Download Diffusion and Transport Transport equations •For given volume

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Diffusion and Transport
Transport equations
•For given volume define flux  through surface (number of
particles per area and time)
• this gives the particle balance:
 
N
   dA   S dV
t
Source term S :particles that are born in plasma volume,
e.g. by ionisation.
•Particle balance as differential equation:
 
N
   dA   S dV
t

n
 dV       dV   S dV
t

n

     S
t
• similar equation for energy balance
• as usual in hydrodynamics we use the ansatz


   Dn  nv
i.e. diffusion and convection separated
Diffusion
• diffusion coefficients from „random walk ansatz“:
red: Binomial distribution

x2 

green: exp 
2
 2 N x 
•Step size : x , time for step: t
Average time, to reach point x :
For given t, x: confinement time (radius)2
t  x2
t
x 2
Diffusion
• random walk:no net flux
•With density gradient:net flux towards smaller densities
1 nAx
N
 
 2
 t A
 t A
1 (n  n)Ax
N
 
 2
 t A
 t A
 n x 2
1 x
       n  
  Dn
2 t
x 2t
x 2
D
2t
Particle diffusion
„random walk“ ansatz for diffusion coefficient:
x: average mean free path
t: time in between two collisions (inverse collision time)
2
2


v
m
D  2     th2 

 s 
kT

m 
Particle diffusion and mobility
Equation of motion for a particle in a plasma:
For stationary plasma we obtain the particle flux:
n  n  x  
p  q 

n E
m   m  
 n 
 kT 

  kT
  n  
m
m








Limit low temperature plasma
Particle diffusion and mobility
n   Dn  n   n  n  E
Diffusion coefficient
Mobility constant
D
kT


q
Diffusion coefficient agrees with random walk result!
Ambipolar Diffusion:
assume a low temperature plasma: ions are pulled by the
electrons via an electric field against the friction of neutrals
Total flux of positive und negative particles from plasma must be equal
(quasi neutrality!)
e    e  ne E  Dene  i  i  ni E  Di ni
This is estabilshed by E-field:
Ea 
Di  De n

i  e n
(ne=ni)
ambipolar particle flux:
 i De   e Di

 n   Da  n
i  e
 i De   e Di
Da 
i  e
ambipolar diffusion
since:
and using
e >> i
D
kT


q
i
Da  Di 
 De
e
 Te 
Da  Di  1  
 Ti 
In low temperature plasmas, we often have: Te>> Ti
i     i  n  Ea
e      e  n  Ea  Den
electrons pull ions
ions try to ‚hold‘ electrons
Ambipolare diffusion
The outflux of electrons is substantially reduced
e      e  n  Ea  Den  0
Ambipolar diffusion
e      e  n  Ea  Den  0
 e  n  Ea   Den
n / n   Ea   e / De   eEa / kT
Electron density is Boltzmann-distribution:
ne  ne 0  e 
 e Ea ( x )dx / kT
Heat transport
heat transport: similar ansatz as
for particle transport:
Heat transport coefficient
(conductivity) per particle
qn   n  Tn


n
 1 Ws 
m s  m 


 m2 
 
 s 
Electron heat conductivity usually dominates:
e 
v the
 ee
2
 Ce
5/ 2

kTe 

ne
Ci / Ce  me / mi  Z 2
Electric resistance of plasmas
Ohm‘s law :
j  E
bzw.
j
E

j   e  ne  v   e     e  ne    E
 e 2 ne 
j     E
m  
 e

resistivity:
me
 || 
 stoß
2
ne  e
Electric resistance of plasmas
For ionised plasma: consider only Coulomb collisions:
 me1/ 2  e1/ 2 
Z
 ||  K  

ln



3/ 2
2


T
0
e


Te in eV
 0,52 10 5  ln  
Z
Te
3/ 2
  m 
• is independent of particle density
• decreases stronlgy with increasing electron temperature (~Te3/2)
For low ionisation fraction, friction with neutrals has to be considered
 Neutra lg as
me

 ( ei   en )
2
ne  e
Summary:
diffusion and transport
n   Dn  n   n  n  E
ambipolarity constraint gives:
 i De   e Di
Da 
i  e
Heat conduction
qn   n  Tn
 1 Ws 
m s  m 



e 
v the
2
 ee
 Ce
5/ 2

kTe 

ne

n
Ci / Ce  me / mi  Z 2
Electrical resistance:
j  E
bzw.
j
E

me
 || 
 stoß
2
ne  e
 m2 
 
 s 