Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran, Jason Stickel, Laura Tiedemann, Lindsay Vendetta, Kurt Weiberth, Caitlin Williams •http://biomechanics.e cs.umass.edu/HHPAJ X/hhpajx5.gif What is an enzyme? • Catalyzes a chemical reaction by lowering activation energy • Affected by temperature and pH • Essential within human body Chasin, Lawrence & Mowshowitz, Deborah. (2006, September). Lec. 6. Biol C2005/F2401 Columbia University. New York, NY. Retrieved on 8 August, 2007 from http://www.columbia.edu/cu/biology/courses/c2005/pu rves6/figure06-14.jpg Examples of Enzymes Enzyme Nonenzymatic t1/2 knon (s-1) kcat (s-1) Rate enhancement (kcat/knon) OMP decarboxylase 78 000 000 years 2.8 x 10-16 39 1.4 x 1017 Staphylococcal nuclease 130 000 years 1.7 x 10-13 95 5.6 x 1014 Adenosine deaminase 120 years 1.8 x 10-10 370 2.1 x 1012 AMP nucleosidase 69 000 years 1.0 x 10-11 60 6.0 x 1012 Cytidine deaminase 69 years 3.2 x 10-10 299 1.2 x 1012 CITATION Enzymes • Active Site- the specific portion of an enzyme that attaches to the substrate • Substrate- the reactant on which an enzyme works Campbell, N. A. & Reece J. B. (2005). Biology. pp. 123 Adenosine Deaminase (ADA) • T cell development • Neurotransmission • Blood flow • Platelet aggregation • Regulates adenosine levels Adenosine Deaminase 1VFL.png. (2007). Wikipedia. Retrieved August 1, 2007 from http://en.wikipedia.org/wiki/Image:Adenosine_deaminase_1VFL .png Adenosine • Critical nucleoside • Backbone of various biological structures Adenosine triphosphate (ATP) Cellular receptors (G-proteins) • Prevents tissue damage during hypoxia, ischemia, and seizure activity Adenosine to Inosine NH2 N CH2OH O N O N N CH2OH O N N NH3 HO OH Adenosine NH H 2O HO Inosine OH N ADA Complications • Severe Combined Immunodeficiency Syndrome (SCIDS) • Lymphoma • Hemolytic Anemia “A T Cell killing a cancer cell.” (2007). T-cells. Retrieved August 3, 2007 from http://www.sciencemuseum.org.uk/online/lifecycle/116.asp Cavazzana-Calvo, M. & Hacein-Bey, S. Gene Therapy: Bursting the Bubble of SCIDS. (2001). University of Arizone. Retrieved August 1, 2007 from http://student.biology.arizona.edu/honors2000/group08/i mages/babybubble.jpg How ADA catalyzes Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. How ADA catalyzes Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. How ADA catalyzes Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. How ADA catalyzes Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. How ADA catalyzes Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. Purpose • Begin attempts to identify the functional group which protonates the amine leaving group • pH dependence of two ? substrates Adenosine 6-Chloroadenosine Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. 6-Chloroadenosine Adenosine NH 2 Cl N N N N HO N N N HO O H O H H H H OH OH Adenosine H H H OH OH 6-Chloroadenosine N Overview of experiment • Determine rates of reaction of both adenosine and 6-chloroadenosine at varying concentrations and pHs. • Calculate and compare rate constants to establish which reaction is more sensitive to pH Why This Works • At higher pHs, the solution will neutralize the acidic side chain before it can protonate the NH2 • 6-Chloroadenosine does not need a proton to continue with reaction • Therefore, 6-Chloroadenosine will be less dependent on pH and show higher reaction rates. The Science Company. (2007). Toward Understanding pH. Retrieved 7 August, 2007 from www.sciencecompany.com/iages/phscale.gif Projected k2 Graphs Case 1: pH dependence comes from the protonation of the amine group Adenosine Case 2: pH dependence comes from the protonation of the 1N or denaturation of the protein 6-Chloroadenosine Materials • • • • Adenosine solution Adenosine deaminase 6-Chloroadenosine Buffers of varying pH Micropipette. (2007). Biokits.com. Retrieved 8 August, 2007 from http://www.biokits.com DU® 530 Life Science UV/Visible Spectrophotometers. (2007). Retrieved 8 August from http://www.biocompare.com • • • • Distilled Water Micropipettes Microcentrifuge tubes Spectrophotometer Procedure • Use varying concentrations of adenosine solution and 6-chloroadenosine solution at each pH • Add adenosine deaminase • Run sample through spectrophotometer for duration of reaction to analyze rate of reaction – Beer’s Law: Abs. concentration • Compress data and compare reaction rates of adenosine deaminase and 6-chloroadenosine y = -5.75E-04x + 7.01E-01 Absorbance Absorbance vs. Time of 50 microM Adenosine at pH 8.9 2 R = 1.00E+00 0.7100 0.7000 0.6900 0.6800 0.6700 0.6600 0.6500 0.6400 0.6300 0.6200 0.6100 0 20 40 60 80 100 120 140 160 Time (sec.) Absorbance Absorbance vs. Time of 60 microM 6-Chloroadenosine at pH 8.9 y = -5.12E-05x + 4.38E-01 R2 = 9.92E-01 0.44 0.435 0.43 0.425 0.42 0.415 0.41 0.405 0 100 200 300 400 Time (sec.) 500 600 700 Michaelis-Menten Kinetics vmax [ s] vo k m [ s] vmax k2 [ E ]t Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.) New York: W.H. Freeman and Company. k 1 k 2 KM k1 M ichae lis-M e nte n Chart for Ade nosine at pH 8.9 0.00000008 0.00000007 0.00000006 Vo 0.00000005 0.00000004 0.00000003 0.00000002 0.00000001 10.00 0 [S] M ichae lis-M e nte n Chart for 6-Chloroade nosine at pH 8.9 2.00E-08 1.80E-08 1.60E-08 1.40E-08 Vo 1.20E-08 1.00E-08 8.00E-09 6.00E-09 4.00E-09 2.00E-09 0.00E+00 0 20 40 60 [S] 80 100 120 Double Reciprocal Plot 1 KM 1 1 vo Vmax [ S ] Vmax y = m • x + b Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.) New York: W.H. Freeman and Company. Double Reciprocal Chart for Adenosine at pH 8.9 y = 4.58E+08x + 3.11E+06 R2 = 9.88E-01 60000000 50000000 1/Vo 40000000 30000000 20000000 10000000 0 0 0.02 0.04 0.06 0.08 0.1 0.12 1/[S] Double Reciprocal Chart for 6-Chloroadenosine at pH 8.9 y = 3.64E+09x + 3.11E+07 R2 = 9.84E-01 800000000 700000000 600000000 1/Vo 500000000 400000000 300000000 200000000 100000000 0 0.00 0.05 0.10 0.15 1/[S] 0.20 0.25 pH k2(Ad) pH k2(Cl-Ad) 7.3 68.3 7.3 0.26 8.4 30.6 8.4 0.319 8.9 4.62 8.9 0.77 9.4 1.63 9.4 <0.08 80 0.8 60 0.6 40 0.4 20 0.2 0 0 7 7.5 8 Adenosine 8.5 pH 9 9.5 6-chloroadenosine 10 6-C l-Adenosine k2 Adenosine k2 pH vs. k2 for Adenosine and 6-Cl-Adenosine Conclusions 2 preliminary conclusions Adenosine is more pH sensitive than 6chloroadenosine Importance of acidic side chains and protonation of amine group in pH dependence Further Testing • Determinations of more k₂ values Test adenosine and 6-Cl-adenosine at more pH’s and more concentrations • Testing of individual amino acid groups within enzyme Replacement of amino acid groups via mutagenesis Applications • Comprehension of underlying ADA catalysis mechanism allows for more effective ADA inhibitors • Major medical implications SCIDS Lymphomas Metabolic disorders Thank You • Prudential and other sponsors • Dr. Miyamoto • Dr. Steven Surace • Dr. Paul Victor Quinn, Sr. • Myrna Papier • Dr. Adam Cassano • Jen Cowell Questions? Comments? Concerns? •Email us at [email protected] Sources 1. 2. 3. 4. 5. 6. Campbell, N. A. & Reece J. B. (2005). Biology. 123 Adenosine Deaminase 1VFL.png. (2007). Wikipedia. Retrieved August 1, 2007 from http://en.wikipedia.org/wiki/Image:Adenosine_deaminase_1VFL.png “A T Cell killing a cancer cell.” (2007). T-cells. Retrieved August 3, 2007 from http://www.sciencemuseum.org.uk/on-line/lifecycle/116.asp Cavazzana-Calvo, M. & Hacein-Bey, S. Gene Therapy: Bursting the Bubble of SCIDS. (2001). University of Arizone. Retrieved August 1, 2007 from http://student.biology.arizona.edu/honors2000/group08/images/babybub ble.jpg Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.) New York: W.H. Freeman and Company. Sources • Catalysis. http://www.columbia.edu/cu/biology/courses/c2005/purves6/figure06-14.jpg • http://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Adenosine_deaminase_1VFL.pn g/593px-Adenosine_deaminase_1VFL.png • Slide 1 http://biomechanics.ecs.umass.edu/HHPAJX/hhpajx5.gif