Download not

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Biomechanics of
Human Skeletal Muscle
Objectives
• Identify the basic behavioral properties of the
musculotendinous unit.
• Explain the relationships of fiber types and fiber
architecture to muscle function.
• Explain how skeletal muscles function to produce
coordinated movement of the human body.
• Discuss the effects of the force-velocity and lengthtension relationships and electromechanical delay on
muscle function.
• Discuss the concepts of strength, power, and
endurance from a biomechanical perspective.
Behavioral Properties of the
Musculotendinous Unit
• Behavioral properties of muscle tissue:
– Extensibility
– Elasticity
– Irritability
– Ability to develop tension
• Behavioral properties common to all muscle:
– Cardiac, smooth, skeletal
Extensibility and Elasticity
• Extensibility
• Elasticity
• Two components:
– Parallel elastic component (PEC)
– Series elastic component (SEC)
• Contractile component
• Visoelastic
Irritability and the Ability to
Develop Tension
• Irritability
– The ability to respond to electrical or
mechanical stimulus.
– Response is the development of tension.
• Not necessarily a contraction
Structural Organization of
Skeletal Muscle
• Human body has approx. 434 muscles
– 40-45% of total body weight in adults
– 75 muscle pairs responsible for bodily
movements and posture
• Muscle Fibers
• Motor Units
• Fiber Types
• Fiber Architecture
Muscle Fibers
Contain:
sarcolemma
sarcoplasm
nuclei
mitochondria
myofibrils
myofilaments
Sarcomere
Z lines
M line
A band
myosin filaments
I band
actin filaments
H zone
Muscle Fibers
• During contraction, cross-bridges form
• Sarcoplasmic Reticulum
– Transverse Tubules
• Endomysium
• Perimysium
– Fascicles
• Epimysium
• Variation of length and diameter within muscles seen
in adults.
Motor Units
• Motor unit:
– Axon
– Motor end plate
• Twitch Type
• Tonic Type
• Summation
• Tetanus
Fiber Types
• Fast Twitch (FT)
– Type IIa
– Type IIb
• Slow Twitch (ST)
– Type I
• Peak tension reached in FT in 1/7 time of ST
• ST and FT compose skeletal muscles
– Percentages of each range from muscle to muscle
and individual to individual.
Fiber Types
• Effects of training:
– Endurance training can increase ST
contraction velocity by 20%
– Resistance training can convert FT fibers
from Type IIb to Type IIa
• Elite athlete fiber type distribution does not
significantly differ from untrained individuals
• Affected by:
– Age and Obesity
Fiber Architecture
• Parallel fiber arrangement
– Resultant tension from shortening of
muscle fibers
• Shortens the muscle
• Pennate fiber arrangement
– Resultant tension from shortening of
muscle fibers
• Increases the angle of pennation
(attachment) to a tendon.
Skeletal Muscle Function
• Recruitment of motor units
• Change in length with tension development
• Roles assumed by muscles
• Two-joint and multijoint muscles
Recruitment of Motor Units
• CNS enables matching of speed and
magnitude of muscle contraction to
requirement of movement.
• Threshold activation
– ST activated first (low threshold)
– With an increase in speed, force, and/or
duration requirement, higher threshold
motor units are activated (FT fibers)
Change in Muscle Length with
Tension Development
• Concentric
– Bicep shortening with the bicep curl
(flexion)
• Isometric
– Body builders develop isometric
contraction in competition
• Eccentric
– Acts as a breaking mechanism to control
movement
Roles Assumed by Muscles
• Agonist
– Primary & Secondary
• Antagonist
• Stabilizer
• Neutralizer
• Agonists and Antagonists are typically
positioned on opposite sides of a joint.
Two-joint and Multijoint
Muscles
• Movement effectiveness depends on:
– Location and orientation of muscle’s
attachment relative to the joint
– Tightness or laxity of musculotendinous
unit
– Actions of other muscles crossing the joint
• Disadvantages:
– Active insufficiency
– Passive insufficiency
Factors Affecting Muscular
Force Generation
• Force-Velocity Relationship
• Length-Tension Relationship
• Electromechanical Delay
• Stretch-Shortening Cycle
Force-Velocity Relationship
• Maximal force developed by muscle
governed by velocity of muscle’s shortening
or lengthening.
• Holds true for all muscle types
• Does not imply:
– It’s impossible to move heavy resistance at
a fast speed.
– It’s impossible to move light loads at low
speeds
Force-Velocity Relationship
• Maximum isometric tension
– Eccentric conditions
• Volitionally
–Represents contribution of the elastic
components of muscle
• Eccentric Strength Training
– More effective than concentric training in
increasing muscle size and strength.
Length-Tension Relationship
• In human body, force generation increases
when muscle is slightly stretched.
– Parallel fibers at max just over resting
length
– Pennate fibers at max with 120%-130%
resting length.
• Due to contribution of elastic components of
muscle (primarily the SEC)
Electromechanical Delay
• Electromechanical Delay (EMD)
• Varies among human muscles (20-100 msec)
• Short EMDs produced by muscles with high
percentage of FT fibers
– Associated with development of higher
contraction forces
• Not effected by muscle length, contraction
type, contraction velocity, or fatigue
Stretch-Shortening Cycle
• Stretch-Shortening Cycle (SSC)
– Elastic Recoil
– Stretch Reflex Activation
• Muscle can perform more work with active
stretch prior to shortening contraction
• Less metabolic costs when SSC utilized.
• Eccentric training increases ability of
musculotendinous unit to store and produce
more elastic energy.
Muscular Strength, Power,
and Endurance
•
•
•
•
•
Muscular Strength
Muscular Power
Muscular Endurance
Muscular Fatigue
Effect of Muscle Temperature
Muscular Strength
• The ability of a given muscle group to
generate torque at a particular joint.
• Two orthogonal components:
– 1) Rotary Component
– 2) Parallel to bone
• Derived from:
– amount of tension the muscles can
generate
– moment arms of contributing muscles with
respect to joint center.
Muscular Strength
• Tension-generating capability of a muscle
affected by:
– Cross-sectional area
– Training state
• Moment arm of a muscle affected by:
– Distance between the muscle’s anatomical
attachment to bone and the axis of rotation
at the joint center
– Angle of muscle’s attachment to bone.
Muscular Power
• The product of muscular force and the
velocity of muscular shortening.
• The rate of torque production at a joint
• Max. power occurs at:
– approx. 1/3 max. velocity, and
– approx. 1/3 max concentric force
• Affected by muscular strength and movement
speed
Muscular Endurance
• The ability to exert tension over a period of
time.
– Constant: gymnast in iron cross
– Vary: rowing, running, cycling
• Length of time dramatically effected by force
and speed requirements of activity.
• Training involves many repetitions with light
resistance.
Muscular Fatigue
• Opposite of endurance
• Characteristics:
– Reduction in force production
– Reduction in shortening velocity
– Prolonged relaxation of motor units
between recruitment
• Absolute Fatigue
• Resistance:
– SO > FOG > FG
• Causes
Effect of Muscle Temperature
• Increased body temperature, increases
speed of nerve and muscle function
• Fewer motor units needed to sustain given
load
• Metabolic processes quicken
• Benefits of increased muscular strength,
power and endurance
• Key point: Be sure to warm-up!
Common Muscle Injuries
• Strains
– Mild, moderate or severe
• Contusions
– Myositis ossificans
• Cramps
• Delayed-Onset Muscle Soreness (DOMS)
• Compartment Syndrome
6-1
6-3
6-5
6-6
6-7
6-8
6-11
6-13
6-17
6-20
6-21
6-22
Summary
• Muscle is the only biological tissue capable of
developing tension.
• Resulting actions can be concentric,
eccentric, isometric for muscle shortening,
lengthening or remaining unchanged in length
• Force production the the combination of
many relationships (ex: force-velocity)
• Specific activity performance is related power,
endurance, and strength
The End