Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Transport of an Interacting Bose Gas in 1D Disordered Lattices Chiara D’Errico CNR-INO, LENS and Dipartimento di Fisica, Università di Firenze 15° International Conference on Transport in Interacting Disordered Systems, Sant Feliu , September 2013 Disorder in quantum systems There is a growing interest in determining exactly how disorder affects the properties of quantum systems. Superconducting thin films Superfluids in porous media Graphene Biological systems Light propagation in random media Anderson localization • • • • Non-interacting particles hopping in a the lattice With random on-site energy A critical value of disorder is able to localize the particle wavefunction The eigenstates are spatially localized with exponentially decreasing tails. Disorder and quantum gases also Shlyapnikov, Burnett, Roth, Sanchez-Palencia, Giamarchi, Natterman, Garcia-Garcia …. Urbana Hannover Rice U. Paris Florence L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. 6, 87 (2010); G. Modugno, Rep. Prog. Phys. 73, 102401 (2010). Interplay between disorder and interaction Many-body problem to investigate the interplay between disorder & interaction Theoretical interest on the investigation of 1D bosons at T=0, which is a simple prototype of disordered interacting systems Giamarchi & Schultz, PRB 37 325 (1988) Fisher et al PRB 40, 546 (1989), … Rapsch, Schollwoeck, Zwerger EPL 46 559 (1999), … A 1D quasiperiodic lattice 1D system in a quasiperiodic potential 4J 2D d /( 1) In the tight binding limit: Aubry-Andrè or Harper model Hˆ J bˆibˆ j D cos( 2i) nˆi i, j i Metal-insulator transition at D=2J S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980). L. Fallani et al., PRL 98, 130404 (2007). M. Modugno, New J. Phys. 11, 033023 (2009). k2 k1 A 1D quasiperiodic lattice Energy correlation function gE(x) (arb. units) g E ( x) E ( x) E ( x x) dx' d /( 1) -20 -10 0 10 Position (lattice sites) 20 A 1D quasiperiodic lattice Energy (units of J) 4 2 Miniband structure 0 -2 -4 0 10 0 100 200 300 400 500 | (x)| 2 Eigenstate # -10 10 Short, uniform localization length: d / log D / 2J -20 10 420 440 460 Position (lattice sites) 480 Interplay between disorder and interaction 1D system in a quasiperiodic potential 4J 2D d / In the tight binding limit: Aubry-Andrè or Harper model Hˆ J bˆibˆ j D cos( 2i) nˆi+ U å n̂i (n̂i -1) i, j i i Metal-insulator transition at D=2J 2p 2 U= a ò | f (x) |4 d 3 x m S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980). L. Fallani et al., PRL 98, 130404 (2007). M. Modugno, New J. Phys. 11, 033023 (2009). Tuned on the Feshbach resonance Interplay between disorder and interaction Potassium-39 scattering length (a0) 400 Eint 2 2 m a 4 dx 0 BEC 340 350 360 370 380 390 magnetic field (G) G. Roati, et al. Phys. Rev. Lett. 99, 010403 (2007). 400 410 Interplay between disorder and interaction Disorder Anderson localization Glass? ??? Superfluid Mott insulator Interaction Anomalous diffusion with disorder, noise and interactions 2 Position Anomalous diffusion with disorder, noise and interactions Disorder 60 D/J=4 (m) 40 D/J=2.5 20 0 2 3 4 D/J time D/J=0 5 6 7 8 9 Interaction Disorder Anomalous diffusion with disorder, noise and interactions time Interaction Anomalous diffusion with disorder, noise and interactions (t ) t 40 35 non interacting 30 Eint= 0.8 J 0.5 Eint= 1.2 J width (m) 25 normal diffusion 20 15 0.1 1.0 10.0 time (s) E. Lucioni et al. , Phys. Rev. Lett. 106, 230403 (2011). E. Lucioni et al. , Phys. Rev. E 87, 042922 (2013). Eint=Un(x,t) Anomalous diffusion with disorder, noise and interactions log Levy flights 1 = tic s i ll a b superdiffusive ive s u f f di 5 . =0 Brownian motion subdiffusive log(t) Many classes of linear disordered systems Localized interacting systems? J-P. Bouchaud and A .Georges, Phys. Rep. 195, 127 (1990) D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993) S. Flach, et al, Phys. Rev. Lett. 102, 024101 (2009) Coherent hopping between localized states H Hint U n j (n j 1) Instantaneous diffusion coefficient: Width-dependent diffusion coefficient: D 2 i H int f E 2 1 2 D n( x, t ) Standard Diffusion Equation with Gaussian solution: n( x, t ) 1 n( x, t ) D t 2 x x Subdiffusive behaviour, i.e. decreasing diffusion coefficient: 2 D (t ) t t 1/(2 ) t D(t ) (t ) 21/ E. Lucioni et al. , Phys. Rev. E 87, 042922 (2013). Nonlinear diffusion equation What about the evolution of the distribution n(x,t)? D n( x, t ) n (arb. units) Experiment Gaussian fit t = 0.1s 0 20 40 t = 10s 60 x(m) Nonlinear Diffusion Equation: n( x, t ) n( x, t ) D0 n( x, t ) a t x x 0 20 40 60 80 x(m) 1/ a x2 n( x, t ) 1 2 w (t ) w(t ) t 1 2 a B. Tuck, Journal of Physics D: Applied Physics 9, 1559 (1976) Nonlinear diffusion equation What about the evolution of the distribution n(x,t)? n (arb. units) Experiment Gaussian fit fit with solution of NDE 0 20 t = 0.1s b = 0.06 0.03 40 60 x(m) t = 10s b = 0.57 0 20 40 0.06 60 80 x(m) Solution of NDE: 1/ a x2 n( x, t ) 1 2 w (t ) b(t ) x n( x, t ) B(b, w)1 2 w (t ) 2 w(t ) t 1 2 a 1/ b ( t ) b(t ) a(1 e t / ) E. Lucioni et al. , Phys. Rev. E 87, 042922 (2013). Noise- and interaction-assisted transport Can we learn something abouth the complex properties of the energy transport in biological systems with our ultracold atom system? Disorder Noise Interactions ? Collaboration with F. Caruso and M. Plenio, Ulm University Chin et al., New J. Phys. 12 065002 (2010) Noise-assisted diffusion Our noise: sine modulation of the secondary lattice with a random frequency Vdis D cos( 2 x) (1 A cos(i t )) PSD (dB/Hz) Frequencies are changed randomly with time step Td -40 -50 -60 100 200 300 frequency (Hz) const (t ) Dt normal diffusion 400 Noise-assisted diffusion 50 0.5 40 (m) increasing noise amplitude 2 (t ) Dt 30 20 1 10 t (s) Also observed in atomic ionization (Walther), kicked rotor (Raizen) and photonic lattices (Segev&Fishman): M. Arndt et al, Phys. Rev. Lett. 67, 2435 (1991); D. A. Steck, et al, Phys. Rev. E 62, 3461 (2000). Noise-assisted diffusion H ' DA cos(i t ) cos( 2 x) Normal diffusion: General expectation: 2 D t D 2 Our perturbative result for qp lattices: (works for both experiment and DNLSE) C. D’Errico et al., New J. Phys.15, 045007 (2013). 2 Dt i H' f E 2 const A2 J ( d ) 2 D 3 1 e / d Noise-assisted diffusion 0.4 4.5 d 2 D (m /ms) 0.3 0.2 0.1 0.7 d 0.0 0.0 0.2 0.4 2 A C. D’Errico et al., New J. Phys.15, 045007 (2013). 0.6 0.8 1.0 A2 J ( d ) 2 D 3 1 e / d Noise-assisted diffusion 0.4 1 A=1 2 2 D (m /ms) 2 0.3 Experiment Perturbative model A<Ac D /A (m /ms) 4.5 d 0.2 0.1 0.1 0.7 d 0.0 0.0 0.6 0.2 0.4 2 0.6 0.8 1.0 1 /d 2 3 4 A C. D’Errico et al., New J. Phys.15, 045007 (2013). A2 J ( d ) 2 D 3 1 e / d Noise + interactions? Anderson localization noise alone interactions alone noise + interactions Noise and interaction: generalized diffusion equation DNLSE Experiment 50 20 a c (iii) 40 (ii) 10 (m) (m) 30 (i) 20 2 15 b 0.1 d 0.1 0.0 0.1 0.0 t (s) 1 noise alone interactions alone noise + interactions 10 0.01 0.1 t (s) 1 2 Dnoise Dint (t ) t 10 Experimental scheme and parameters for 1D system Strong 2D lattice (s=30) with weak 3D harmonic trapping + weaker 1D q.p. lattice (s=10) Optical lattices create an array of quasi one-dimensional systems: nr=50 kHz; J/h=100 Hz | ( k ) |2 D=0, U=J Inhomogeneous filling factor (3D Thomas-Fermi): nmean ~ 2 -2k1 k 0 2k1 D=0, U=J Transport in 1D system t*=0 System at equilibrium t=0 trap minimum is shifted t=t* all fields are switched off A. Polkovnikov et al. Phys. Rev. A 71, 063613 (2005); applied on Bose gases by DeMarco, Naegerl, Schneble. t*≠0 D k TOF image (16.6 ms) Transport in the weakly interacting regime: clean system 0.5 Experiment no damping low damped fit high damped fit 0.4 p0 (h/1) Without disorder: D/J=0 0.3 0.2 0.1 0.0 0 1 2 t (ms) A. Smerzi et al., Phys. Rev. Lett. 89, 170402 (2002) E. Altman et al., Phys. Rev. Lett. 95, 020402 (2005) L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004) J. Mun et al., Phys. Rev. Lett. 99, 150604 (2007) I. Danshita, ArXiv:1303.1616 3 4 Dynamical instability driven by quantum and thermal fluctuations. Transport in the weakly interacting regime: clean system 0.5 Without disorder: D/J=0 0.4 pC p0 (h/1) 0.3 0.2 0.1 At p=pc we observe a sudden increase of the damping and of the width 0.0 0.4 p0- pth (h/) 0.3 0.2 -2 0.1 0 p (h/1) 2 0.0 0 1 2 t (ms) 3 4 Transport in the weakly interacting regime:clean system Without disorder: D/J=0 0.5 Experiment piecewise fit quantum phase slips model pc (h/) 0.4 0.3 0.2 0.1 0.0 0 2 4 6 8 10 20 22 U/J J. Mun et al., Phys. Rev. Lett. 99, 150604 (2007). L. Tanzi et al., ArXiv:1307.4060, accepted by PRL Also in 1D the onset of the Mott regime can be detected from a vanishing of pc, as in 3D Transport in the weakly interacting regime:clean system 0.4 Without disorder: D/J=0 Experiment quantum phase slip model thermal phase slip model pc(h/) 0.3 The observed dependences of pc and on U suggest a quantum activation of phase slip 0.2 0.1 0.0 0 2 4 6 8 10 12 500 (Hz) U/J E. Altman et al., PRL 95,020402 (2005) A Polkovnikov et al., PRA 71 063613 (2005) I. Danshita and A Polkovnikov, PRA 85, 023638 (2012) I. Danshita, PRL 111, 025303 (2013) L. Tanzi et al., ArXiv:1307.4060, accepted by PRL 50 0 2 4 U/J 6 Transport in the weakly interacting regime: with disorder D=0 D = 3.6 J D = 10 J pC 0.3 p0 (h/1) pC 0.2 The damping rate is enhanced and the critical momentum is reduced by disorder 0.1 0.0 0 1 2 t (ms) Fixed interaction energy: U/J=1.26 3 Transport in the weakly interacting regime: with disorder D=0 D = 3.6 J D = 10 J pC 0.3 p0 (h/1) pC 0.2 0.1 0.52 0.30 0.0 0.50 1 2 0.48 t (ms) 0.20 pc(h/) Fixed interaction energy: U/J=1.26 3 0.25 DC 0.15 0.46 0.44 0.10 0.42 0.05 0.40 0.00 0 L. Tanzi et al., ArXiv:1307.4060, accepted by PRL 2 4 6 D/J 8 10 12 0.38 p (h/) 0 Transport in the weakly interacting regime: with disorder 10 Insulator 8 A = 1.3 ± 0.4 = 0.83 ± 0.22 D/J 6 4 Fluid 2 0 0 (D c 2) / J A(nU / J ) 2 4 6 8 nU/J P. Lugan, et al., Phys. Rev. Lett. 98, 170403 (2007); L. Fontanesi, et al., Phys. Rev. A 81, 053603 (2010). Conclusions & Outlook We have studied the diffusion of a localized disordered system, assisted by interaction and noise We have studied the momentum-dependent transport for a weakly interacting disordered Bose gas on the BG – SF transition Study a strongly correlated, disordered Bose gas in 1D: correlations, excitations, compressibility, and transport Investigation of a quantum quench on a strongly correlated system and effect of the disorder on the thermalization of a closed system Exploration of the role of temperature on the many-body fluidinsulator transition at large T I. L. Aleiner, B. L. Altshuler, G. V. Shlyapnikov, Nat. Phys. 6, 900 (2010) The Team Team Massimo Inguscio Giovanni Modugno Eleonora Lucioni Luca Tanzi Lorenzo Gori Avinash Kumar Saptarishi Chaudhuri C.D. For Noise-assisted transport: collaboration with F. Caruso B. Deissler (Ulm University) M. Moratti M. B. Plenio (Ulm University) Thank you for the attention