Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Constraints to Universal Energy Density Functionals by Giant Resonances FIRST FIDIPRO-JSPS WORKSHOP Jyvaskyla、October 25-27, 2007 H. Sagawa, University of Aizu 1. Introduction 2. Incompressibility and ISGMR 3. Isotope Dependence of ISGMR and symmetry term of Incompressibility 4. Summary nuclear energy density functional Density functional theory E Ĥ Ĥ eff Ê Slater determinant ̂ A (1 (r1 ) A (rA )) Mean field: E ˆ h ̂ Eigenfunctions: hˆ i i i Single-particle states density matrix A ˆ (r, r' ) i (r ) i (r' ) i 1 Interaction: 2 E ˆ V ̂ ̂ p-h interactions Collective Excitations Theoretical Mean Field Models Skyrme HF model Gogny HF model +tensor correlations (Abe,Satula) RMF model RHF model pion-coupling, rho-tensor coupling (Meng) Many different parameter sets make possible to do systematic study of nuclear matter properties and EOS. Hamiltonian density for infinite nuclear matter : Hnm n , p Isoscalar part Isovector part h lim Hnm I 0 1 2 Hnm lim 2 I 0 I 2 Physical properties of the infinite symmetric nuclear matter Saturation density : nm 0 h nm Symmetry energy : J J nm asym Saturation energy per nucleon : E 0 1st derivative of : L E0 h nm ( SHF ), nm h nm E0 M ( RMF ) nm Incompressibility : K 2 h K 9 2 2 L 3 nm 2nd derivative of : Ksym 2 Ksym 9 2 2 nm nm n p I Nuclear Matter SHF RMF Nuclear Matter EOS Supernova Explosion Isoscalar Giant Monopole Resonances Isoscalar Compressional Dipole Resonances Incompressibility K N Z A Self consistent HF+RPA calculations Self consistent RMF+RPA (TD Hatree) calculations ( , ) experimtent , Self-consistent HF+RPA theory with Skyrme Interaction 1. Direct link between nuclear matter properties and collective excitations 2. The coupling to the continuum is taken into account properly by the Green’s function method. 3. The sum rule helps to know how much is the collectiveness of obtained states. 4. Numerical accuracy will be checked also by the sum rules. RPA Green’s Function Method Unperturbed Green’s function 1 1 G (r , r '; ) (r ) r r ' i (r ') i h0 i i h0 i ioccupied (0) * i where i (r ) and i are the HF single particle wave function and energy h0i (r ) ii (r ) The inverse operator equation can be solved as 1 r r ' Y *ljm (r , )Yljm (r ', ) glj (r , r ') h0 i i ljm where glj (r , r ') and 2m* (r ) 2 1 u(r )v(r ) W (u, v) r r , r r ' if r r ' r r ', r r if r r ' u (h0 i ) 0 v where u (v) is the regular (irregular) solution at the origin and u (v) behaves like a standing (outgoing) wave at infinity. RPA Green's function is then given by G RPA G (0) v RPA (0) v 1 (0) G G (1 G ) G (0) Strength function S ( E ) n | f (r ) | 0 ( En E0 E ) 2 n 1 ' * ' d r d r f ( r ) Im{G( r , r '; )} f ( r ) (355MeV) (217MeV) (256MeV) Youngblood, Lui et al.,(2002)、Gogny RPA Nuclear Matter EOS Isoscalar Monopole Giant Resonances Isoscalar Compressional Dipole Resonances Incompressibility K K (230 10) MeV for Skyrme (230 10) MeV for Gogny (250 10) MeV for RMF What does make this difference ? (G. Colo ,2004) (Lalazissis,2005) Science 298 (2002) 1592-1596 Constraints to Universal Energy Density Functionals by Giant Resonances FIRST FIDIPRO-JSPS WORKSHOP Jyvaskyla、October 25-27, 2007 H. Sagawa, University of Aizu 1. Introduction 2. Incompressibility and ISGMR 3. Isotope Dependence of ISGMR and symmetry term of Incompressibility 4. Summary N Z A Isovector properties of energy density functional by extended Thomas-Fermi approximation n p I J nm Parameter sets of SHF and relativistic mean field (RMF) model Notation for the Skyrme interactions Notation for the RMF parameter sets 1 SI 2 SIII 3 SIV 14 NL3 15 NLC 4 SVI 5 Skya 6 SkM 16 NLSH 17 TM1 7 SkM* 8 SLy4 9 MSkA 18 TM2 19 DD-ME1 20 DD-ME2 10 SkI3 13 SGII 11 SkI4 12 SkX Correlation among nuclear matter properties 2 3 2 3 N Z A Parameter sets of SHF and relativistic mean field (RMF) model Notation for the Skyrme interactions Notation for the RMF parameter sets 1 SI 2 SIII 3 SIV 15 NLSH 16 NL3 4 SVI 5 Skya 6 SkM 17 NLC 18 TM1 7 SkM* 8 SLy4 9 MSkA 19 TM2 20 DD-ME1 21 DD-ME2 10 SkI3 11 SkI4 13 SGII 14 SGI 12 SkX -200 FSUGold SG2 -300 SkM* K(MeV) -400 SkI4 SG1 SLy4 SkM SkI3 NLC Sa -500 MSkA TM1 DDME2 DDME1 S3 SkX S1 S6 S4 -600 NL3 -700 200 TM2 220 240 260 280 300 KOO (MeV) 320 340 360 380 Correlation among nuclear matter properties J.M. Lattimer and M. Prakash, Sience 304 (2004) Summary 1. The pressure and incompressibility of RMF is higher than that of SHF in general. 2. Nuclear incompressibility K is determined empirically to be K~230MeV(Skyrme,Gogny), K~250MeV(RMF). 3. K (500 50)MeVIs extracted from isotope dependence of GMR of Sn 4. Then it turns out to be J=(32+/-2)MeV, L=(50+/-10)MeV, Ksym= -(100+/-40)MeV 5. A clear correlation between neutron skin thickness and neutron matter EOS, and volume symmetry energy. 6. Neutron skin thickness can be obtained by the sum rules of charge exchange SD and also spin monopole excitations. 7.The SD strength gives a critical information both on the neutron EOS and mean field models. 90Zr np 0.07 0.04 fm np rn2 rp2 Model independent observation of neutron skin Electron scattering parity violation experiments Polarized electron beam experiment at Jefferson Lab. ---- scheduled in summer 2008 --- Sum Rule of Charge Exchange Spin Dipole Excitations Oˆ r[Yl 1 ] t S S = f | Oˆ | i f 2 f | Oˆ | i 2 1 N r2 4 2 f n Z r2 p Results of MDA for 90Zr(p,n) & (n,p) at 300 MeV (K.Yako et al.,PLB 615, 193 (2005)) • Multipole Decomposition (MD) Analyses – (p,n)/(n,p) data have been analyzed with the same MD technique – (p,n) data have been re-analyzed up to 70 MeV • Results – (p,n) • Almost L=0 for GTGR region (No Background) • Fairly large L=1 strength up to 50 MeV excitation at around (4-5)o – (n,p) • L=1 strength up to 30MeV at around (4-5)o L=0 L=1 L=2 Neutron skin thickness 9 S S N r2 Z r2 n p 4 Sum rule value ⇒ N r 2 Z r 2 207 17 fm 2 n p Neutron thickness r2 p 4.19 fm np 0.07 0.04 fm e scattering & proton form factor np method nucleus (fm) Ref. p elastic scatt. 90Zr IVGDR by α scatt. 116,124Sn … ±0.12 Krasznahorkay, PRL66(1991)1287 SDR by (3He,t) 114--124Sn … ±0.07 Krasznahorkay, PRL82(1999)3216 Yako(2006) 90Zr 0.09±0.07 0.07±0.04 Ray, PRC18(1978)1756 Collaborators Theory: Satoshi Yoshida, Guo-Mo Zeng, Jian-Zhong Gu, Xi-Zhen Zhang Publications S. Yoshida and H.S., Phys. Rev. C69, 024318 (2004), C73,024318(2006). H.S., S. Yoshida, G.M.Zeng, J.Z. Gu, X.Z. Zhang, PRC76,024301(2007). Theory: roadmap 126 Nuclear matter protons 82 82 28 20 2 A 50 50 8 20 28 neutrons 28 Neutron matter Nuclear Landscape Z=113 RIKEN 126 superheavy nuclei stable nuclei 82 protons known nuclei unknown region 50 proton halo 82 p-n pairing 28 20 50 neutron halo, skin, di-neutrons Clustering, BCS-BEC crossover 8 28 2 20 2 8 neutrons neutron stars J= Volume symmetry energy J=asym as well as the neutron matter pressure acts to increase linearly the neutron surface thickness in finite nuclei. Pigmy GDR GDR (p,p) Multipole decomposition analysis MDA exp ( cm , E x ) a J calc ( cm , E x ) ph; J J L 0, 1, 2, 3 DWIA 90Zr(n,p) angular dist. ω= 20 MeV 0-, 1-, 2-: inseparable (1g 7 / 2 , 1g 9 /21 ) DWIA inputs • NN interaction: t-matrix by Franey & Love • optical model parameters: Global optical potential (Cooper et al.) • one-body transition density: pure 1p-1h configurations • n-particle 1g7/2, 2d5/2, 2d3/2, 1h11/2, 3s1/2 • p-hole 1g9/2, 2p1/2, 2p3/2, 1f5/2, 1f7/2 radial wave functions … W.S. / RPA (1g 9 / 2 , 1g 9 /21 ) Neutron Matter AV14+3body Isoscalar and Isovector nuclear matter properties and Giant Resonances Trento,Italy, October 8, 2007 ---nuclear structure from laboratory to stars---- H. Sagawa, University of Aizu 1. Introduction 2. Incompressibility and ISGMR 3. Neutron Matter EOS and Neutron Skin Thickness 4. Isotope Dependence of ISGMR and symmetry term of Incompressibility 5. Summary