* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Solve Quadratic Equations If there is just 1 variable, get it alone. You
Mathematics of radio engineering wikipedia , lookup
Functional decomposition wikipedia , lookup
Recurrence relation wikipedia , lookup
Elementary mathematics wikipedia , lookup
System of polynomial equations wikipedia , lookup
Factorization wikipedia , lookup
Quadratic reciprocity wikipedia , lookup
Partial differential equation wikipedia , lookup
History of algebra wikipedia , lookup
Solve Quadratic Equations If there is just 1 variable, get it alone. You may need to take the square root of both sides of the equation. If there is more than 1 variable, with different exponents, try to solve the problem by factoring. The equation must be set equal to zero to use the zero product property. When two or more factors multiply together and the result is zero, then one of the factors must be zero. Solve these quadratic equations by taking the square root. 9(x – 3)2 = 63 4(w + 3)2 – 81 = 0 Solve these quadratic equations by factoring and using the Zero Product Property. t2 + 3t – 10 = 0 (t + 5)(t – 2) = 0 r2 – 12 = 4r t+5=0 t–2=0 t+5=0 t–2=0 -5 -5 + 2 +2 t = -5 t = 2 9y2 – 1 = 0 10x2 – 5x = 0 Solving Equations using the Quadratic Formula The Quadratic Formula can be used to solve equations that contain an x2 term. The equation must be set equal to zero, before you try to identify the coefficients. ax2 + bx + c = 0 a is the coefficient to the squared variable. b is the coefficient of the variable. c is the constant number, not attached to a variable. The only things you put into the formula are NUMBERS. Remember to Simplify and Reduce your answers. Quadratic Formula: x2 + 3x – 5 = 0 a =1 b=3 c = -5 3 ( 3) 2 4(1)( 5) x 2(1) x 3 9 20 2 x 3 29 2 b b 2 4ac x 2a 3t2 – 2t + 1 = 0 Solve by using the quadratic formula. 4x2 – 4x – 11 = 0 9w2 + 30w = -23 Solve by using any method. 3x2 2x 1 2 2 3 3 v 36 4 Solve by using any method. f 2 + 5f – 4 = (2f + 1)(f – 4) q2 + 81 = 0