Download Team 1 Presentation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Enzyme Kinetics and
Mechanism
Karen Cao, Edward Lee, Jennifer Liu,
Dea Yong Park, Sharmila Railkar,
Jyotsna Ramachanadran, Jason Stickel,
Laura Tiedemann, Lindsay Vendetta,
Kurt Weiberth, Caitlin Williams
•http://biomechanics.e
cs.umass.edu/HHPAJ
X/hhpajx5.gif
What is an enzyme?
• Catalyzes a
chemical reaction by
lowering activation
energy
• Affected by
temperature and pH
• Essential within
human body
Chasin, Lawrence & Mowshowitz, Deborah. (2006,
September). Lec. 6. Biol C2005/F2401 Columbia
University. New York, NY. Retrieved on 8 August,
2007 from
http://www.columbia.edu/cu/biology/courses/c2005/pu
rves6/figure06-14.jpg
Examples of Enzymes
Enzyme
Nonenzymatic t1/2
knon (s-1)
kcat
(s-1)
Rate
enhancement
(kcat/knon)
OMP
decarboxylase
78 000 000 years
2.8 x 10-16
39
1.4 x 1017
Staphylococcal
nuclease
130 000 years
1.7 x 10-13
95
5.6 x 1014
Adenosine
deaminase
120 years
1.8 x 10-10
370
2.1 x 1012
AMP
nucleosidase
69 000 years
1.0 x 10-11
60
6.0 x 1012
Cytidine
deaminase
69 years
3.2 x 10-10
299
1.2 x 1012
CITATION
Enzymes
• Active Site- the specific
portion of an enzyme
that attaches to the
substrate
• Substrate- the reactant
on which an enzyme
works
Campbell, N. A. & Reece
J. B. (2005). Biology.
pp. 123
Adenosine Deaminase (ADA)
• T cell development
• Neurotransmission
• Blood flow
• Platelet aggregation
• Regulates adenosine
levels
Adenosine Deaminase 1VFL.png. (2007). Wikipedia. Retrieved
August 1, 2007 from
http://en.wikipedia.org/wiki/Image:Adenosine_deaminase_1VFL
.png
Adenosine
• Critical nucleoside
• Backbone of various biological structures
Adenosine triphosphate (ATP)
Cellular receptors (G-proteins)
• Prevents tissue damage during hypoxia,
ischemia, and seizure activity
Adenosine to Inosine
NH2
N
CH2OH
O
N
O
N
N
CH2OH
O
N
N
NH3
HO
OH
Adenosine
NH
H 2O
HO
Inosine
OH
N
ADA Complications
• Severe Combined
Immunodeficiency
Syndrome (SCIDS)
• Lymphoma
• Hemolytic Anemia
“A T Cell killing a cancer cell.” (2007). T-cells.
Retrieved August 3, 2007 from
http://www.sciencemuseum.org.uk/online/lifecycle/116.asp
Cavazzana-Calvo, M. & Hacein-Bey, S. Gene Therapy:
Bursting the Bubble of SCIDS. (2001). University of
Arizone. Retrieved August 1, 2007 from
http://student.biology.arizona.edu/honors2000/group08/i
mages/babybubble.jpg
How ADA catalyzes
Wilson, D. K. et. al. Atomic Structure of
Adenosine Deaminase Complexed with a
Transition-State Analog: Understanding
Catalysis and Immunodeficiency Mutations.
(1991.) Science 252 (5010). 1278.
How ADA catalyzes
Wilson, D. K. et. al. Atomic Structure of
Adenosine Deaminase Complexed with a
Transition-State Analog: Understanding
Catalysis and Immunodeficiency Mutations.
(1991.) Science 252 (5010). 1278.
How ADA catalyzes
Wilson, D. K. et. al. Atomic Structure of
Adenosine Deaminase Complexed with a
Transition-State Analog: Understanding
Catalysis and Immunodeficiency Mutations.
(1991.) Science 252 (5010). 1278.
How ADA catalyzes
Wilson, D. K. et. al. Atomic Structure of
Adenosine Deaminase Complexed with a
Transition-State Analog: Understanding
Catalysis and Immunodeficiency Mutations.
(1991.) Science 252 (5010). 1278.
How ADA catalyzes
Wilson, D. K. et. al. Atomic Structure of
Adenosine Deaminase Complexed with a
Transition-State Analog: Understanding
Catalysis and Immunodeficiency Mutations.
(1991.) Science 252 (5010). 1278.
Purpose
• Begin attempts to identify the
functional group which
protonates the amine leaving
group
• pH dependence of two
?
substrates
Adenosine
6-Chloroadenosine
Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase
Complexed with a Transition-State Analog: Understanding
Catalysis and Immunodeficiency Mutations. (1991.) Science
252 (5010). 1278.
6-Chloroadenosine
Adenosine
NH 2
Cl
N
N
N
N
HO
N
N
N
HO
O
H
O
H
H
H
H
OH
OH
Adenosine
H
H
H
OH
OH
6-Chloroadenosine
N
Overview of experiment
• Determine rates of reaction of both
adenosine and 6-chloroadenosine at
varying concentrations and pHs.
• Calculate and compare rate constants to
establish which reaction is more sensitive
to pH
Why This Works
• At higher pHs, the solution will
neutralize the acidic side chain
before it can protonate the NH2
• 6-Chloroadenosine does not
need a proton to continue with
reaction
• Therefore, 6-Chloroadenosine
will be less dependent on pH
and show higher reaction rates.
The Science Company. (2007). Toward Understanding
pH. Retrieved 7 August, 2007 from
www.sciencecompany.com/iages/phscale.gif
Projected k2 Graphs
Case 1: pH dependence comes
from the protonation of the amine
group
Adenosine
Case 2: pH dependence comes
from the protonation of the 1N or
denaturation of the protein
6-Chloroadenosine
Materials
•
•
•
•
Adenosine solution
Adenosine deaminase
6-Chloroadenosine
Buffers of varying pH
Micropipette. (2007). Biokits.com. Retrieved 8
August, 2007 from http://www.biokits.com
DU® 530 Life Science UV/Visible
Spectrophotometers. (2007). Retrieved 8
August from http://www.biocompare.com
•
•
•
•
Distilled Water
Micropipettes
Microcentrifuge tubes
Spectrophotometer
Procedure
• Use varying concentrations of adenosine solution
and 6-chloroadenosine solution at each pH
• Add adenosine deaminase
• Run sample through spectrophotometer for
duration of reaction to analyze rate of reaction
– Beer’s Law: Abs.  concentration
• Compress data and compare reaction rates of
adenosine deaminase and 6-chloroadenosine
y = -5.75E-04x + 7.01E-01
Absorbance
Absorbance vs. Time of 50 microM
Adenosine at pH 8.9
2
R = 1.00E+00
0.7100
0.7000
0.6900
0.6800
0.6700
0.6600
0.6500
0.6400
0.6300
0.6200
0.6100
0
20
40
60
80
100
120
140
160
Time (sec.)
Absorbance
Absorbance vs. Time of 60 microM
6-Chloroadenosine at pH 8.9
y = -5.12E-05x + 4.38E-01
R2 = 9.92E-01
0.44
0.435
0.43
0.425
0.42
0.415
0.41
0.405
0
100
200
300
400
Time (sec.)
500
600
700
Michaelis-Menten Kinetics
vmax [ s]
vo 
k m  [ s]
vmax  k2  [ E ]t
Berg, J. M., Tymoczko, J.
L., & Stryer, L. (2007.)
Biochemistry. (6th ed.)
New York: W.H. Freeman
and Company.
k 1  k 2
KM 
k1
M ichae lis-M e nte n Chart for
Ade nosine at pH 8.9
0.00000008
0.00000007
0.00000006
Vo
0.00000005
0.00000004
0.00000003
0.00000002
0.00000001
10.00
0
[S]
M ichae lis-M e nte n Chart for
6-Chloroade nosine at pH 8.9
2.00E-08
1.80E-08
1.60E-08
1.40E-08
Vo
1.20E-08
1.00E-08
8.00E-09
6.00E-09
4.00E-09
2.00E-09
0.00E+00
0
20
40
60
[S]
80
100
120
Double Reciprocal Plot
1 KM
1
1



vo Vmax [ S ] Vmax
y = m • x + b
Berg, J. M., Tymoczko, J. L., &
Stryer, L. (2007.) Biochemistry.
(6th ed.) New York: W.H.
Freeman and Company.
Double Reciprocal Chart for
Adenosine at pH 8.9
y = 4.58E+08x + 3.11E+06
R2 = 9.88E-01
60000000
50000000
1/Vo
40000000
30000000
20000000
10000000
0
0
0.02
0.04
0.06
0.08
0.1
0.12
1/[S]
Double Reciprocal Chart for
6-Chloroadenosine at pH 8.9
y = 3.64E+09x + 3.11E+07
R2 = 9.84E-01
800000000
700000000
600000000
1/Vo
500000000
400000000
300000000
200000000
100000000
0
0.00
0.05
0.10
0.15
1/[S]
0.20
0.25
pH
k2(Ad)
pH
k2(Cl-Ad)
7.3
68.3
7.3
0.26
8.4
30.6
8.4
0.319
8.9
4.62
8.9
0.77
9.4
1.63
9.4
<0.08
80
0.8
60
0.6
40
0.4
20
0.2
0
0
7
7.5
8
Adenosine
8.5
pH
9
9.5
6-chloroadenosine
10
6-C l-Adenosine k2
Adenosine k2
pH vs. k2 for Adenosine and
6-Cl-Adenosine
Conclusions
 2 preliminary conclusions
Adenosine is more pH sensitive than 6chloroadenosine
Importance of acidic side chains and
protonation of amine group in pH
dependence
Further Testing
• Determinations of more k₂ values
Test adenosine and 6-Cl-adenosine at more
pH’s and more concentrations
• Testing of individual amino acid groups
within enzyme
Replacement of amino acid groups via
mutagenesis
Applications
• Comprehension of underlying ADA
catalysis mechanism allows for more
effective ADA inhibitors
• Major medical implications
SCIDS
Lymphomas
Metabolic disorders
Thank You
• Prudential and other sponsors
• Dr. Miyamoto
• Dr. Steven Surace
• Dr. Paul Victor Quinn, Sr.
• Myrna Papier
• Dr. Adam Cassano
• Jen Cowell
Questions? Comments?
Concerns?
•Email us at
[email protected]
Sources
1.
2.
3.
4.
5.
6.
Campbell, N. A. & Reece J. B. (2005). Biology. 123
Adenosine Deaminase 1VFL.png. (2007). Wikipedia. Retrieved August 1,
2007 from
http://en.wikipedia.org/wiki/Image:Adenosine_deaminase_1VFL.png
“A T Cell killing a cancer cell.” (2007). T-cells. Retrieved August 3, 2007
from http://www.sciencemuseum.org.uk/on-line/lifecycle/116.asp
Cavazzana-Calvo, M. & Hacein-Bey, S. Gene Therapy: Bursting the Bubble of
SCIDS. (2001). University of Arizone. Retrieved August 1, 2007 from
http://student.biology.arizona.edu/honors2000/group08/images/babybub
ble.jpg
Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase
Complexed with a Transition-State Analog: Understanding Catalysis
and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.
Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.)
New York: W.H. Freeman and Company.
Sources
• Catalysis.
http://www.columbia.edu/cu/biology/courses/c2005/purves6/figure06-14.jpg
•
http://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Adenosine_deaminase_1VFL.pn
g/593px-Adenosine_deaminase_1VFL.png
•
Slide 1 http://biomechanics.ecs.umass.edu/HHPAJX/hhpajx5.gif
Related documents