Download Activity 2.3.6 Equilateral Triangles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Tessellation wikipedia , lookup

Simplex wikipedia , lookup

Line (geometry) wikipedia , lookup

Multilateration wikipedia , lookup

Noether's theorem wikipedia , lookup

Golden ratio wikipedia , lookup

Apollonian network wikipedia , lookup

Brouwer fixed-point theorem wikipedia , lookup

Four color theorem wikipedia , lookup

History of geometry wikipedia , lookup

Euler angles wikipedia , lookup

Trigonometric functions wikipedia , lookup

Rational trigonometry wikipedia , lookup

History of trigonometry wikipedia , lookup

Reuleaux triangle wikipedia , lookup

Euclidean geometry wikipedia , lookup

Incircle and excircles of a triangle wikipedia , lookup

Pythagorean theorem wikipedia , lookup

Integer triangle wikipedia , lookup

Transcript
Name:
Date:
Page 1 of 3
Activity 2.3.6 Equilateral Triangles
Recall these definitions:
Equilateral triangle: A triangle in which all three sides are congruent.
Isosceles triangle: A triangle with at least one pair of congruent sides.
Scalene triangle: A triangle with no pair of congruent sides.
From these definitions, it is clear that equilateral triangles can also be classified as isosceles
triangles. The same way that a square is a special type of rectangle, the equilateral triangle is a
special type of an isosceles triangle.
Let’s use the Isosceles Triangle Theorem and its Converse to discover properties of equilateral
triangles.
1. Given βˆ†XYZ is equilateral; that is XY = YZ = ZX.
a. Choose two sides of βˆ†π‘‹π‘Œπ‘. ___________ and _____________
What must be true about the angles opposite these sides?
_____________________________________________________
Why? (state the theorem or express in your own words)
______________________________________________________
b. Now choose two different sides of βˆ†π‘‹π‘Œπ‘. ______________ and ______________
What must be true about the angles opposite these sides? ______________________________
Why? _______________________________________________________________________
c. What is true about the angles of an equilateral triangle? _____________________________
Activity 2.3.6
Connecticut Core Geometry Curriculum Version 1.0
Name:
Date:
Page 2 of 3
2. Given βˆ† LMN with mβˆ π‘πΏπ‘€ = mβˆ πΏπ‘€π‘ = mβˆ π‘€π‘πΏ. Since the measures of the angles are
equal, we could call this triangle β€œequiangular.”
a. Choose two angles from βˆ†πΏπ‘€π‘. ____________ and ____________
What must be true about the sides opposite these angles?
_________________________________________________________
Why?
____________________________________________________
b. Now choose two different angles from βˆ†πΏπ‘€π‘. ______________ and _______________
What must be true about the sides opposite these angles? ________________________________
Why? ________________________________________________________________________
c. What is true about the sides of an equiangular triangle?
_______________________________
3. Fill the missing reasons in the proof of the Equilateral Triangle
Theorem
Μ…Μ…Μ…Μ… β‰… 𝐡𝐢
Μ…Μ…Μ…Μ…
Given: Μ…Μ…Μ…Μ…
𝐴𝐡 β‰… 𝐴𝐢
Prove: ∠𝐴 β‰… ∠𝐡 β‰… ∠𝐢
Statements
Reason
Μ…Μ…Μ…Μ… β‰… 𝐴𝐢
Μ…Μ…Μ…Μ…
1. 𝐴𝐡
1. Given
2. ∠𝐢 β‰… ∠𝐡
2. ____________________Theorem
Μ…Μ…Μ…Μ…
3. Μ…Μ…Μ…Μ…
𝐴𝐢 β‰… 𝐡𝐢
3. ________________
4. ∠𝐡 β‰… ∠𝐴
4. ________________
5. ∠𝐢 β‰… ∠𝐴
5. ______________ Propetry
6. ∠𝐴 β‰… ∠𝐡 β‰… ∠𝐢
6. Summarizing lines 2, 4, and 5
Fill in the blanks to complete the Equilateral Triangle Theorem:
If all __________ ____________ of a triangle are _______________, then all ____________
_____________ are _______________.
Activity 2.3.6
Connecticut Core Geometry Curriculum Version 1.0
Name:
Date:
Page 3 of 3
4.. Fill the missing reasons in the proof of the Equilateral Triangle Converse.
Given: ∠𝐴 β‰… ∠𝐡 β‰… ∠𝐢
Μ…Μ…Μ…Μ… β‰… 𝐴𝐢
Μ…Μ…Μ…Μ… β‰… 𝐡𝐢
Μ…Μ…Μ…Μ…
Prove: 𝐴𝐡
Statement
Reason
1. ∠𝐴 β‰… ∠𝐡
1. _______________________________
Μ…Μ…Μ…Μ… β‰… Μ…Μ…Μ…Μ…
2. 𝐡𝐢
𝐴𝐢
2. _______________________________
3. ∠𝐡 β‰… ∠𝐢
3. _______________________________
4. Μ…Μ…Μ…Μ…
𝐴𝐢 β‰… Μ…Μ…Μ…Μ…
𝐴𝐡
4. _______________________________
Μ…Μ…Μ…Μ…
5. Μ…Μ…Μ…Μ…
𝐴𝐡 β‰… 𝐡𝐢
5. _______________________________
Μ…Μ…Μ…Μ…
6. Μ…Μ…Μ…Μ…
𝐴𝐡 β‰… Μ…Μ…Μ…Μ…
𝐴𝐢 β‰… 𝐡𝐢
6. _______________________________
Fill in the blanks to complete the Converse of the Equilateral Triangle Theorem
If all __________ ____________ of a triangle are _______________, then all ____________
_____________ are _______________.
Activity 2.3.6
Connecticut Core Geometry Curriculum Version 1.0