthing,itdoesn't evenmatterwhattheshapelookslike,unless...Thatworkstoo.Unless,youoverlapit likethisandnowsuddenlyitcannotcalculatebecauseit'stootonic.Youguyscansee. Ofcourse,foranyshapethiswillwork.Here'sthe1080,the8sidedshape...MakePAC Man...Anycrazyshapethatyouwant.Alltheanglesmovebutyoucanseeasoneof themgetsbigger,itsortofforcestheotheronetogetsmaller,nomatterwhatcrazy shapeyoumake.Itwillstillwork,unlessofcourseyoucrossoneofthemtonotmakea polygon.Idon'trememberifIdidthat.Youguyscanseeeventhatonewillwork. Usuallytheydon'tgiveyouonesthatlooklikethisbutyouguygettheidea.Itstillwould work.Okay.We'regoingtodo2morethingshere.Guesswhoneedshelp?Makeita littlebit.Yourfavorite.Allrightso[inaudible00:41:41],gottogowiththegazebo.You guysremembertheshapeofthegazebo?Isitahexagon?It'sahexagon.Ifshewantsa benchtogointhemiddletokindofmatchthatgazebo,here'sthebench.Youhaveto cutthepiecesofwoodtokindofnailtogetherhere.WithyourtablepartnersIwantyou tofindmethisangle.Whatanglewouldhavetocutthatsothese2thingswouldjoin nicely?Youguysshouldgetthisprettyquickactuallysinceyouknowalltheotherstuff. Whatisthissortofblack...Whatisthisangleherethatcutdownthesize?Drawthe 10thMathSumAngles Classroom Page 10 of 16 Student: Teacher: [00:44:00] Student: Teacher: Student: Teacher: Student: Teacher: Student: Teacher: Student: Teacher: Class: hexagonfromthetopifyouneedto.Seewhatyouguysgot. Hexagonshapes.I'mgoingtopassoutsomethingwhileyouguysaredoingthisjustkeep itonyourdesk.Maybefindthis.Thismaybeastrategy.Whatyoufoundisthisangle.All rightStudent? 60. Howdidyouget60? Divided720. Okay,that'safullinteriorangle. Imean6by7feet. Noyouwereright.Youtookthe720whichistheinterioranglesofthehexagon.You divideditby6.Thatgivesyouthisangle.Thisoutsideangle.That'snottheanglewe're cuttingwithoursaw.How'dyougetheoctagon? Idivideditby2. Rememberwetalkedaboutthis.Whenyou'redoingtrimorwhateverinahouse,you watchedthatvideo?Youwanttomakeitequalnomatterwhattheangleisyouhaveto dissectit.Theeasiestwayofcourseistoknowtheangleanddivideit.Rememberwe hadthosepapertrigs,thosecompasstrigsandeverything?Thatoneworkstoo. Thisisareallifeapplication.I'vehadtodostufflikethiswhenIambuildinglittlehome projectsandstuffandIofcourseappreciateyourguyshelp.Onelastpiece,whatifwe have2polygonsthatarestucktogether?Let'sdothisonetogetherandthenwe're goingtodosomegroupworkandpresentafewproblemsattheend.Let'sfigureout whathappenedhere.Wegot2regularpolygons.Wehaveasquareandahexagon.We wanttofindthisangle.Thissortofoutsidegroupangle.WhatshouldIlookforfirst? Theinteriorangle. Theinteriorangleofcourse.Theotherside,rightHowmuchforthesquare? 90. Allright,sowegot90degreesrighthere.Howaboutforthehexagon?Wejustdidthis one. 120. 10thMathSumAngles Classroom Page 11 of 16 Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: [00:46:00] Teacher: [00:48:00] [00:58:00] [01:02:00] [01:04:00] Allright,sowhat'snext? 210. How'dyougetthat? Youaddthemup. Okay,soyouaddedup90plus120.Okayandyougot210.That'sthisangleandand thenwhat? 150. How'dyouget150? [crosstalk00:45:50]360. Youhad360minus210andyougot? 150. Thisistheotherskillandwetalkedaboutthislastclass.Manytimesyoucanfindpartof acircleandthenyoucanusealittlesubtractiontofindtheothermissingpartofthe circle.Justlikewhenwehadalinearpair,youcanfindthatmissinganglethataddsup to180.Theseanglesaddupto360.Youcansortofgeneratethatbysubtractingitoff theend.Thesearethebasicskillsthatweneedtobesuccessfulatthis.We'regoingto besolvingsomeproblemssograbthepaperinfrontofyouandIknowit'skindofsmall soifyouneedroom,pleaseuseyourbook.Thisisgoingtobeourpractice.Let'stake... What'dIsay. We'lldoabout15or20minutes.We'llseehowlongittakes.Idon'tknow.There'sa coupleproblemsonhere,therearesomeequations,sobecarefultowritethefull equation.Iknowyouguysaregoodatsortoffindingsomeofthestuffinyourhead,but ifyoucouldwritethefullequationoutinyourbookthatmayhelpyoufortheoneswith alotofextrasinthem.Justbecarefulwiththat.Alright,I'llturnontheradio.Wehave 15minutesletssay.Pleaseworkonyourhandouts.Pleaseworkquietlywithyourtable partnersandbereadytopresentacoupleattheendtoputthemupontheboard. [crosstalk00:48:04][crosstalk00:50:02][crosstalk00:52:05][crosstalk00:54:06] [crosstalk00:56:02]Let'ssay14moreminutes.Helpeachotherout.We'llpresenta coupleoftheseatthatpoint.[crosstalk00:58:04][crosstalk01:00:16]Justremember guys,youcanalwayscheckyouranswerattheend.Onceyougetananglemakesureif it'sobtuse,isitacute?Doesitmakesensewiththetypeofpolygonyouweregiven? [crosstalk01:02:03][crosstalk01:04:02][crosstalk01:06:03][crosstalk01:08:02]We'll takeabout4moreminutes.Ifyou'refinishedyoucanstartyourhomework.We'll 10thMathSumAngles Classroom Page 12 of 16 [01:10:00] [01:14:00] [01:16:00] Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: presentafewoftheseandtalkaboutthemintheend.[crosstalk01:10:02][crosstalk 01:12:03]Youguyshave10minutes. OnequickthingIwasn'ttoadd.Idon'tknowifthisishowit'ssupposetobe...The answer.YouguyscanzoominonC.C...Idon'tknowifthere'senoughinformationto solvethisone.ItshouldbebutIfeellikeI'mmissingsomething.Justtomakethiswork, theywaythatwe'vetalkedaboutit...Ifyoucouldmakethese2lineparallel,thenyou cansolveit.Right?Thenyouhavemoreequivalenciesthatyoucanthenwrite,yeah?If youhavethesethenthisangleiscongruenttothisangle.Thiswouldbe180minus3y. Suddenly,youhaveenoughvariablestosolveforthis.That'swhatIwouldsayjustto makealittlebitmoredoable. I'mnotexactlysurewhattheywantedustodoforthisone.Theotheronescameout prettynice.Ifeellikewe'remissingsomethingforthatonethough.Imadeamistake whenImadethecopiesIdon'tknow.Let'sgiveit1moreminute.Finishupyourlast problem.We'regoingtopresentafewoftheseontheboard.We'regoingtotalkabout themandthenwewillour...Ifyoucouldyourprotractorsbackonthestickynotesfor thenextperiodthatwouldbeawesome.Ithinkthere's2oneachone.Ifyoucoulddo that,thatwouldbeawesome.[crosstalk01:14:35]Alittlemoretime. Allrightguys.Let'stalkaboutit=atthefront.I'llcheck...ZoomintoBforasecond.Did wedothatone?Wasthatoneofmyexamplesonthenotes?Helpmefindit.Allright,a 6sidedshape.What'safancynameforthat? Hexagon. Thereare6sides,youfound720,whichwasthesum.Howdidyouknowyoucould divideby6?Why6? Ithas6sides. Youcannotdothatforexamplebecause- [inaudible01:16:38]Askmeagain. Thetheromhastodowitharegularhexagon.Howdoweknowthisisaregular hexagon? Theanglesarealleven. Yes,theanglesarealleven.Thisactuallydoesn'thavetobearegularhexagon.Icouldif Ireallywantedtostretchthismiddleside-[crosstalk01:17:02]Icouldstretchthis middlesideouttobetwiceaslongandtheanglesdonotchange.Thisisnotnecessarily aregularhexagon.Theregularnessthatcounts,theanglesumsright?Ortheangle equivalencies,thosearethere,sowedon'treallyneedtoworryaboutthesize.It doesn'thaveasizelabeledsoit'snotnecessarilyaregularhexagon.[inaudible01:17:24] 10thMathSumAngles Classroom Page 13 of 16 Class: Teacher: Class: Teacher: [01:18:00] Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Zoomin. Allrightlet'stakealookattheguide.Thisismoreofthehomeworkquestionsthatyou guyswillsee.Basically,thereareabunchofvariablesinsidethispolygon.Let'sseeifwe canfigureoutwhatishappening.Firstofall,whattypeofpolygonisthis? [inaudible01:17:50]6. 6sides,soHexagon.Isthisaregularhexagon? No. Iassumenot,nothingislabeled.Whatdidyoudo? Iaddedallthesidesandaddeduptheequationandmadethe[inaudible01:18:04]720. That'sthesum. That'sthesumoftheinteriorhexagon. Addedtogetheris52Xtimes8.Youadd8tobothsides,28.Thenyoudivideby52and get14. Excellent.Xis14,butthatisnotanyoftheangles.Howdidyoufindtheactualangles afterthat? Iplugged14intoX. Verygood.Didyoucheck?Doalltheseaddupto720? No. That'ssomethingyoucoulddoagain.Itrustyourwork.Thatissomethingyoucoulddo tofindthetotalsumtoseeifyouransweractuallymakessense.NowacouplethingsI'll pointoutherethatIreallylike.Ireallylikethatyouhavethefullequation,notjust piecesofit.Youcankindofkeepyourselforganized.Ireallylikethatyoukept everythinginparentheses,soyoudidn'thavetoworryaboutnegativesignsorstuff spillingout.Youguyscanseecombiningtheliketerms,right?YouwanttogetalltheX's togethersoyoucandivideoffthatconditionandofcoursewemovethe8first,divideit anditcomesoutnice.Iguessitdoesn'thavetocomeoutnice,it'samathproblemina textbook,soIassumeit'sgoingtobeokay. Allright,awesomeguys.Dowehaveonemoreorarewegood?Actually,wearealmost outoftime.Let'sjustgothroughthebottomhere.Thesearetheanswers.Let'ssee whatwegot.Let'szoom...Oh,therewego.Allright,youguyscanseemostofthese anglessuchasD,A,C,E,theseareinteriorangleswe'vealreadycalculated.Thoseare 10thMathSumAngles Classroom Page 14 of 16 [01:20:00] Class: [01:22:00] Teacher: Class: Teacher: Class: Teacher: Class: Teacher: Class: Teacher: trig.Someoftheotheronesthough,youhavetodoalittlebitmoremath.Forexample, I...We'vegotthis60degreeanglerighthereinthisequilateraltriangleandIissortof thatoutsideanglewhichissortofinbetweentheoctagonangleandthetriangleangle. Youkindofjustdoalittlesubtraction.ThisisatrickIwantyouguystobethinking about.Wementionedthislasttime. Manytimeswhenyouarefindingamissingangle,theywillnotlabelthethingthatyou actuallyneedtofind.TheywantyoutofindI,buttheydon'ttellyou,youhavetofindX overherefirst.YougottofindthebigangleYsecond.Theydon'ttellyouthat.Youhave tosortoffindwhatyouwant.Thisisabalancingact,becauseyoucouldfind50different anglesand49ofthemwouldnotbeusefultoyou.Youcouldfindthisangleandthis angle,butthey'renotreallyuseful.Youwanttoconcentratearoundtheareathatyou actuallyhave.Awesomeguys,grabthishandout.Youcanholdthisfornow,finishitupif youhavenot. Grabyournotes,let'stakeourtest.Actually,ifyoucouldcloseyourworkbook,Iwant toseeifyouguyscandothiswithoutlookingatthetable.Justmakesureyouputyour calculatorsbackattheend.Ifanyoneneedstolookattheirtest,comeseemeafter class.Areyouready?Perfecttiming.Whatisthisshapecalled? Onogom. Onogon?[crosstalk01:22:09]Howmanysides? 9. 9.Howmanytriangles? 7. 7.Howmanyinterioranglestotal?Right.Thesumoftheinteriorangles? 60. Thesumorthedivision? 140. 140verygood.Thisisinterioranglesofpolygons.Weknowhowtofindthiswithouta table.Wecandivideupourshapeintotrianglesandthenaddupthesumofthose triangles.The[inaudible01:23:06]ofsomethingyouguysalreadyknow.Allrightthanks verymuchguys.Putyourprotractorsonyourcards,calculators.Haveawonderful weekend.Comeseemeifyouwanttoseeyourtest.Ifyouhaven't,youneedtotake yourtest.[crosstalk01:23:26] 10thMathSumAngles Classroom Page 15 of 16 10thMathSumAngles Classroom Page 16 of 16