* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Activity 2.3.6 Equilateral Triangles
Tessellation wikipedia , lookup
Line (geometry) wikipedia , lookup
Multilateration wikipedia , lookup
Noether's theorem wikipedia , lookup
Golden ratio wikipedia , lookup
Apollonian network wikipedia , lookup
Brouwer fixed-point theorem wikipedia , lookup
Four color theorem wikipedia , lookup
History of geometry wikipedia , lookup
Euler angles wikipedia , lookup
Trigonometric functions wikipedia , lookup
Rational trigonometry wikipedia , lookup
History of trigonometry wikipedia , lookup
Reuleaux triangle wikipedia , lookup
Euclidean geometry wikipedia , lookup
Incircle and excircles of a triangle wikipedia , lookup
Name: Date: Page 1 of 3 Activity 2.3.6 Equilateral Triangles Recall these definitions: Equilateral triangle: A triangle in which all three sides are congruent. Isosceles triangle: A triangle with at least one pair of congruent sides. Scalene triangle: A triangle with no pair of congruent sides. From these definitions, it is clear that equilateral triangles can also be classified as isosceles triangles. The same way that a square is a special type of rectangle, the equilateral triangle is a special type of an isosceles triangle. Letβs use the Isosceles Triangle Theorem and its Converse to discover properties of equilateral triangles. 1. Given βXYZ is equilateral; that is XY = YZ = ZX. a. Choose two sides of βπππ. ___________ and _____________ What must be true about the angles opposite these sides? _____________________________________________________ Why? (state the theorem or express in your own words) ______________________________________________________ b. Now choose two different sides of βπππ. ______________ and ______________ What must be true about the angles opposite these sides? ______________________________ Why? _______________________________________________________________________ c. What is true about the angles of an equilateral triangle? _____________________________ Activity 2.3.6 Connecticut Core Geometry Curriculum Version 1.0 Name: Date: Page 2 of 3 2. Given β LMN with mβ ππΏπ = mβ πΏππ = mβ πππΏ. Since the measures of the angles are equal, we could call this triangle βequiangular.β a. Choose two angles from βπΏππ. ____________ and ____________ What must be true about the sides opposite these angles? _________________________________________________________ Why? ____________________________________________________ b. Now choose two different angles from βπΏππ. ______________ and _______________ What must be true about the sides opposite these angles? ________________________________ Why? ________________________________________________________________________ c. What is true about the sides of an equiangular triangle? _______________________________ 3. Fill the missing reasons in the proof of the Equilateral Triangle Theorem Μ Μ Μ Μ β π΅πΆ Μ Μ Μ Μ Given: Μ Μ Μ Μ π΄π΅ β π΄πΆ Prove: β π΄ β β π΅ β β πΆ Statements Reason Μ Μ Μ Μ β π΄πΆ Μ Μ Μ Μ 1. π΄π΅ 1. Given 2. β πΆ β β π΅ 2. ____________________Theorem Μ Μ Μ Μ 3. Μ Μ Μ Μ π΄πΆ β π΅πΆ 3. ________________ 4. β π΅ β β π΄ 4. ________________ 5. β πΆ β β π΄ 5. ______________ Propetry 6. β π΄ β β π΅ β β πΆ 6. Summarizing lines 2, 4, and 5 Fill in the blanks to complete the Equilateral Triangle Theorem: If all __________ ____________ of a triangle are _______________, then all ____________ _____________ are _______________. Activity 2.3.6 Connecticut Core Geometry Curriculum Version 1.0 Name: Date: Page 3 of 3 4.. Fill the missing reasons in the proof of the Equilateral Triangle Converse. Given: β π΄ β β π΅ β β πΆ Μ Μ Μ Μ β π΄πΆ Μ Μ Μ Μ β π΅πΆ Μ Μ Μ Μ Prove: π΄π΅ Statement Reason 1. β π΄ β β π΅ 1. _______________________________ Μ Μ Μ Μ β Μ Μ Μ Μ 2. π΅πΆ π΄πΆ 2. _______________________________ 3. β π΅ β β πΆ 3. _______________________________ 4. Μ Μ Μ Μ π΄πΆ β Μ Μ Μ Μ π΄π΅ 4. _______________________________ Μ Μ Μ Μ 5. Μ Μ Μ Μ π΄π΅ β π΅πΆ 5. _______________________________ Μ Μ Μ Μ 6. Μ Μ Μ Μ π΄π΅ β Μ Μ Μ Μ π΄πΆ β π΅πΆ 6. _______________________________ Fill in the blanks to complete the Converse of the Equilateral Triangle Theorem If all __________ ____________ of a triangle are _______________, then all ____________ _____________ are _______________. Activity 2.3.6 Connecticut Core Geometry Curriculum Version 1.0