Download Diagnostic Imaging Utilization Management

Document related concepts

Medical image computing wikipedia , lookup

Transcript
Diagnostic Imaging
Utilization Management
2010-2011 Program Guidelines
v.6.1.9
Effective Date: August 16, 2010
Proprietary and Confidential
Clinical & Regulatory Programs
8600 West Bryn Mawr Avenue
Suite 800
Chicago, IL 60631
Phone: 773-864-4600
Fax: 773-864-4662
www.americanimaging.net
1
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Table of Contents
Use of AIM’s Diagnostic Imaging Guidelines
Use of AIM’s Diagnostic Imaging Guidelines............................................................................................... 4
Administrative Guidelines.............................................................................................................................. 5
Guideline: Simultaneous Ordering Of Multiple Imaging Tests................................................................... 6
Head & Neck Imaging
CT of the Head................................................................................................................................................. 8
CTA of the Head: Cerebrovascular.............................................................................................................. 14
MRI of the Head............................................................................................................................................. 17
MRA of the Head: Cerebrovascular............................................................................................................. 23
Functional Brain MRI.................................................................................................................................... 26
PET Brain Imaging........................................................................................................................................ 28
CT of theOrbit, Sella Turcica, Posterior Fossa and the Temporal Bone, including Mastoids............... 30
MRI of the Orbit, Face, Neck......................................................................................................................... 33
CT of the Paranasal Sinus Maxillofacial Area............................................................................................. 36
MRI of the Temporomandibular Joints........................................................................................................ 39
CT of the Neck (Soft Tissue)........................................................................................................................ 41
CTA of the Neck............................................................................................................................................. 43
MRA of the Neck............................................................................................................................................ 46
Chest Imaging
CT of the Chest.............................................................................................................................................. 49
CTA of the Chest............................................................................................................................................ 54
MRI of the Chest............................................................................................................................................ 58
MRA of the Chest.......................................................................................................................................... 61
MRI of the Breast........................................................................................................................................... 65
Cardiac Imaging
Nuclear Cardiology - Myocardial Perfusion Imaging................................................................................. 68
Nuclear Cardiology - Cardiac Blood Pool Imaging.................................................................................... 75
Nuclear Cardiology - Infarct Imaging.......................................................................................................... 79
Stress Echocardiography............................................................................................................................. 81
Transesophageal Echocardiography (TEE)................................................................................................ 88
Resting Transthoracic Echocardiography (TTE)........................................................................................ 90
CT Cardiac (Structure).................................................................................................................................. 98
CCTA Coronary Artery................................................................................................................................ 102
CT - Evaluation of Coronary Calcification................................................................................................ 105
2
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
MRI - Cardiac............................................................................................................................................... 107
PET Myocardial Imaging..............................................................................................................................112
Abdominal & Pelvic Imaging
CT of the Abdomen......................................................................................................................................114
MRI of the Abdomen................................................................................................................................... 120
CTA/MRA of the Abdomen.......................................................................................................................... 124
CTA of the Abdominal Aorta - Lower Extremity Run-off.......................................................................... 128
CT of the Pelvis........................................................................................................................................... 130
MRI of the Pelvis.......................................................................................................................................... 135
CTA/MRA of the Pelvis................................................................................................................................ 139
CT of the Abdomen & Pelvis Combination............................................................................................... 142
CT Colonography........................................................................................................................................ 147
Spine Imaging
CT of the Cervical Spine............................................................................................................................. 149
MRI of the Cervical Spine........................................................................................................................... 152
CT of the Thoracic Spine............................................................................................................................ 155
MRI of the Thoracic Spine.......................................................................................................................... 158
CT of the Lumbar Spine.............................................................................................................................. 161
MRI of the Lumbar Spine............................................................................................................................ 164
MRA of the Spinal Canal............................................................................................................................. 168
Upper Extremity Imaging
CT of the Upper Extremity.......................................................................................................................... 169
MRI of the Upper Extremity (Any Joint).................................................................................................... 171
MRI of the Upper Extremity (Non-Joint).................................................................................................... 176
CTA/MRA Upper Extremity......................................................................................................................... 179
Lower Extremity Imaging
CT of the Lower Extremity.......................................................................................................................... 181
MRI of the Lower Extremity (Joint & Non- Joint)...................................................................................... 183
CTA/MRA of the Lower Extremity.............................................................................................................. 188
PET Imaging - Other Including Oncologic
PET - Other PET Applications Including Oncologic Tumor Imaging...................................................... 191
Other
Magnetic Resonance Spectroscopy (MRS).............................................................................................. 200
MRI - Bone Marrow Blood Supply.............................................................................................................. 201
Quantitative CT - Bone Mineral Densitometry.......................................................................................... 203
3
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Clinical Guidelines
Website Disclaimer
BY ACCEPTING THESE DOCUMENTS, I ACKNOWLEDGE ACCEPTANCE OF THE FOLLOWING TERMS AND CONDITIONS FOR ACCESS AND USE OF THE CLINICAL GUIDELINES:
American Imaging Management, Inc. (AIM) has developed proprietary Diagnostic Imaging
Utilization Management Clinical Guidelines (together with any updates, referred to collectively as the “Guidelines”). The Guidelines are designed to evaluate and direct the appropriate utilization of high technology diagnostic imaging services. They are based on data from
the peer-reviewed scientific literature, from criteria developed by specialty societies and from
guidelines adopted by other health care organizations. Access to these Guidelines is being
provided for informational purposes only. AIM is under no obligation to update its Guidelines. Therefore, these Guidelines may be out of date.
The Guidelines are protected by copyright of AIM as permitted by and to the full extent of the
law. These rights are not released, transferred, or assigned as a result of allowing access.
You agree that you do not have any ownership rights to the Guidelines and you are expressly
prohibited from selling, assigning, leasing, licensing, reproducing or distributing the Guidelines, unless authorized in writing by AIM.
The Guidelines do not constitute medical advice and/or medical care, and do not guarantee
results or outcomes. The Guidelines are not a substitute for the experience and judgment
of a physician or other health care professionals. Any clinician seeking to apply or consult
the Guidelines is expected to use independent medical judgment in the context of individual
clinical circumstances to determine any patient’s care or treatment. The Guidelines do not
address coverage, benefit or other plan specific issues.
The Guidelines are provided “as is” without warranty of any kind, either expressed or implied.
AIM disclaims all responsibility for any consequences or liability attributable or related to any
use, non-use or interpretation of information contained in the Guidelines.
4
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
AIM’s Practice Guidelines Define the Optimal approaches for Diagnostic
Imaging Utilization during Individualized Case Review
Use of AIM’s Diagnostic Imaging Guidelines:
AIM’s Proprietary Clinical Practice Guidelines are designed to evaluate and direct the appropriate utilization of
elective, high technology diagnostic imaging services. In the process, multiple functions are accomplished:
∆∆
To promote the most efficient and cost-effective use of diagnostic imaging services
∆∆
To assist the practitioner as an educational tool
∆∆
To encourage standardization of medical practice patterns and reduce variation in clinical evaluation
∆∆
To curtail the performance of inappropriate, elective diagnostic imaging studies
∆∆
To reduce the performance of duplicative diagnostic imaging studies
∆∆
To advocate biosafety issues, including unnecessary radiation exposure (for CT and plain film radiography) and MRI safety concerns
∆∆
To enhance quality of healthcare for elective diagnostic imaging studies, using evidence-based medicine
and outcomes research from numerous resources
AIM Guideline Development Process and Resources:
The development of AIM’s proprietary practice guidelines involves integration of medical information from multiple sources, to support the reproducible use of high quality and state-of-the-art advanced diagnostic imaging
services. The process for criteria development is based on technology assessment, peer-reviewed medical
literature including clinical outcomes research and consensus opinion in medical practice.
The primary resources used for AIM guideline development include:
●●
American College of Radiology (ACR) Appropriateness Criteria
●●
American College of Cardiology (ACC) Appropriateness Criteria
●●
American Heart Association (AHA)
●●
American Institute of Ultrasound in Medicine (AIUM)
●●
American Cancer Society (ACS)
●●
American Academy of Neurology (AAN)
●●
American Academy of Pediatrics (AAP)
●●
Society of Interventional Radiology (SIR)
●●
Society of Nuclear Medicine (SNM)
●●
Agency for Healthcare Research and Quality (AHRQ)
●●
National Guideline Clearinghouse
●●
Centers for Medicare and Medicaid Services (CMS) * When variances occur Medicare NCD and LCD determinations will be used instead of AIM guidelines for medicare advantage patients
Guideline review:
AIM’s proprietary guidelines for appropriate diagnostic imaging utilization are reviewed routinely by:
1. Independent Physician Review Board: AIM’s Physician Specialty Advisory Panel
2. Health Plan Medical Directors
3. Local Imaging Advisory Council (representing local physician communities)
4. Physician Review Panels, under the governance of our clients’ State Regulatory Agencies
5
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Guideline: Simultaneous Ordering
of Multiple Imaging Tests
Modality: ALL
Body Part: ALL
CPT Codes: ALL
STANDARD ANATOMIC COVERAGE:
The major area of concern is contiguous body parts where clinical signs and symptoms may be coming from abnormalities
involving either region, or different modalities can be considered to evaluate the same anatomy for the same clinical
problem. These are areas where ordering multiple tests before the results of any of the tests are known lead to inappropriate
imaging.
GENERAL CONSIDERATIONS:
Rapid breakthroughs in technology, with attendant rise of new imaging tests available to improve patient management, have
created a dilemma for clinicians. Many factors in choosing the right test now come into play. One must consider basic data in
the decision-making process. Considerations include the possible effect on patient management, the pretest probability that
the patient is affected by a particular disease, the prevalence of the disease in the population, and the accuracy [sensitivity\
specificity] of the test. When a screening approach is adopted, rather than targeting the particular test or anatomic site with
the highest pretest probability of success, the possibility of one or more of the tests being superfluous and not contributing
meaningfully to patient management increases to an unacceptable level.
For this reason, simultaneous ordering of multiple examinations may subject these examinations to more intensive
levels of review than would be the case if these same tests were ordered sequentially. Depending on the clinical
situation, one or more of the requested studies might not meet medical necessity criteria until the results of the
lead study are known.
COMMON DIAGNOSTIC INDICATIONS FOR MULTIPLE SIMULTANEOUS IMAGING REQUESTS:
●● The initial diagnosis/staging or follow-up of oncology patients
●● Follow-up of patients who have had operative procedures on multiple anatomic sites
●● Patients in whom the suspected anatomic abnormality might extend into multiple regions, such as diverticulitis or suspected syringomyelia
COMMON INAPPROPRIATE MULTIPLE SIMULTANEOUS IMAGING REQUESTS:
●● Brain MRA ordered routinely with brain MRI without vascular indications
●● Brain CT ordered simultaneously with sinus CT for headache
●● Multiple levels of spine MRI’s or CT’s for diffuse back pain or radicular symptoms
●● Cervical spine and shoulder MRI’s ordered simultaneously for shoulder pain
●● Pelvic or hip MRI’s ordered simultaneously with lumbar spine MRI for hip pain
●● Pelvic CT ordered routinely with abdominal CT for suspected upper quadrant disease processes
REFERENCE/LITERATURE REVIEW:
1.
Kuhns M. D., Lawrence R., Thornberry M.D., John R., Freyback Ph.D., Dennis, Decision-making Imaging. YEARBOOK medical
publishers 1989
2.
Duboulet M. D., Ph.D., Peter M. Cain, Ph.D. Kevin C. The Superiority of Sequential over Simultaneous Testing,.Medical decisionmaking volume 5 NUMBER 4 PAGES 447 – 451, 1985
3.
Fryback, Ph.D. Dennis G., Thornberry, M.D. John R. The Efficacy of Diagnostic Imaging. Medical Decision-Making, volume 11,
number two, pages 88 – 94, 1991
6
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
4.
Hollingsworth W. and Jarvik J. G. Technology Assessment in Radiology: Rutting the Evidence in Evidence-Based Radiology.
Radiology,: 244 (1) PAGES 31-38, July 1, 2007
5.
Analysis of Diagnostic Confidence and Diagnostic Accuracy: a Unified Framework. British Journal of Radiology, March 1, 2007; (951):
pages 152-160
6.
Dodd J. D. Radiology, Evidence-based Practice in Radiology: Steps Three and Four-Appraise and Apply Diagnostic Radiology
Literature. 242 (2): pages 342- 354, February 1, 2007;
7.
Comparative Accuracy: Assessing New Tests Against Existing Diagnostic Pathways. British Medical Journal May 6, 2006; 332(7549):
pages 1089-1092
7
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Head
CPT CODES:
70450.................CT of Head, without contrast
70460.................CT of Head, with contrast
70470.................CT of Head, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● From the skull base to vertex, covering the entire calvarium and intra-cranial contents.
●● Scan coverage may vary, depending on the specific clinical indication.
IMAGING CONSIDERATIONS:
●● Radiation Dosimetry: CT of Head, either without or with contrast, has a typical effective dose of approximately 2.3 milliSieverts (mSv) or 115 Chest X-Ray equivalents.
●● MRI of the head is preferable to CT in most clinical scenarios, due to its superior contrast resolution and lack of beamhardening artifact adjacent to the petrous bone (which may limit visualization in portions of the posterior fossa and
brainstem on CT). Notable exceptions to the use of head MRI as the neuroimaging procedure of choice are: acute
intra-cranial hemorrhage (parenchymal, subarachnoid; subdural; epidural); initial evaluation of recent craniocerebral
trauma; osseous assessment of the calvarium, skull base and maxillofacial bones, including detection of calvarial and
facial bone fractures; and evaluation of calcified intracranial lesions.
●● CT of the head is an alternative exam in patients who cannot undergo MRI. Ordering and imaging providers are
responsible for considering biosafety issues prior to MRI examination, to ensure patient safety. Among the generally
recognized contraindications to MRI exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR imaging, as well as other devices
that are unsafe in MRI scanners (including implanted materials in the patient as well as external equipment, such as
portable oxygen tanks).
●● Contrast-enhanced CT may be contraindicated in certain circumstances, such as a documented allergy to intravenous
contrast material and renal insufficiency. Special consideration should also be given to patients with multiple myeloma.
●● For CT imaging of the orbits, internal auditory canals (IACs) or temporal bones, see CPT codes 70480-70482.
●● According to Medicare’s Correct Coding Edits, a CT of the Head is not usually performed with a CT of the Orbits.
These studies are generally considered mutually exclusive procedures.
●● Imaging studies of the head and neck are inherently bilateral. Duplicate requests for bilateral studies to image the right
and left side of the head are inappropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CT:
The following diagnostic indications for Head CT are accompanied by pre-test considerations as
well as clinical supporting data and prerequisite information:
CT is the imaging modality of choice for evaluation of:
●● Acute intra-cranial hemorrhage (parenchymal, subarachnoid, subdural and epidural hematomas);
●● Recent head trauma;
●● Osseous evaluation of the calvarium, skull base and facial bones, including detection of calvarial and facial bone fractures as well as assessment of the temporal bones for conductive hearing loss and an abnormal otoscopic exam;
8
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CT:
●● Calcified lesions
●● MRI is the preferred technique for most other indications, unless contraindicated. 1-2 This includes assessment of the
cerebral parenchyma, cerebellum, brainstem and pituitary gland.
ABNORMALITIES DETECTED ON OTHER IMAGING STUDIES WHICH REQUIRE ADDITIONAL CLARIFICATION TO
DIRECT TREATMENT
CNS FINDINGS/DEFICITS – NEW ONSET OR PROGRESSIVELY WORSENING NEUROLOGICAL ABNORMALITY
●● Including but not limited to the following clinical symptoms and findings:
–– Anosmia (loss or impairment in sense of smell)
–– Ataxia (inability to coordinate voluntary muscular movements)
–– Bell’s Palsy 3
–– Dysgeusia (dysfunction in sense of taste)
–– Facial Numbness
–– Gait Disorder
–– Other Movement Disorders
–– Nystagmus (rapid, involuntary, oscillating ocular movements)
–– Paresis or Paralysis
–– Tinnitus (ringing or roaring auditory sensation; may be either unilateral or bilateral; pulsatile or non-pulsatile; transient or persistent) 4
–– Other cranial nerve impairment
Note: Contrast-enhanced MRI, unless contraindicated, is generally recommended for evaluation of cranial nerve
impairment.
CEREBROVASCULAR ACCIDENT (CVA OR STROKE) AND TRANSIENT ISCHEMIC ATTACK (TIA) 5-6
●● May present with a variety of signs and symptoms, including sudden onset of weakness, focal sensory loss or speech
disorder
●● Among patients being evaluated for CVA and possible thrombolytic therapy, unenhanced CT is often performed as the
initial modality (within the initial 24 hours after symptom onset), to detect a possible hemorrhagic stroke or mass lesion.
CONGENITAL ANOMALY 7
●● Including but not limited to the following conditions:
–– Chiari Malformations
–– Dandy-Walker Spectrum
–– Encephalocele
–– Holoprosencephaly
–– Macrocephaly
–– Microcephaly
–– Schizencephaly
–– Septo-optic Dysplasia
CRANIOSYNOSTOSIS
DEMENTIA 8-9
●● Initial evaluation, if MRI is contraindicated, or
●● Rapid progression, if MRI is contraindicated
DEVELOPMENTAL DELAY 10
●● In developmental delay, MRI is the preferred imaging modality over CT
●● The likelihood of making a specific neuroimaging diagnosis increases in the presence of physical exam abnormalities
such as focal motor findings or microcephaly
EVALUATION OF ABNORMAL FINDINGS DETECTED ON OTHER IMAGING STUDIES - SUCH AS A MASS LESION OR
ABNORMAL INTRACRANIAL CALCIFICATION
9
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CT:
HEADACHE IN ADULT – WHEN ANY ONE OF THE FOLLOWING CRITERIA ARE MET:
11
●● Sudden onset and severe, including thunderclap or worst headache of life; or
●● Increased frequency and severity; or
●● With new focal neurologic signs, particularly papilledema, visual field defects and nuchal rigidity; or
●● New-onset headaches after age 50 years, as a recommendation; age is not an absolute requirement; or
●● New-onset headaches in cancer or immunodeficient patient; or
●● With mental status changes; or
●● With fever, nuchal rigidity and other meningeal signs; or
●● With nausea and vomiting; or
●● With exertion; or
●● Frequently awakened from sleep
Note: Current evidence does not support CT evaluation for chronic headache or migraines, when the patient’s neurological
status is unchanged.
HEADACHE IN PEDIATRIC PATIENT – WHEN ANY ONE OF THE FOLLOWING CRITERIA ARE MET:
11-13
●● Sudden onset and severe, including thunderclap or worst headache of life; or
●● Associated with neurological abnormalities such as nystagmus, papilledema, gait or motor disturbances; or
●● With fever, nuchal rigidity and other meningeal signs; or
●● Awakened repeatedly from sleep or develop upon awakening; or
●● Persistent headache with confusion, disorientation or vomiting; or
●● Persistent headaches of < 6 months duration and not responsive to medical treatment; or
●● Persistent headaches, without a family history of migraines; or
●● Familial or personal history of disorders with predisposition to CNS lesions and clinical/laboratory findings that suggest
CNS involvement;
HEMORRHAGE/HEMATOMA
●● Refers to non-traumatic, non-CVA and non-tumor-related intra-cranial bleed. Examples include hypertensive hemorrhage and hemorrhage secondary to anti-coagulation or blood dyscrasia
●● CT is the preferred technique for evaluation of acute intra-cranial hemorrhage 14-15
●● MRI is usually preferred for evaluation of subacute and chronic hemorrhage
HYDROCEPHALUS (VENTRICULOMEGALY)
●● MRI is often the preferred for initial evaluation of patients with hydrocephalus. For patients with an indwelling shunt, CT
is usually adequate in the diagnostic follow-up of hydrocephalus.
INCREASED INTRACRANIAL PRESSURE OR HERNIATION
INFECTIOUS OR INFLAMMATORY PROCESS 16
●● Including but not limited to the following:
–– Cerebral or Cerebellar Abscess
–– Encephalitis
–– Meningitis
–– Neurocysticercosis
–– Opportunistic Infection, particularly with immunosuppressed or other immunodeficient conditions
–– Subdural Empyema
MENTAL STATUS CHANGES, WITH DOCUMENTED OBJECTIVE EVIDENCE FROM NEUROLOGIC EXAM
MOVEMENT DISORDERS
●● Including Parkinson’s disease (particularly atypical cases with poor response to levodopa, in which there may be an
underlying structural disorder producing parkinsonian features); Huntington’s disease; idiopathic sporadic cerebellar
ataxia (olivopontocerebellar atrophy); and other conditions.
10
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CT:
MULTIPLE SCLEROSIS AND OTHER WHITE-MATTER DISEASES, WHEN MRI IS CONTRAINDICATED OR NOT
TOLERATED 17
●● Initial diagnosis; or periodic scans to assess asymptomatic progression in multiple sclerosis during the early course of
disease; or tracking the progress of multiple sclerosis to establish a prognosis or evaluation of response to treatment;
or to evaluate changes in neurologic signs and symptoms; or to assess for asymptomatic progression early in the
course of the disease if this information would be used to make treatment determination
NEUROCUTANEOUS DISORDERS
●● Including but not limited to the following:
–– Neurofibromatosis
–– Sturge-Weber Syndrome
–– Tuberous Sclerosis
–– Von Hippel-Lindau Disease (VHL)
NEUROENDOCRINE ABNORMALITY SUGGESTIVE OF A PITUITARY LESION
●● MRI is usually preferred over CT for evaluation of pituitary lesions
●● Relevant laboratory and clinical abnormalities are required
PAPILLEDEMA (refers to swelling and elevation of optic disc – a sign of increased intracranial pressure)
PRE- AND POST-NEUROSURGICAL EVALUATION
PRIOR TO LUMBAR PUNCTURE
SEIZURE DISORDER – new onset or increasing frequency and severity 18
SENSORINEURAL HEARING LOSS, DOCUMENTED BY AUDIOLOGY
●● As work-up for Acoustic Neuroma (Vestibular Schwannoma) – also see Primary Intra-cranial Tumors
Note: Contrast-enhanced MRI, unless contraindicated, is generally recommended for evaluation of sensorineural hearing
loss.
SYNCOPE 19
●● Syncope (partial or complete loss of consciousness) and near syncope (lightheadedness) are infrequently of primary
neurological origin, particularly in the absence of abnormal neurological findings.
●● Neurological consultation (for assessment of possible vertebrobasilar TIAs) and cardiovascular evaluation should be
considered.
TRAUMA TO HEAD 20-21
●● CT is usually preferred for the initial evaluation of acute head trauma, due to the high sensitivity for hemorrhage and
ability to display fractures
●● Particularly when associated with:
–– Calvarial fracture (as demonstrated on plain film radiography)
–– Change in Mental Status or Amnesia
–– Focal Neurological Deficits
–– Loss of Consciousness
–– Seizures
–– Signs of Increased Intracranial Pressure
–– Nausea / Vomiting
–– Worsening Headaches
●● Suspected hemorrhage, or subdural or epidural hematoma
TUMOR EVALUATION – BENIGN AND MALIGNANT: 22
Including but not limited to the following lesions:
●● Primary Intra-cranial Tumors
1. Intra-axial Neoplasms of the Cerebrum and Cerebellum
11
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CT:
2. Extra-axial Tumors, including Meningiomas and Schwannomas, such as:
–– Cerebello-pontine Angle (CPA) and internal auditory canal (IAC) Vestibular Schwannoma of CN 8 (also referred
to as an Acoustic Neuroma), and
–– Non-Acoustic Neuromas at the CPA involving cranial nerves (CN) 5, 7, 9, 10, 11 and 12, such as a CN 7
Schwannoma
3. Pituitary Tumors, including Macroadenomas and Microadenomas
●● Metastatic Disease
UNEXPLAINED MASS LESION IDENTIFIED ON PRIOR IMAGING – SURVEILLANCE, WITHOUT PATHOLOGIC TISSUE
CONFIRMATION.
●● Examples include suspected Arachnoid Cyst or Epidermoid Cyst
VASCULAR ABNORMALITIES
●● Including but not limited to:
–– Aneurysm
–– Arterio-Venous Malformation (AVM)
–– Cavernous Malformation
–– Cerebral Vein Thrombosis
–– Dural Arteriovenous Fistula (DAVF)
–– Dural Venous Sinus Thrombosis 21
–– Venous Angioma
●● Either CTA or MRA are usually the imaging modalities of choice for some of these vascular abnormalities, such as
aneurysm evaluation.
VENTRICULAR SHUNT ASSESSMENT
VERTIGO AND DIZZINESS
●● With recurrent or persistent symptoms and when evaluation for other etiologies has not been revealing
●● Abnormal hearing test or Auditory Brainstem Response
VISUAL DISTURBANCE – SUCH AS VISUAL FIELD LOSS, DIPLOPIA AND OTHER ALTERATIONS IN VISION THAT
ARE UNEXPLAINED BY OPHTHALMOLOGIC EXAM AND PATIENT HISTORY
WHEN THE PATIENT’S CONDITION MEETS THE HEAD MRI GUIDELINES, BUT MRI IS EITHER CONTRAINDICATED
OR THE PATIENT IS CLAUSTROPHOBIC AND CANNOT TOLERATE MRI EXAMINATION
REFERENCE/LITERATURE REVIEW:
1.
Morón FE, Morriss MC, Jones JJ, Hunter JV. Lumps and Bumps on the Head in Children: Use of CT and MR Imaging in Solving the
Clinical Diagnostic Dilemma. RadioGraphics 2004; 24: 1655-1674.
2.
Adelman AM, Daly MP. Initial Evaluation of the Patient with Suspected Dementia. American Family Physician 2005; 71(9): 17451750.
3.
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and Early Diagnosis of Alzheimer Disease: A look to the future. Radiology
2003; 226: 315-336.
4.
Morón FE, Morriss MC, Jones JJ, Hunter JV. Lumps and Bumps on the Head in Children: Use of CT and MR Imaging in Solving the
Clinical Diagnostic Dilemma. RadioGraphics 2004; 24: 1655-1674.
5.
Adelman AM, Daly MP. Initial Evaluation of the Patient with Suspected Dementia. American Family Physician 2005; 71(9): 17451750.
6.
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and Early Diagnosis of Alzheimer Disease: A look to the future. Radiology
2003; 226: 315-336.
7.
Shevell M, Ashwal S, Donley D, et al. Practice Parameter: Evaluation of the child with global developmental delay. Neurology 2003;
60: 367-380.
12
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
8.
Medina LS, D’Souza B, Vasconcellos E. Adults and Children with Headache: Evidence-based diagnostic evaluation. Neuroimaging
Clinics of North America 2003; 13: 225-235.
9.
Strain JD. ACR Appropriateness Criteria on Headache-Child. J Am Coll Radoil 2007; 4: 18-23.
10. Lewis DW, Ashwal S, Dahl G, et al. Practice Parameter: Evaluation of Children and Adolescents with Recurrent Headaches.
Neurology 2002; 59: 490-498.
11. Qureshi AI, Tuhrim S, Broderick JP, et al. Spontaneous Intracerebral Hemorrhage. N Engl J Med 2001; 344: 1450-1460.
12. Edlow JA, Caplan LR. Avoiding Pitfalls in the Diagnosis of Subarachnoid Hemorrhage. N Engl J Med 2000; 342: 29-36.
13. Osborn, Anne G., Editor. Diagnostic Imaging: Brain. Salt Lake City, Utah: Amirsys; 2004.
14. McDonald WI, Compston A, Edan G, et al. Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International
Panel on the Diagnosis of Multiple Sclerosis. Annals of Neurology 2001; 50(1): 121-127.
15. Bernal B, Altman NR. Evidence-Based Medicine: Neuroimaging of Seizures. Neuroimaging Clinics of North America 2003; 13: 211224.
16. Hauer KE. Discovering the Cause of Syncope: A Guide to the Focused Evaluation. Postgraduate Medicine 2003; 113(1): 31-38.
17. Haydel MJ, Preston CA, Mills TJ, et al. Indications for Computed Tomography in Patient with Minor Head Injury. N Engl J Med 2000;
343(2): 100-105.
18. 18.Gean, Alisa D. Imaging of Head Trauma. New York: Raven Press; 1994.
19. 19.Provenzale JM. CT and MR Imaging of Nontraumatic Neurologic Emergencies. AJR 2000; 174: 289-299.
13
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA)
Head: Cerebrovascular
CPT CODES:
70496.................Computed tomographic angiography, head, with contrast material(s), including noncontrast images, if
performed, and image postprocessing
STANDARD ANATOMIC COVERAGE:
●● CTA may be performed to assess the major intra-cranial arteries of the anterior and posterior circulations (including the
Circle of Willis) as well as the venous structures (major veins and dural venous sinuses).
●● For specific clinical indications, exams may be tailored to the region of interest.
IMAGING CONSIDERATIONS:
●● CTA studies are typically performed through acquisition of thin CT sections, during intravenous bolus infusion of iodinated contrast material.
●● During diagnostic interpretation, it is extremely useful to have images displayed on a workstation capable of multiplanar
reformations and three-dimensional reconstructions.
●● Multi-detector row CT is preferred but not required in the performance of CTA, when compared with single detector CT.
●● Contrast-enhancement for CTA may be contraindicated in certain circumstances, such as a documented allergy to intravenous contrast material and renal insufficiency. Special consideration should also be given to patients with multiple
myeloma.
●● CT Angiography (CTA) utilizes the data obtained from standard CT imaging. Request for a CT exam, in addition to a
CT Angiography of the same anatomic area and during the same imaging session, is inappropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CTA:
The following diagnostic indications for Head CTA are accompanied by pre-test considerations as well as clinical supporting data and
prerequisite information:
ANEURYSM 1-5
●● Including but not limited to:
–– Follow-up of known or suspected intra-cranial aneurysm, or
–– Family history of intra-cranial aneurysm, or
–– Associated hereditary disorders, such as autosomal dominant Polycystic Kidney Disease (10-20% occurrence of
aneurysm), Ehlers Danlos syndrome type IV and Neurofibromatosis type 1
ARTERIOVENOUS MALFORMATION (AVM) 6-7
CONGENITAL ANOMALIES OF THE CEREBRAL CIRCULATION
DURAL ARTERIOVENOUS FISTULA (DAVF) 8
DISSECTION
ENDOVASCULAR NEURO-INTERVENTIONAL PROCEDURE FOR INTRA-CRANIAL ANEURYSM, ARTERIOVENOUS
MALFORMATION (AVM) AND DURAL ARTERIOVENOUS FISTULA (DAVF): FOR POST-TREATMENT EVALUATION
14
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CTA:
HEADACHE: SUDDEN ONSET OF WORST HEADACHE OF LIFE; EXERTIONAL HEADACHE; POSITIONAL
HEADACHE
INTRA-CRANIAL HEMORRHAGE
●● For identification of the source of hemorrhage
INTRAMURAL HEMATOMA
PRE-PROCEDURE FOR NEUROSURGICAL OPERATIVE OR PERCUTANEOUS VASCULAR INTERVENTION
PULSATILE TINNITUS, FOR VASCULAR ETIOLOGY 9
RECENT CEREBROVASCULAR ACCIDENT (CVA)
●● Demonstrated on head CT or MRI
STENOSIS OR OCCLUSION OF CAROTID AND CEREBRAL ARTERIES
●● In patients with clinically suspected or known steno-occlusive disease
●● In adult patients (atherosclerotic disease being a common etiology) and pediatric population (etiologies include Moyamoya or idiopathic progressive arteriopathy of childhood)
●● Common clinical manifestations may include:
–– Confusion
–– Difficulty speaking or understanding speech
–– Dizziness
–– Gait Disturbance
–– Loss of Balance or Coordination
–– Loss of Consciousness
–– Numbness, weakness or paralysis of the face, arm or leg, on one side of the body
–– Sudden severe headache, that is unexplained
–– Visual disturbance, particularly in one eye
STENOSIS OR OCCLUSION OF VERTEBRAL AND BASILAR ARTERIES
●● In patients with signs and symptoms of Vertebrobasilar Insufficiency (VBI) or Vertebral Basilar Ischemia.
●● Symptoms of VBI are usually temporary, due to diminished blood flow in the posterior circulation of the brain.
●● Common clinical manifestations may include:
–– Acute Sensorineural Hearing Loss
–– Ataxia
–– Diplopia
–– Dysarthria
–– Dysphagia
–– Facial Numbness and Paresthesias
–– Limb and Trunk Sensory Deficits
–– Loss of Taste Sensation
–– Motor Paresis
–– Nystagmus
–– Syncope
–– Vertigo
–– Visual Field Defects
THROMBOEMBOLIC DISEASE OF MAJOR INTRA-CRANIAL ARTERIAL AND/OR VENOUS SYSTEMS, INCLUDING
DURAL VENOUS SINUS THROMBOSIS 11
TRAUMATIC VASCULAR INJURY
VASCULAR ABNORMALITIES ASSOCIATED WITH SICKLE CELL DISEASE IN CHILDREN
15
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD CTA:
VASCULAR SUPPLY TO TUMORS
VASCULITIS
REFERENCE/LITERATURE REVIEW:
1.
Schievink WI. Intracranial Aneurysms. N Engl J Med 1997; 336: 28-40.
2.
Michell P, Gholkar A, Vindlacheruvu RR, Mendelow AD. Unruptured Intracranial Aneurysms: Benign Curiosity or Ticking Time Bomb?
Neurology 2004; 3: 85-92.
3.
Jayaraman MV, Mayo-Smith WW, Tung GA, et al. Detection of Intracranial Aneurysms: Multi-Detector Row CT Angiography
Compared with DSA. Radiology 2004; 230: 510-518.
4.
Tomandl BF, Köstner NC, Schempershofe M, et al. CT Angiography of Intracranial Aneurysms: A Focus on Post processing.
RadioGraphics 2004; 24: 637-655.
5.
White PM, Teasdale EM, Wardlaw JM, Easton V. Intracranial Aneurysms: CT Angiography and MR Angiography for Detection –
Prospective Blinded Comparison in a Large Patient Cohort. Radiology 2001; 219: 739-749.
6.
The Arteriovenous Malformation Study Group. Arteriovenous Malformations of the Brain in Adults. N Engl J Med 1999; 340: 18121818.
7.
Sanelli PC, Mifsud, Stieg PE. Role of CT Angiography in Guiding Management Decisions of Newly Diagnosed and Residual
Arteriovenous Malformations. AJR 2004; 183: 1123-1126.
8.
Meckel S, Lovblad K-O, Abdo G, et al. Arterialization of Cerebral Veins on Dynamic MDCT Angiography: A Possible Sign of a Dural
Arteriovenous Fistula. AJR 2005; 184: 1313-1316.
9.
Weissman JL, Hirsch BE. Imaging of Tinnitus: A Review. Radiology 2000; 216: 342-349.
10. Verro P, Tanenbaum LN, Borden NM, et al. CT Angiography in Acute Ischemic Stroke. Preliminary Results. Stroke 2002; 33: 276-278.
11. Stam J. Thrombosis of the Cerebral Veins and Sinuses. N Engl J Med 2005; 253: 1791-1798.
16
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Head
CPT CODES:
70551.................MRI Head, without contrast
70552.................MRI Head, with contrast
70553.................MRI Head, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● From skull base to vertex, covering the entire calvarium and intra-cranial contents, including the internal auditory canals.
●● Scan coverage may vary, depending on the specific clinical indication.
IMAGING CONSIDERATIONS:
●● MRI of the head is preferable to CT in most clinical scenarios, due to its superior contrast resolution and lack of beamhardening artifact adjacent to the petrous bone (which may limit visualization in portions of the posterior fossa and
brainstem on CT). Exceptions to the use of brain MRI as the neuroimaging procedure of choice and situations with
preferred head imaging using CT include: osseous assessment of the calvarium, skull base and maxillofacial bones,
including detection of calvarial and facial bone fractures; calcified lesions; initial evaluation of recent craniocerebral
trauma; and acute intra-cranial hemorrhage (parenchymal; subarachnoid; subdural; epidural).
●● MRI is more sensitive for detection of shearing trauma to the brain and diffuse axonal injury. It is also the preferred
technique for assessment of subacute and chronic intra-cranial hemorrhage.
●● CT of the head is an alternative exam in patients who cannot undergo MRI. Ordering and imaging providers are
responsible for considering biosafety issues prior to MRI examination, to ensure patient safety. Among the generally
recognized contraindications to MRI exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR imaging, as well as other devices
considered unsafe in MRI scanners (including implanted materials in the patient as well as external equipment, such
as portable oxygen tanks). Performance of an MRI examination may also be unsuccessful, for example secondary to
claustrophobia.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
exams of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
●● Images of the pituitary gland, maxillary sinuses or internal auditory canals (IACs) are included within the single assigned CPT code for MRI imaging of the head and are not separately billable as multiple concurrent head MRI exams.
●● MRI studies of the head and neck are inherently bilateral. Duplicate imaging requests for these studies are inappropriate.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
17
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the head.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRI:
The following diagnostic indications for Head MRI are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
MRI is the modality of choice for most advanced neuroimaging indications in the head. 1-2 Situations in which CT is
the preferred technique include:
●● Acute intra-cranial hemorrhage (parenchymal, subarachnoid, subdural and epidural hematomas)
●● Recent head trauma
●● Skull base and facial bone assessment, including detection of calvarial and facial bone fractures as well as assessment of the temporal bones for conductive hearing loss and an abnormal otoscopic exam
●● Calcified lesions
ABNORMALITIES DETECTED ON OTHER IMAGING STUDIES WHICH REQUIRE ADDITIONAL CLARIFICATION TO
DIRECT TREATMENT
ARNOLD CHIARI I AND II MALFORMATIONS
CEREBRAL PALSY
CNS FINDING/DEFICIT – NEW ONSET OR PROGRESSIVE NEUROLOGICAL ABNORMALITIES
●● Including but not limited to the following clinical symptoms and findings:
–– Anosmia (loss or impairment in sense of smell)
–– Ataxia (inability to coordinate voluntary muscular movements)
–– Bell’s Palsy 3
–– Dysgeusia (dysfunction in sense of taste)
–– Facial Numbness
–– Gait Disorder
–– Other Movement Disorders
–– Nystagmus (rapid, involuntary, oscillating ocular movements)
–– Paresis or Paralysis
–– Tinnitus (ringing or roaring auditory sensation; may be unilateral or bilateral; either pulsatile or non-pulsatile)4
–– Any other cranial nerve impairment
18
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRI:
CEREBROVASCULAR ACCIDENT (CVA OR STROKE) AND TRANSIENT ISCHEMIC ATTACK (TIA) 5-6
●● May present with a variety of signs and symptoms, including sudden onset of weakness, focal sensory loss or speech
disorder
CONGENITAL ANOMALY
●● Including but not limited to the following conditions:
–– Chiari Malformations
–– Dandy-Walker Spectrum
–– Encephalocele
–– Holoprosencephaly
–– Macrocephaly
–– Microcephaly
–– Schizencephaly
–– Septo-optic Dysplasia
DEMENTIA
7-8
●● Initial evaluation, or
●● Rapid progression
DEVELOPMENTAL DELAY
●● MRI is the preferred imaging modality over CT, in developmental delay 9
●● The likelihood of making a specific neuroimaging diagnosis increases in the presence of physical exam abnormalities
such as focal motor findings or microcephaly
ENCEPHALOPATHY
HEADACHE IN ADULT – WHEN ANY ONE OF THE FOLLOWING CRITERIA ARE MET:
10
●● Sudden onset and severe, including thunderclap or worst headache of life; or
●● Increased frequency and severity; or
●● With new focal neurologic signs, particularly papilledema, visual field defects and nuchal rigidity; or
●● New-onset headaches after age 50 years; age is not an absolute requirement; or
●● New-onset headaches in cancer or immunodeficient patient; or
●● With mental status changes; or
●● With fever, nuchal rigidity and other meningeal signs; or
●● With nausea and vomiting; or
●● With exertion; or
●● Frequently awakened from sleep
Note: Current evidence does not support MRI evaluation for chronic headache or migraines, when the patient’s neurological
status is unchanged.
HEADACHE IN PEDIATRIC PATIENT – WHEN ANY ONE OF THE FOLLOWING CRITERIA ARE MET:
10-11
●● Sudden onset and severe, including thunderclap or worst headache of life; or
●● Associated with neurological abnormalities such as nystagmus, papilledema, gait or motor disturbances; or
●● With fever, nuchal rigidity and other meningeal signs; or
●● Awakened repeatedly from sleep or develop upon awakening; or
●● Persistent headache with confusion, disorientation or vomiting; or
●● Persistent headaches of < 6 months duration and not responsive to medical treatment; or
●● Persistent headaches, without a family history of migraines; or
●● Familial or personal history of disorders with predisposition to CNS lesions and clinical/laboratory findings that suggest
CNS involvement
HEARING LOSS - PROGRESSIVE ASYMMETRICAL HEARING DEFICIT, ASSOCIATED WITH:
●● Abnormal neurological evaluation; and/or
19
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRI:
●● Abnormal ear, nose and throat (ENT) evaluation such as, audiometry or auditory brainstem response (ABR)
HEMORRHAGE/HEMATOMA 12-13
●● Refers to non-traumatic, non-CVA and non-tumor-related intra-cranial bleed. Examples include hypertensive hemorrhage and hemorrhage secondary to anti-coagulation or blood dyscrasia
●● MRI is usually preferred for evaluation of subacute and chronic hemorrhage
●● CT is the preferred technique for evaluation of acute intra-cranial hemorrhage
HYDROCEPHALUS (VENTRICULOMEGALY)
●● MRI is often the preferred for initial evaluation of patients with hydrocephalus. For patients with an indwelling shunt, CT
is usually adequate in the diagnostic follow-up of hydrocephalus.
HYPOXIC ISCHEMIC ENCEPHALOPATHY
INFECTIOUS OR INFLAMMATORY PROCESS 14
●● Including but not limited to the following:
–– Cerebral or Cerebellar Abscess
–– Encephalitis
–– Meningitis
–– Neurocysticercosis
–– Opportunistic Infection, particularly with immunosuppressed or other immunodeficient conditions
–– Subdural Empyema
MENTAL STATUS CHANGES, WITH DOCUMENTED OBJECTIVE EVIDENCE FROM NEUROLOGIC EXAM
MOVEMENT DISORDERS
●● Including Parkinson’s disease (particularly atypical cases with poor response to levodopa, in which there may be an
underlying structural disorder producing parkinsonian features); Huntington’s disease; idiopathic sporadic cerebellar
ataxia (olivopontocerebellar atrophy); hemifacial spasm; and other conditions.
MULTIPLE SCLEROSIS AND OTHER WHITE-MATTER DISEASES
15-18
●● Initial diagnosis; or periodic scans to assess asymptomatic progression in multiple sclerosis during the early course of
disease; or tracking the progress of multiple sclerosis to establish a prognosis or evaluation of response to treatment;
or to evaluate changes in neurologic signs and symptoms; or to assess for asymptomatic progression early in the
course of the disease if this information would be used to make treatment determination
NEUROCUTANEOUS DISORDERS
●● Including but not limited to the following:
–– Neurofibromatosis
–– Sturge-Weber Syndrome
–– Tuberous Sclerosis
–– Von Hippel-Lindau Disease (VHL)
NEUROENDOCRINE ABNORMALITY SUGGESTIVE OF A PITUITARY LESION
●● Relevant laboratory and clinical abnormalities are required
PAPILLEDEMA (refers to swelling and elevation of optic disc – a sign of increased intracranial pressure)
PRE- AND POST-NEUROSURGICAL EVALUATION
SEIZURE DISORDER – new onset or increasing frequency and severity 19-20
SENSORINEURAL HEARING LOSS, DOCUMENTED BY AUDIOLOGY
●● As work-up for Acoustic Neuroma (Vestibular Schwannoma) – also see Primary Intra-cranial Tumors
SYNCOPE 21
–– With persistent symptoms and when evaluation for other etiologies (e.g., cardiac disease, metabolic disorder) have not
20
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRI:
been revealing.
–– Syncope (partial or complete loss of consciousness) and near syncope (lightheadedness) are infrequently of primary
neurological origin, particularly in the absence of abnormal neurological findings.
–– Neurological consultation (for assessment of possible vertebrobasilar TIAs) and cardiovascular evaluation should be
considered.
TRAUMA TO HEAD
●● MRI is generally used to evaluate suspected shearing lesions and diffuse axonal injury in closed head trauma as well
as assessment of the subacute or chronic sequelae of head injury
●● CT is often performed as the initial imaging exam in acute head trauma, particularly when associated with:
–– Calvarial Fracture
–– Change in Mental Status or Amnesia
–– Focal Neurological Deficits
–– Loss of Consciousness
–– Seizures
–– Signs of Increased Intracranial Pressure
–– Nausea / Vomiting
–– Worsening Headaches
●● Suspected hemorrhage, or subdural or epidural hematoma
TRIGEMINAL NEURALGIA (PARTICULARLY WHEN ATYPICAL) OR ATYPICAL FACIAL PAIN WITHOUT FOCAL
OBJECTIVE SIGNS
●● Atypical manifestations of trigeminal neuralgia include facial burning, boring crushing or pulsating sensations, which
may be relatively constant.
●● Typical features of trigeminal neuralgia include the sudden, extremely sharp, stabbing, shock-like or throbbing pain in
the facial region.
TUMOR EVALUATION – BENIGN AND MALIGNANT: 14
Including but not limited to the following lesions:
●● Primary Intra-cranial Tumors
1. Intra-axial Neoplasms of the Cerebrum and Cerebellum
2. Extra-axial Tumors, including Meningiomas and Schwannomas, such as:
–– Cerebello-pontine Angle (CPA) and internal auditory canal (IAC) Vestibular Schwannoma of CN 8 (also referred
to as an Acoustic Neuroma), and
–– Non-Acoustic Neuromas at the CPA involving cranial nerves (CN) 5, 7, 9, 10, 11 and 12, such as a CN 7
Schwannoma
3. Pituitary Tumors, including Macroadenomas and Microadenomas
●● Metastatic Disease
UNEXPLAINED MASS LESION IDENTIFIED ON PRIOR IMAGING – SURVEILLANCE, WITHOUT PATHOLOGIC TISSUE
CONFIRMATION
●● Examples include suspected Arachnoid Cyst or Epidermoid Cyst
VASCULAR ABNORMALITIES
●● Including but not limited to:
–– Aneurysm
–– Arterio-Venous Malformation (AVM)
–– Cavernous Malformation
–– Cerebral Vein Thrombosis
–– Dural Arteriovenous Fistula (DAVF)
–– Dural Venous Sinus Thrombosis 22
–– Venous Angioma
–– Dural Arteriovenous Fistula (DAVF)
21
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRI:
●● Either CTA or MRA are usually the imaging modalities of choice for some of the vascular abnormalities, such as aneurysm evaluation.
VENTRICULAR SHUNT ASSESSMENT
VERTIGO AND DIZZINESS
●● With recurrent or persistent symptoms and when evaluation for other etiologies has not been revealing
●● Abnormal hearing test or Auditory Brainstem Response
VISUAL DISTURBANCE - SUCH AS VISUAL FIELD LOSS, DIPLOPIA AND OTHER ALTERATIONS IN VISION THAT
ARE UNEXPLAINED BY OPHTHALMOLOGIC EXAM AND PATIENT HISTORY
VASCULITIS
REFERENCE/LITERATURE REVIEW:
1.
Gilman, Sid. Imaging the Brain: First of two parts. N Engl J Med 1998; 338(12): 812-820.
2.
Gilman, Sid. Imaging the Brain: Second of two parts. N Engl J Med 1998; 338(13): 889-896.
3.
Gilden DH. Bell’s Palsy. N Engl J Med 2003; 351: 1323-1331.
4.
Weissman JL, Hirsch BE. Imaging of Tinnitus: A review. Radiology 2000; 216: 342-349.
5.
Johnston SC. Transient Ischemic Attack. N Engl J Med 2002; 347: 1687-1692.
6.
Culebras A, Kase CS, Masdeu JC, et al. Practice Guidelines for the Use of Imaging in Transient Ischemic Attacks and Acute Stroke.
American Heart Association 1997; 28: 1480-1497.
7.
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and Early Diagnosis of Alzheimer Disease: A look to the future. Radiology
2003; 226: 315-336.
8.
Adelman AM, Daly MP. Initial Evaluation of the Patient with Suspected Dementia. American Family Physician 2005; 71(9): 1745-1750.
9.
Shevell M, Ashwal S, Donley D, et al. Practice Parameter: Evaluation of the child with global developmental delay. Neurology 2003;
60: 367-380.
10. Medina LS, D’Souza B, Vasconcellos E. Adults and Children with Headache: Evidence-based diagnostic evaluation. Neuroimaging
Clinics of North America 2003; 13: 225-235.
11. Strain JD. ACR Appropriateness Criteria on Headache-Child. J Am Coll Radiol 2007; 4: 18-23.
12. Qureshi AI, Tuhrim S, Broderick JP, et al. Spontaneous Intracerebral Hemorrhage. N Engl J Med 2001; 344: 1450-1460.
13. Edlow JA, Caplan LR. Avoiding Pitfalls in the Diagnosis of Subarachnoid Hemorrhage. N Engl J Med 2000; 342: 29-36.
14. Osborn, Anne G., Editor. Diagnostic Imaging: Brain. Salt Lake City, Utah: Amirsys; 2004.
15. Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple Sclerosis. N Engl J Med 2000; 343: 938-952.
16. Frohman EM, Goodin DS, Calabresi PA, et al. The Utility of the MRI in Suspected MS. Neurology 2003; 61: 602-611.
17. McDonald WI, Compston A, Edan G, et al. Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International
Panel on the Diagnosis of Multiple Sclerosis. Annals of Neurology 2001; 50(1): 121-127.
18. Kido DK, Tong K, Giang DW. How Different MR Imaging Criteria Relate to the Diagnosis of Multiple Sclerosis and its Outcome.
Neuroimaging Clinics of North America 2003; 13: 265-272.
19. Vattipally VR, Bronen RA. MR Imaging of Epilepsy: Strategies for Successful Interpretation. Neuroimaging Clinics of North America
2004; 14: 349-372.
20. Bernal B, Altman NR. Evidence-Based Medicine: Neuroimaging of Seizures. Neuroimaging Clinics of North America 2003; 13: 211224.
21. Hauer KE. Discovering the Cause of Syncope: A Guide to the Focused Evaluation. Postgraduate Medicine 2003; 113(1): 31-38.
22. Provenzale JM. CT and MR Imaging of Nontraumatic Neurologic Emergencies. AJR 2000; 174: 289-299
22
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
MR Angiography (MRA)
Head: Cerebrovascular
CPT CODES:
70544.................Magnetic resonance angiography, head, without contrast
70545.................Magnetic resonance angiography, head, with contrast
70546.................Magnetic resonance angiography, head, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● MRA may be performed to assess the major intra-cranial arteries of the anterior and posterior circulations (including the
Circle of Willis) 1-2 as well as the venous structures (major cerebral veins and dural venous sinuses).3-5
●● For specific clinical indications, exams may be tailored to the region of interest.
IMAGING CONSIDERATIONS:
●● MRA refers to a group of diverse MR pulse sequences. These include Time-of-Flight (TOF) imaging, Phase Contrast
(PC) techniques and Three-Dimensional (3-D), T1-weighted gradient echo acquisitions obtained during intravenous
bolus infusion of a paramagnetic contrast agent (Gadolinium chelate).
●● A workstation is necessary for most MRA studies, to acquire multiplanar reformations, shaded surface displays, volume
renderings and maximum intensity projection (MIP) images. Post-processing of MRA data with a MIP reconstruction algorithm allows for 3-dimensional images to be rotated and viewed in different planes, improving visualization of
superimposed vessels.
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRA examination, to ensure
patient safety. Among the generally recognized contraindications to MRA exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR
imaging, as well as other devices considered unsafe in MRI scanners (including implanted materials in the patient as
well as external equipment, such as portable oxygen tanks).
●● An MRA of the head includes imaging of the entire arteriovenous system of the brain. Separate requests for concurrent
imaging of the arteries and the veins in the head are not appropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRA:
The following diagnostic indications for Head MRI are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
ANEURYSM 6-9
●● Including but not limited to:
–– Follow-up of known or suspected intra-cranial aneurysm, or
–– Family history of intra-cranial aneurysm, or
–– Associated hereditary disorders, such as autosomal dominant Polycystic Kidney Disease (10-20% occurrence of
aneurysm), Ehlers Danlos syndrome type IV and Neurofibromatosis type 1.
ARTERIOVENOUS MALFORMATION (AVM) 10-11
CONGENITAL ANOMALIES OF THE CEREBRAL CIRCULATION
DURAL ARTERIOVENOUS FISTULA (DAVF) 12-13
23
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRA:
DISSECTION
ENDOVASCULAR NEURO-INTERVENTIONAL PROCEDURE FOR INTRA-CRANIAL ANEURYSM, ARTERIOVENOUS
MALFORMATION (AVM) AND DURAL ARTERIOVENOUS FISTULA (DAVF): FOR POST-TREATMENT EVALUATION
HEADACHE: SUDDEN ONSET OF THE WORST HEADACHE OF LIFE; EXERTIONAL HEADACHE; POSITIONAL
HEADACHE
INTRA-CRANIAL HEMORRHAGE
●● For identification of the source of hemorrhage
INTRAMURAL HEMATOMA
PRE-PROCEDURE FOR NEUROSURGICAL OPERATIVE OR PERCUTANEOUS VASCULAR INTERVENTIONS
PULSATILE TINNITUS, FOR VASCULAR ETIOLOGY 14
RECENT CEREBROVASCULAR ACCIDENT
●● Demonstrated on head CT or MRI
STENOSIS OR OCCLUSION OF CAROTID AND CEREBRAL ARTERIES
●● In patients with clinically suspected or known steno-occlusive disease
●● In adult patients (atherosclerotic disease being a common etiology) and pediatric population (etiologies include Moyamoya or idiopathic progressive arteriopathy of childhood)
●● Common clinical manifestations may include:
–– Confusion
–– Difficulty speaking or understanding speech
–– Dizziness
–– Gait Disturbance
–– Loss of Balance or Coordination
–– Loss of Consciousness
–– Numbness, weakness or paralysis of the face, arm or leg, on one side of the body
–– Sudden severe headache, that is unexplained
–– Visual disturbance, particularly in one eye
STENOSIS OR OCCLUSION OF VERTEBRAL AND BASILAR ARTERIES
●● In patients with signs and symptoms of Vertebrobasilar Insufficiency (VBI) or Vertebral Basilar Ischemia
●● Symptoms of VBI are usually temporary, due to diminished blood flow in the posterior circulation of the brain.
●● Common clinical manifestations may include:
–– Acute Sensorineural Hearing Loss
–– Ataxia
–– Diplopia
–– Dysarthria
–– Dysphagia
–– Facial Numbness and Paresthesias
–– Limb and Trunk Sensory Deficits
–– Loss of Taste Sensation
–– Motor Paresis
–– Nystagmus
–– Syncope
–– Vertigo
–– Visual Field Defects
ARTERIAL THROMBOEMBOLIC DISEASE
24
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR HEAD MRA:
VENOUS THROMBOSIS (INCLUDING DURAL VENOUS SINUS THROMBOSIS) OR VENOUS COMPRESSION 15
TRAUMATIC VASCULAR INJURY
VASCULAR ABNORMALITIES ASSOCIATED WITH SICKLE CELL DISEASE IN CHILDREN
VASCULAR SUPPLY TO TUMORS
VASCULITIS
REFERENCE/LITERATURE REVIEW:
1.
Carr JC, Ma J, Desphande V, et al. High-Resolution Breath-Hold Contrast-Enhanced MR Angiography of the Entire Carotid Circulation.
AJR 2002; 178; 543-549.
2.
Isoda H, Takehara Y, Isogai S, et al. Software-Triggered Contrast-Enhanced Three-Dimensional MR Angiography of the Intracranial
Arteries. AJR 2000; 174: 371-375.
3.
Liauw L, van Buchem MA, Spilt A, et al. MR Angiography of the Intracranial Venous System. Radiology 2000; 214: 678-682.
4.
Kirchhof K, Welzel T, Jansen O, Sartor K. More Reliable Noninvasive Visualization of the Cerebral Veins and Dural Sinuses:
Comparison of Three MR Angiographic Techniques. Radiology 2002; 224: 804-810.
5.
Farb RI, Scott JN, Willinsky RA, et al. Intracranial Venous System: Gadolinium-enhanced Three-dimensional MR Venography with
Auto-triggered Elliptic Centric-ordered Sequence-Initial Experience. Radiology 2003; 226: 203-209.
6.
Schievink WI. Intracranial Aneurysms. N Engl J Med 1997; 336: 28-40.
7.
Mitchell P, Gholkar A, Vindlacheruvu RR, Mendelow AD. Unruptured Intracranial Aneurysms: Benign Curiosity or Ticking Time Bomb?
Neurology 2004;3: 85-92.
8.
Mallouhi A, Felber S, Chemelli A, et al. Detection and Characterization of Intracranial Aneurysms with MR Angiography: Comparison
of Volume-Rendering and Maximum-Intensity-Projection Algorithms. AJR 2003; 180: 55-64.
9.
White PM, Teasdale EM, Wardlaw JM, Easton V. Intracranial Aneurysms: CT Angiography and MR Angiography for DetectionProspective Blinded Comparison in a Large Patient Cohort. Radiology 2001; 219: 739-749.
10. The Arteriovenous Malformation Study Group. Arteriovenous Malformations of the Brain in Adults. N Engl J Med 1999; 340: 18121818.
11. Farb RI, McGregor C, Kim JK, et al. Intracranial Arteriovenous Malformations: Real-Time Auto-triggered Elliptic centric-ordered 3D
Gadolinium-enhanced MR Angiography - Initial Assessment. Radiology 2001; 220: 244-251.
12. Wetzel SG, Bilecen D, Lyrer P, et al. Cerebral Dural Arteriovenous Fistulas: Detection by Dynamic MR Projection Angiography. AJR
2000; 174: 1293-1295.
13. Noguchi K, Melhem ER, Kanazawa T, et al. Intracranial Dural Arteriovenous Fistulas: Evaluation with Combined 3D Time-of-Flight MR
Angiography and MR Digital Subtraction Angiography. AJR 2004; 182: 183-190.
14. Weissman JL, Hirsch BE. Imaging of Tinnitus: A Review. Radiology 2000; 216: 342-349.
15. Stam J. Thrombosis of the Cerebral Veins and Sinuses. N Engl J Med 2005; 253: 1791-1798.
25
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Functional Magnetic Resonance
Imaging (fMRI)
CPT CODES:
70554.................Magnetic resonance imaging, brain, functional MRI; including test selection and administration of repetitive
body part movement and/or visual stimulation, not requiring physician or psychologist administration
70555.................Magnetic resonance imaging, brain, functional MRI; including test selection and administration of repetitive
body part movement and/or visual stimulation, requiring physician or psychologist administration of entire
neurofunctional testing
STANDARD ANATOMIC COVERAGE:
●● From the skull base to vertex, covering the intra-cranial contents.
●● Scan coverage may vary, depending on the specific clinical indication.
IMAGING CONSIDERATIONS:
●● Functional MRI of the brain may be used to localize eloquent areas in the brain, prior to resection of neoplasm or medically intractable epileptogenic foci.
●● Studies have shown excellent agreement in language localization, when comparing functional brain MRI with the Wada
test and direct electrical stimulation.
●● Advantages of functional brain MRI over a Wada test include the non-invasive technique (not requiring catheter placement and contrast injection), lack of ionizing radiation, shorter time-requirement, lower cost and quicker post-procedural
recovery. Additionally, the Wada test is considered limited in right hemisphere dominance.
●● Advantages of functional brain MRI over intraoperative electrocortical stimulation include its non-invasive technique
and more extensive anatomic brain mapping. Direct electrical stimulation is an invasive procedure, which usually
evaluates only one hemisphere (limiting assessment for partial or bilateral language dominance) and usually identifies
only eloquent brain regions on the surface of the brain.
●● Functional MRI may successfully map primary brain activities related to motor, sensory and language functions. Examples of tasks which may be used include sentence completion (to map language) and bilateral hand squeeze task
(for sensory motor mapping).
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
26
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to Functional Brain MRI
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
INDICATIONS FOR FUNCTIONAL BRAIN MRI:
The following diagnostic indications for Functional MRI (fMRI) of the Brain are accompanied by
pre-test considerations and supporting clinical data
●● For Pre-operative Neurosurgical Planning in Patients with Brain Tumors, as a replacement for a Wada test or direct
electrical stimulation mapping
●● For Pre-operative Neurosurgical Planning in Patients with Seizures Refractory to Medical Treatment, as a replacement
for a Wada test or direct electrical stimulation mapping
REFERENCE/LITERATURE REVIEW:
1.
Archten E. Jackson GD, Cameron JA. Presurgical Evaluation of the Motor Hand Area with Functional MR Imaging in Patients with
Tumors and Dysplastic Lesions. Radiology 1999; 210:529-538.
2.
Korvenoja A, Kirveskari E, Aronen HJ. Sensorimotor Cortex Localization: Comparison of Magnetoencephalography, Functional MR
Imaging, and Intraoperative Cortical Mapping. Radiology 2006; 241: 213-222.
3.
Medina LS, Benal B, Ruiz, J. Role of Functional MR in Determining Language Dominance in Epilepsy and Nonepilepsy Populations:
A Bayesian Analysis. Radiology 2007; 242: 94-100.
4.
Medina LS, Bernal B, Dunoyer C. Seizure Disorders: Functional MR Imaging for Diagnostic Evaluation and Surgical Treatment –
Prospective Study. Radiology 2005; 236: 247-253.
5.
Medina LS, Aguirre E, Bernal B. Functional MR Imaging versus Wada Test for Evaluation of Language lateralization: Cost Analysis.
Radiology 2004; 230: 49-54.
6.
Petrella J, Shah L, Harris K. Preoperative Functional MR Imaging Localization of Language and Motor Areas: Effect on Therapeutic
Decision Making in Patients with Potentially Resectable Brain Tumors. Radiology 2006; 240: 793-802.
27
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Positron Emission Tomography (PET)
Brain Imaging
CPT CODES:
78608.................PET brain, metabolic evaluation
COMMONLY USED RADIOPHARMACEUTICAL:
●● 2-(fluorine-18) fluoro-2-deoxy-d-glucose (FDG) Scan coverage may vary, depending on the specific clinical indication.
IMAGING CONSIDERATIONS:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to PET Neuroimaging.
●● Enrollee coverage for PET imaging of Alzheimer’s disease or Fronto-Temporal Lobe Dementia may be limited to one
(1) per lifetime.
●● Coding conventions call for this code to be used for oncologic scanning of Brain tumors.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR BRAIN PET:
The following diagnostic indications for Brain PET are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
BRAIN TUMORS
●● For initial strategy (diagnosis, staging)
●● For subsequent strategy follow up when being used to differentiate post treatment (radiation, surgery, chemotherapy)
scarring versus residual / recurrent disease
REFRACTORY SEIZURES/EPILEPSY
●● Pre-surgical evaluation to locate the foci of intractable seizure activity, in patients who have failed conventional medical
therapy and who are undergoing pre-surgical evaluation.
FRONTO-TEMPORAL LOBE DEMENTIA AND ALZHEIMER’S DISEASE
●● Use of PET is approved only to differentiate between Fronto-Temporal Dementia (FTD) and Alzheimer’s Disease, when
the patient’s clinical presentation fits both diagnoses and other conventional testing has been unable to reveal a definitive diagnosis and when all of the following conditions are met; or
●● Use of PET is approved when part of a CMS approved clinical trial specific to diagnosis and treatment of dementing
neurodegenerative disease.
CONDITIONS:
The use of FDG-PET scan in the diagnosis of Alzheimer’s disease and Fronto-Temporal Lobe Dementia is medically
necessary and appropriate provided all of the following conditions are met:
●● The patient has a recent diagnosis of Alzheimer’s disease or frontal-temporal lobe dementia and a documented cognitive decline of at least six (6) months duration and meets the diagnostic criteria for Alzheimer’s disease or fronto-temporal lobe dementia.
●● The patient’s clinical presentation includes such symptoms as:
–– Social disinhibition
–– Awkwardness
28
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CONDITIONS:
–– Difficulties with language, or
–– Loss of Executive Function
●● The patient has had a comprehensive clinical evaluation which has included:
–– A comprehensive medical history including an assessment of activities of daily living from a well-acquainted informant other than the patient;
–– A physical and mental status examination formally documenting the patient’s cognitive decline for a minimum of six
(6) months; and
–– Cognitive scales or neuropsychological testing, laboratory testing, and structural imaging such as MRI or CT, to aid
in identifying structural, metabolic, and chemical abnormalities as a cause for cognitive impairment.
●● The patient is evaluated by a physician experienced in the diagnosis and assessment of Alzheimer’s disease and
fronto-temporal lobe dementia.
●● The results of previous physical and mental examinations, laboratory testing, and structural imaging have not clearly
determined either a specific neurodegenerative disease or other cause for the clinical symptoms and the results of the
FDG-PET will help clarify the diagnosis of Alzheimer’s disease or fronto-temporal lobe dementia, to guide future treatment.
●● A brain SPECT scan has not been obtained for the same indication.
●● The referring (ordering) provider submits the following medical information regarding the enrollee:
–– Date of onset of the cognitive decline
–– Clinical documentation supporting the diagnosis of a clinical syndrome such as Alzheimer’s disease or fronto-temporal lobe dementia
–– Results of a mini-mental status exam (MMSE) or similar test score
–– Differential diagnosis of Alzheimer’s disease or fronto-temporal lobe dementia
–– Results of all neuropsychological testing performed
–– Results of all CT and/or MRI structural imaging performed
–– Results of recent B12 and Thyroid Hormone laboratory blood tests
–– Name(s) of currently prescribed medications
REFERENCE/LITERATURE REVIEW:
1.
Adelman AM, Daly MP. Initial Evaluation of the Patient with Suspected Dementia. Am Fam Physician 2005;71:1745-1750.
2.
CMS National Coverage Indication for PET for Dementia and Neurodegenerative Diseases (NCD 220.6.13), effective 04/18/2005
3.
Newberg AB, Alavi A. PET in Seizure Disorders. Radiol Clin N Am 2005;43:79-92.
4.
Norfray JF, Provenzale JM. Alzheimer’s Disease: Neuropathologic Findings and Recent Advances in Imaging. AJR 2004; 182: 3-13.
5.
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and Early Diagnosis of Alzheimer Disease: A Look to the Future.
Radiology 2003;226:315-336.
6.
Patwardhan MB, McCrory DC, Matchar DB, et al. Alzheimer Disease: Operating Characteristics of PET – A Meta Analysis. Radiology
2004;231:73-80.
7.
Silverman DHS, Alavi A. PET Imaging in the Assessment of Normal and Impaired Cognitive Function. Radiol Clin N Am 2005;43:6777.
29
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Orbit, Sella Turcica, Posterior Fossa,
Temporal Bone, including Mastoids
CPT CODES:
70480.................CT of orbit, sella or posterior fossa and outer, middle or inner ear, without contrast
70481.................CT of orbit, sella or posterior fossa and outer, middle or inner ear, with contrast
70482.................CT of orbit, sella or posterior fossa and outer, middle or inner ear, without contrast, followed by re-imaging
with contrast
STANDARD ANATOMIC COVERAGE:
●● The anatomic coverage and protocol specifications will vary, depending on the clinical indication. Anatomic evaluation
includes the internal auditory canals (IACs), posterior fossa, sella turcica, orbits and temporal bone, with the mastoid air
cells.
●● Targeted evaluation, such as CT of the temporal bones, involves collimated views through the region of interest, often
in two imaging planes: axial images (petrous bones through mastoid tips) and coronal views (temporomandibular joints
through temporal bones).
IMAGING CONSIDERATIONS:
●● CT is often the preferred study for suspected fracture or follow-up of a known fracture, foreign body detection, assessment of calcified lesions and temporal bone evaluation.
●● With capability for high-resolution osseous imaging, CT can provide detailed anatomic depiction of the temporal bone
anatomy, including the middle and inner ear structures.
●● MRI (unless contraindicated) is usually preferred over CT for evaluation of the sella turcica, internal auditory canal
regions and visual pathways, as well as for most soft tissue tumor evaluation.
●● Bony changes from a sellar, para-sellar or orbital mass or infectious process are usually well demonstrated by CT.
●● Ordering a CT of the head (CPT codes 70450-70470) in addition to a CT of the orbits is not necessary in most cases.
According to Medicare’s Correct Coding Edits, CT of the head and CT of the orbits are mutually exclusive procedures.
●● This exam is inherently a bilateral procedure. Duplicate requests for imaging the right and left orbits should not be
authorized.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR ORBIT, SELLA TURCICA, POSTERIOR FOSSA, &
TEMPORAL BONE (INCLUDING THE MASTOIDS) CT:
The following diagnostic indications for CT of the Orbit, Sella, Posterior Fossa and Temporal Bone are accompanied by pre-test considerations as well as supporting clinical data and prerequisite information:
CHOLESTEATOMA
●● Includes both acquired and congenital types of Cholesteatoma 1
●● Acquired (Secondary) Cholesteatoma: more common form (98%), presenting as a mass comprised of keratin debris
and lined by squamous epithelium
●● Congenital (Primary) Cholesteatoma (Epidermoid): uncommon lesion (2%), arising from aberrant embryonic ectodermal rests in middle ear, mastoids or petrous bone
COCHLEAR IMPLANT – PRE-OPERATIVE EVALUATION
30
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ORBIT, SELLA TURCICA, POSTERIOR FOSSA, &
TEMPORAL BONE (INCLUDING THE MASTOIDS) CT:
CONDUCTIVE HEARING LOSS
CONGENITAL ANOMALIES OF THE ORBIT, TEMPORAL BONE, SELLA TURCICA AND POSTERIOR FOSSA
FOREIGN BODY:
●● Evaluation for metallic foreign bodies in the orbits should be initiated with conventional radiographs, which detect the
majority of radiopaque foreign bodies
●● CT may be performed if radiographs are inconclusive or if there remains high clinical suspicion for a foreign body
INFECTIOUS OR INFLAMMATORY PROCESS 1-2
●● Unresponsive to medical treatment
●● Including but not limited to the following:
–– Abscess
–– Cellulitis (for example, Orbital Cellulitis)
–– Malignant Otitis Externa
–– Osteomyelitis
–– Otomastoiditis
ORBITAL/OCULAR EVALUATION OF SYMPTOMS AND OBJECTIVE FINDINGS
●● Including but not limited to evaluation of the following:
–– Exophthalmos – abnormal protrusion of the eyeball
–– Extraocular myopathy
–– Nystagmus – rapid, involuntary, oscillating ocular movements
–– Optic Neuritis
–– Papilledema
–– Proptosis – forward displacement of the eyeball
–– Strabismus – inability of one eye to accomplish binocular vision with the other, due to extra-ocular muscle imbalance
–– Thyroid ophthalmopathy
–– Visual Field Defect
–– Visual loss unexplained by ophthalmic evaluation
ORBITAL PSEUDOTUMOR
OSSEOUS LESION EVALUATION
●● Such as Fibrous Dysplasia, Paget’s disease and Otosclerosis
LOCALIZED FACIAL PAIN – WHEN PERSISTENT AND UNEXPLAINED
PRE-OPERATIVE EVALUATION, PRIOR TO MASTOIDECTOMY
SENSORINEURAL HEARING LOSS
●● Documented by audiology
●● As work-up for Acoustic Neuroma (Vestibular Schwannoma) – also see Primary Intra-cranial Tumors
SKULL BASE EVALUATION – for suspected or known tumors
TINNITUS
TRAUMA
●● Including but not limited to the following:
–– Soft tissue injury
–– Fracture
TUMOR EVALUATION – BENIGN AND MALIGNANT: 1, 3-6
Including but not limited to the following lesions:
31
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ORBIT, SELLA TURCICA, POSTERIOR FOSSA, &
TEMPORAL BONE (INCLUDING THE MASTOIDS) CT:
●● Primary Intra-cranial Tumors
1. Intra-axial Neoplasms of the Cerebrum and Cerebellum
2. Extra-axial Tumors, including Meningiomas and Schwannomas, such as:
–– Cerebello-pontine Angle (CPA) and internal auditory canal (IAC) Vestibular Schwannoma of CN 8 (also referred
to as an Acoustic Neuroma), and
–– Non-Acoustic Neuromas at the CPA involving cranial nerves (CN) 5, 7, 9, 10, 11 and 12, such as a CN 7
Schwannoma
3. Pituitary Tumors, including Macroadenomas and Microadenomas
●● Metastatic Disease
VERTIGO AND DIZZINESS
●● With recurrent or persistent symptoms and when evaluation for other etiologies has not been revealing
●● Abnormal hearing test or Auditory Brainstem Response
ABNORMALITIES NOTED ON OTHER IMAGING STUDIES WHICH REQUIRE ADDITIONAL CLARIFICATION – SUCH
AS SURVEILLANCE OF AN UNEXPLAINED MASS LESION, WITHOUT PATHOLOGIC TISSUE CONFIRMATION
REFERENCE/LITERATURE REVIEW:
1.
Som PM, Curtin HD. Head and Neck Imaging. St. Louis, Missouri: Mosby Publishers; 2003.
2.
Vazquez E, Castellote A, Piqueras J, et al. Imaging of Complications of Acute Mastoiditis in Children. RadioGraphics 2003; 23: 359372.
3.
Choi DS, Na DGN, Byun HS, et al. Salivary Gland Tumors: Evaluation with Two-Phase Helical CT. Radiology 2000; 214: 231-236.
4.
Dammann F, Horger M, Mueller-Berg M, et al. Rational Diagnosis of Squamous Cell Carcinoma of the Head and Neck Region:
Comparative Evaluation of CT, MRI, and 18FDG PET. AJR 205; 184: 1326-1331.
5.
Mukherji SK, Isaacs DL, Creager A. CT Detection of Mandibular Invasion by Squamous Cell Carcinoma of the Oral Cavity. AJR 2001;
177: 237-243.
6.
Yousem DM, Kraut MA, Chalian AA. Major Salivary Gland Imaging. Radiology 2000; 216;19-29.
32
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Orbit, Face & Neck (Soft Tissues)
CPT CODES:
70540.................MRI Orbit, Face and Neck, without contrast
70542.................MRI Orbit, Face and Neck, with contrast
70543.................MRI Orbit, Face and Neck, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage is dependent on the specific anatomic area of clinical interest. Exams usually include multi-planar
imaging, using different pulse sequences.
IMAGING CONSIDERATIONS:
●● MRI is usually preferred over CT for evaluation of the sella turcica and visual pathways, unless contraindicated.
●● CT is generally the modality of choice for traumatic injury, calcified lesions, localized infection (for example, orbital
extension of an adjacent complicated sinusitis), and foreign body evaluation, after initial radiographic evaluation for a
radiopaque foreign body.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging authorization request.
●● Duplicate exam requests for two or more MRI studies of the head (for example, bilateral head MRIs for right and left
orbital evaluation) or neck are inappropriate. These exams are inherently bilateral.
●● An MRI of the orbit, face and neck is not allowed for imaging the IACs. See MRI of the brain (CPT codes 70551 –
70553).
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI Orbit, Face and Neck.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
33
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR ORBIT, FACE & NECK (SOFT TISSUES) MRI:
The following diagnostic indications for MRI of the Orbit, Face and Neck (Soft Tissues) are accompanied by pre-test considerations as well
as supporting clinical data and prerequisite information:
CONGENITAL ANOMALIES
GLOTTIC LESION
●● Further assessment following endoscopic detection
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following conditions:
–– Abscess
–– Cellulitis (for example, Orbital Cellulitis)
–– Osteomyelitis
LYMPHADENOPATHY – suspected or known
●● When persistent and unexplained
NASAL INDICATIONS – NOT LISTED ELSEWHERE:
–– Anosmia
–– Recurrent Epistaxis
–– Nasal airway obstruction or polyposis refractory to medical therapy
MASS LESION – PALPABLE ON PHYSICAL EXAM
MASS LESION – NON-PALPABLE AND UNEXPLAINED ON PRIOR IMAGING EXAM – FOR SURVEILLANCE,
WITHOUT PATHOLOGIC TISSUE CONFIRMATION
NECK MASSES SUCH AS BRANCHIAL CLEFT CYST, THYROGLOSSAL DUCT CYST AND LYMPHANGIOMA / CYSTIC
HYGROMA 1
OBSTRUCTIVE THYROID NODULE OR THYROMEGALY (GOITER)
●● Following thyroid US or thyroid scintigraphy
●● When associated with mass effect on the upper airway or esophagus
●● For pre-operative evaluation
ORBITAL INDICATIONS – NOT LISTED ELSEWHERE:
●● Including but not limited to:
–– Extraocular Myopathy
–– Extraocular Weakness or Non-conjugate Eye Movements
–– Nystagmus
–– Optic Neuritis 2
–– Orbital Pseudotumor
2,10
–– Papilledema (refers to swelling and elevation of optic disc – a sign of increased intracranial pressure)
–– Proptosis
–– Strabismus
–– Thyroid Ophthalmopathy
–– Visual loss unexplained by ophthalmic evaluation
PERSISTENT HOARSENESS
●● Unexplained, following endoscopic examination and/or prior non-diagnostic imaging of neck/upper chest (extending
34
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ORBIT, FACE & NECK (SOFT TISSUES) MRI:
along the course of the recurrent laryngeal nerves)
STRIDOR
●● For subacute and chronic stridor, advanced imaging may follow neck (soft tissue) radiographs and ENT evaluation
TUMOR EVALUATION – PRIMARY NEOPLASM AND METASTATIC DISEASE 2-9
●● Including but not limited to the following anatomic structures:
–– Facial Structures
–– Larynx and Subglottic Regions
–– Nasopharynx, Oropharynx and Hypopharynx
–– Neck Soft Tissues, surrounding the airway and glands
–– Optic Nerve
–– Orbit
–– Salivary Glands
–– Sella Turcica (Pituitary tumors including Macroadenoma and Microadenoma)
–– Sinuses
–– Thyroid and Parathyroid Glands
TRAUMA TO THE SOFT TISSUES OF THE NECK
TRAUMA TO THE ORBIT AND FACE
●● CT preferable for bony assessment
UPPER AIRWAY OBSTRUCTION
●● Including but not limited to Tracheal Stenosis
VOCAL CORD PARALYSIS
●● Unexplained, following endoscopic diagnosis
●● May be unilateral or bilateral
WEGENER’S GRANULOMATOSIS – suspected or known
●● Initial diagnosis may be established with an elevated ANCA (cytoplasmic pattern - antineutrophil cytoplasmic antibody)
and biopsy showing non-caseating, multinucleated, giant cell granulomas
ABNORMALITIES DETECTED ON OTHER DIAGNOSTIC EXAMS, WHICH REQUIRE FURTHER EVALUATION
REFERENCE/LITERATURE REVIEW:
1.
Castellote A, Vázquez E, Vera J, et al. Cervicothoracic Lesions in Infants and Children. RadioGraphics 199; 19: 583-600.
2.
Belden CJ. MR Imaging of the Globe and Optic Nerve. Magn Reson Imaging Clin N Am 2002; 10: 663-678.
3.
Damman F, Horger M, Mueller-Berg M, et al. Rationale Diagnosis of Squamous Cell Carcinoma of the Head and Neck: Comparative
Evaluation of CT, MRI, and 18FDG PET. AJR 2005; 184: 1326-1331.
4.
Ljumanović R, Langendijk JA, Schenk B, et al. Supraglottic Carcinoma Treated with Curative Radiation Therapy: Identification of
Prognostic Groups with MR Imaging. Radiology 2004; 232: 440-448.
5.
Som PM, Curtin HD, Mancuso AA. Imaging-Based Nodal Classification for Evaluation of Neck Metastatic Adenopathy. AJR 2000;
174: 837-844.
6.
King AD, Tse GMK, Ahuja AT, et al. Necrosis in Metastatic Neck Nodes: Diagnostic Accuracy of CT, MR Imaging, and US. Radiology
2004; 230: 720-726.
7.
Schlechte JA. Prolactinoma. N Engl J Med 2003; 349: 2035-2041.
8.
Yousem DM, Kraut MA, Chalian AA. Major Salivary Gland Imaging. Radiology 2000; 216: 19-29.
9.
Gotway MB, Higgins CB. MR Imaging of the Thyroid and Parathyroid Glands. MRI Clin N Am 2000; 8(1): 163-182.
10. Narla LD, Newman B, Spottwood SS, et al. Inflammatory Pseudotumor. RadioGraphics 2003; 23: 719-729.
35
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Paranasal Sinus &
Maxillofacial Area
CPT CODES:
70486.................CT of Maxillofacial area, without contrast
70487.................CT of Maxillofacial area, with contrast
70488.................CT of Maxillofacial area, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Includes the sinuses, facial structures and maxillary regions. Individual scan coverage depends on the specific clinical
request, but generally includes images through the entire frontal, ethmoid, maxillary and sphenoid sinuses. CT sections may be obtained in one or two (usually coronal and axial) planes.
IMAGING CONSIDERATIONS:
●● Radiation Dosimetry: Approximately 50 Chest X-Ray equivalent dosage
●● The prevalence of sinus inflammatory disease is high, estimated to affect approximately 33 million US citizens.1
●● This guideline includes reference to rhinosinusitis in the evaluation of sinus inflammatory disease, since sinusitis usually involves the nasal passage as well as the paranasal sinuses. 2
●● A common classification of sinusitis / rhinosinusitis is based on duration of symptoms, as follows:
–– Acute sinusitis / rhinosinusitis – symptoms last for less than 4 weeks and include persistent symptoms of an upper
respiratory tract infection, purulent rhinorrhea, postnasal drainage, anosmia, nasal congestion, facial pain, headache, fever, cough, and/or purulent discharge.
–– Subacute sinusitis / rhinosinusitis – symptoms last from 4 to 12 weeks.
–– Chronic sinusitis / rhinosinusitis – the same symptoms as in acute sinusitis that persist for at least 12 weeks, with
varying severity. Chronic sinusitis may sometimes present with vague or insidious symptoms.
–– Recurrent sinusitis / rhinosinusitis – 3 or more episodes of acute sinusitis per year; individual episodes may be
caused by different organisms.
●● Clinicians should distinguish presumed acute bacterial rhinosinusitis from acute rhinosinusitis due to viral upper respiratory infections and noninfectious conditions. 2
●● Acute sinusitis is considered a self-limiting disease, since most patients improve within 2 weeks, despite the etiology
and treatment option used.
●● Chronic sinusitis is reported by the Centers for Disease Control and Prevention (CDC) to be the most commonly encountered condition below the age of 45 years and the second most common condition between 45-64 years, following
hypertension.1
●● Sinus CT is not usually performed at the time of initial clinical presentation with acute uncomplicated sinusitis.
●● Sinus CT is often reserved for difficult cases or delineation of anatomy prior to planned sinus surgery, as follows:
–– Limited (coronal) Sinus CT – typically used for recurrent or refractory sinus inflammatory disease, or if the diagnosis
is in doubt.
–– Full Sinus CT – generally performed for surgical planning to interrogate for osteomeatal obstruction, fungal sinusitis,
facial or orbital cellulitis complicating sinusitis and suspected malignancy.
●● CT of the paranasal sinuses is appropriately coded to CPT 70486. There are no required number of slices or phases
for contrast-enhanced exams that constitute a paranasal sinus and maxillofacial CT study. This code may be used to
describe limited or complete imaging of the sinuses.
●● CT of the maxillofacial area is a bilateral study. Separate requests to image the right and left facial area are not allowed.
●● For Temporomandibular joints CT may be used after MRI if diagnosis still in doubt or when MRI cannot be done.
36
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR SINUS CT:
The following diagnostic indications for Sinus CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
SINUSITIS / RHINOSINUSITIS 1-4
Acute, Uncomplicated Sinusitis / Rhinosinusitis 2
●● Defined as symptoms that last for less than 4 weeks. Common symptoms include purulent rhinorrhea, postnasal drainage, anosmia, nasal congestion, facial pain, headache, fever, cough, purulent discharge and/or findings of an upper
respiratory tract infection.
●● No radiographic imaging is usually necessary for immunocompetent patients with acute rhinosinusitis, unless a complication or alternative diagnosis is suspected that requires imaging
2
●● CT may be performed if symptoms persist beyond 3-4 weeks of adequate treatment, which may include antibiotics,
nasal steroids and/or decongestants. Under these circumstances, a complication of acute sinusitis/rhinosinusitis or an
alternative diagnosis may warrant CT imaging of the paranasal sinuses.
Acute Recurrent Sinusitis / Rhinosinusitis 2
●● Defined as 3 or more separate episodes of sinusitis during the past year
●● Imaging used to corroborate the diagnosis and/or investigate for underlying causes of acute recurrent sinusitis
●● Clinicians should assess patients with recurrent acute sinusitis / rhinosinusitis for factors that modify management,
such as allergic rhinitis, cystic fibrosis, immunocompromised states, ciliary dyskinesia and anatomic variations
Chronic Sinusitis / Rhinosinusitis 2
●● Defined as signs and symptoms of sinusitis that last for 12 weeks or longer
●● Imaging used to corroborate the diagnosis and/or investigate for underlying causes of chronic sinusitis
●● Clinicians should assess patients with chronic sinusitis / rhinosinusitis for factors that modify management, such as allergic rhinitis, cystic fibrosis, immunocompromised states, ciliary dyskinesia and anatomic variations
Peri-Orbital Swelling Associated with Sinus Infection
Barosinusitis / Headache Refractory to Antibiotics and Responding only to Decongestants / Oral Steroids
ANOSMIA
CONGENITAL ANOMALIES
FOREIGN BODY IN THE MAXILLOFACIAL REGION
FUNGAL AND OTHER COMPLEX SINUS INFECTIONS
MUCOCELE OF PARANASAL SINUSES
NASAL AIRWAY OBSTRUCTION REFRACTORY TO MEDICAL THERAPY
OSTEOMYELITIS OF THE FACIAL BONES
POLYPOSIS
PRE-OPERATIVE EVALUATION FOR SINUS SURGERY
POST-OPERATIVE SINUS SURGERY, WITH NEW OR WORSENING SYMPTOMS AND CLINICAL FINDINGS
37
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR SINUS CT:
RECURRENT EPISTAXIS
TRAUMA TO THE FACIAL BONES – SIGNIFICANT INJURY 5
TUMOR OR MASS LESION IN THE SINO-NASAL REGION
WEGENER’S GRANULOMATOSIS
●● Initial diagnosis may be established with an elevated ANCA (cytoplasmic pattern – antineutrophil cytoplasmic antibody)
and biopsy showing non-caseating, multinucleated, giant cell granulomas
ABNORMALITIES IDENTIFIED ON ENDOSCOPIC OR OTHER IMAGING STUDIES, REQUIRING FURTHER
EVALUATION WITH CT
REFERENCE/LITERATURE REVIEW:
1.
Anzai Y, Yueh B. Imaging evaluation of sinusitis: diagnostic performance and impact on health outcome. Neuroimag Clin N Am 2003;
13: 251-263.
2.
Rosenfeld RM, Andes D, Bhattacharyya N, et al. Clinical Practice Guideline: Adult Sinusitis. Otolaryngology-Head and Neck Surgery.
2007; 137: S1-S31.
3.
Okuyemi KS, Tsue TT. Radiologic Imaging in the Management of Sinusitis. American Family Physician. 2002; 66(10): 1882-1886.
4.
Poole MD. Difficulties in Diagnosis and Treatment of Sinusitis. The American Journal of Managed Care. 1999; 5(11)Sup.:
S670-S676.
5.
Turner BG, Rhea JT, Thrall JH, Small AB, Novelline RA. Trends in the use of CT and Radiography in the Evaluation of Facial Trauma,
1992-2002: Implications for Current Costs. AJR 2004; 183: 751-754
38
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Temporomandibular Joints (TMJ)
CPT CODES:
70336.................MRI of Temporomandibular Joint(s)
STANDARD ANATOMIC COVERAGE:
●● Bilateral study, including open and closed mouth views, often performed with surface coils.
●● Images may be obtained in axial, (oblique) sagittal and (oblique) coronal planes.
IMAGING CONSIDERATIONS:
●● Conventional radiographs and/or Panorex films should be used for initial evaluation of bony abnormalities.
●● Some of the common causes for temporomandibular joint dysfunction include direct trauma, habitual misuse of the
TMJs and various arthritides, including degenerative joint disease.
●● For a known or suspected fracture of the mandibular condyles and TMJ regions, further evaluation following initial
radiographs is usually undertaken with CT.
●● MRI may be used to evaluate for internal derangements and articular disc dysfunction in the TMJs.
●● Dynamic Ultrasound is an alternative technique for detecting disc displacement in the TMJs. 1
●● MRI of the temporomandibular joint(s) is inherently a bilateral procedure. Separate entries for the right and left temporomandibular joints are not allowed.
●● CT may be used after MRI if diagnosis still in doubt or when MRI cannot be done.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of Temporomandibular
Joint(s).
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
39
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR TEMPOROMANDIBULAR JOINTS (TMJ) MRI:
The following diagnostic indications for Temporomandibular Joints (TMJ) MRI are accompanied by pre-test
considerations as well as supporting clinical data and prerequisite information:
PERSISTENT SYMPTOMS OF TEMPOROMANDIBULAR JOINT DYSFUNCTION, AFTER FAILED CONSERVATIVE
TREATMENT – WITH NSAIDS AND/OR ACETAMINOPHEN, A SHORT-TERM TRIAL OF SOFT DIET AND PROPER
CHEWING TECHNIQUES AS WELL AS AN ORAL APPLIANCE (SUCH AS A BITE BLOCK)
●● Common symptoms include but are not limited to the following: 2-3
–– Clicking sensation, particularly during jaw movement
–– Persistent orofacial pain
–– Locking
–– Facial asymmetry and/or deformity (stable or changing)
–– Unstable occlusion, with or without other symptoms
–– Other functional impairments with mastication
●● Often preceded by conventional radiographs and/or Panorex views of the TMJs
FROZEN JAW
PRE-OPERATIVE EVALUATION OF INTERNAL TMJ DERANGEMENT
PRE- AND POST-OPERATIVE EVALUATION
●● With new or recurrent signs and symptoms
TRAUMA TO THE TEMPOROMANDIBULAR JOINTS
●● For assessment of meniscal position and integrity
●● Often preceded by conventional radiographs, Panorex views and/or CT of the TMJs
ARTHROPATHY OF THE TEMPOROMANDIBULAR JOINTS
●● Often preceded by conventional radiographs and/or Panorex views of the TMJs
●● Including but not limited to the following:
–– Inflammatory arthritis (rheumatoid arthritis is the most common)
–– Infectious arthritis
–– Post-traumatic arthritis
REFERENCE/LITERATURE REVIEW:
1.
Emshoff R, Jank, S, Bertram S, et al. Disk Displacement of the Temporomandibular Joint: Sonography versus MR Imaging. AJR
2002; 178: 1557-1562.
2.
Larheim TA, Westesson P-L, Sano T. Temporomandibular Joint Disc Displacement: Comparison in Asymptomatic Volunteers and
Patients. Radiology 2001; 218: 428-432.
3.
Sommer OJ, Aigner F, Rudisch A, et al. Cross Sectional and Functional Imaging of the Temporomandibular Joint: Radiology,
Pathology, and Basic Biomechanics of the Jaw. RadioGraphics 2003; 23: e14.
40
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Neck for Soft Tissue Evaluation
CPT CODES:
70490.................CT Soft Tissues of Neck, without contrast
70491.................CT Soft Tissues of Neck, with contrast
70492.................CT Soft Tissues of Neck without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Axial images from the skull base to the clavicles.
●● CT of the neck for soft tissue evaluation generally includes imaging of the following anatomic structures:
–– Pharynx, Larynx and Upper Trachea
–– Salivary Glands
–– Thyroid Gland
–– Cervical lymph nodes in the neck
IMAGING CONSIDERATIONS:
●● Radiation Dosimetry is approximately 200 Chest X-Ray equivalent dosage.
●● CT is generally the modality of choice for the following indications: detection of sialolithiasis (salivary gland calculi); following trauma to the soft tissues of the neck; and during foreign body evaluation, after initial radiographic assessment
for a radiopaque foreign body.
●● For many other soft tissue abnormalities of the neck, MRI is preferred, unless there is a contraindication to this imaging
modality [due to pacemaker, implantable cardioverter-defibrillator (ICD), and other non-compatible device unsafe for
use in an MRI scanner] or if MRI is not tolerated by the patient (usually secondary to claustrophobia).
●● CT of the neck for soft tissue evaluation is not used for targeted imaging of the cervical spine. For spine imaging, see
CT of the cervical spine (72125-72127).
●● CT soft tissue neck is inherently a bilateral study. Separate requests to image both sides of the neck are not allowed.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR NECK CT:
The following diagnostic indications for Neck CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
FOREIGN BODY IN THE UPPER AERO-DIGESTIVE TRACT OR SURROUNDING NECK TISSUES
●● Following neck radiographs (for soft tissue evaluation)
GLOTTIC LESION
●● Further assessment following endoscopic detection
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Cellulitis
–– Osteomyelitis
MASS LESION – PALPABLE NECK MASS
41
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR NECK CT:
MASS LESION – NON-PALPABLE AND UNEXPLAINED ON PRIOR IMAGING EXAM – FOR SURVEILLANCE,
WITHOUT PATHOLOGIC TISSUE CONFIRMATION
NECK MASSES SUCH AS BRANCHIAL CLEFT CYST, THYROGLOSSAL DUCT CYST AND LYMPHANGIOMA / CYSTIC
HYGROMA 5
OBSTRUCTIVE THYROID NODULE OR THYROMEGALY (GOITER)
●● Following thyroid US or thyroid scintigraphy
●● When associated with mass effect on the upper airway or esophagus
●● For pre-operative evaluation
PERSISTENT HOARSENESS
●● Unexplained, following endoscopic examination and/or prior non-diagnostic imaging of neck/upper chest (extending
along the course of the recurrent laryngeal nerves)
LARYNGEAL EDEMA
LYMPHADENOPATHY
1-4
●● When persistent and/or unexplained
SALIVARY / PAROTID GLAND DUCTAL CALCULI (SIALOLITHIASIS)
STRIDOR
●● For subacute and chronic stridor, advanced imaging may follow neck (soft tissue) radiographs and ENT evaluation
TRAUMATIC INJURY TO THE SOFT TISSUES OF THE NECK
TUMOR EVALUATION – BENIGN AND MALIGNANT (PRIMARY NEOPLASM AND METASTATIC DISEASE): 6
●● For diagnosis, staging, evaluation of response to treatment and pre-operative assessment
UPPER AIRWAY OBSTRUCTION
●● Including but not limited to Tracheal Stenosis
VOCAL CORD PARALYSIS
●● Unexplained, following endoscopic diagnosis
●● May be unilateral or bilateral; CT may aid in localizing the side and level of vocal cord paralysis 7
ABNORMALITIES DETECTED ON OTHER DIAGNOSTIC EXAMS, WHICH REQUIRE FURTHER EVALUATION
REFERENCE/LITERATURE REVIEW:
1.
Fultz PJ, Feins RH, Strang JG, et al. Detection and Diagnosis of Nonpalpable Supraclavicular Lymph Nodes in Lung Cancer at CT
and US. Radiology 2002; 222: 245-251.
2.
van Overhagen H, Brakel K, Heijenbrok MW, et al. Metastases in Supraclavicular Lymph Nodes in Lung Cancer: Assessment with
Palpation, US and CT. Radiology 2004; 232: 75-80.
3.
Sumi M, Ohki M, Nakamura T. Comparison of Sonography and CT for Differentiating Benign from Malignant Cervical Lymph Nodes in
Patients with Squamous Cell Carcinoma of the Head and Neck. AJR 2001; 176: 1019-1024.
4.
King AD, Tse GMK, Ahuja AT, et al. Necrosis in Metastatic Neck Nodes: Diagnostic Accuracy of CT, MR Imaging, and US. Radiology
2004; 230: 720-726.
5.
Castellote A, Vázquez E, Vera J, et al. Cervicothoracic Lesions in Infants and Children. RadioGraphics 199; 19: 583-600.
6.
Som PM, Curtin HD, Mancuso AA. Imaging-Based Nodal Classification for Evaluation of Neck Metastatic Adenopathy. AJR 2000;
174: 837-844.
7.
Chin S-C, Edelstein S, Chen CY, et al. Using CT to Localize Side and Level of Vocal Cord Paralysis. AJR 2003; 180: 1165-1170.
42
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA)
Neck
CPT CODES:
70498.................CTA of Neck, with contrast material(s), including noncontrast images, if performed, and image
postprocessing
STANDARD ANATOMIC COVERAGE:
●● CTA of the neck involves image acquisition from the aortic arch to the skull base, to visualize major vessels which
include the extracranial carotid arteries and vertebral arteries. The major venous structures may also be interrogated
with CT angiographic technique.
IMAGING CONSIDERATIONS:
●● Duplex Doppler examination of the extracranial carotid arteries is often performed prior to CTA.
●● Advantages of CTA over MRA include higher sensitivity for detection of mural calcification; usually shorter scan time,
which results in less motion, pulsation and turbulent flow artifact; avoidance of MRA in-plane flow as a cause of apparent exaggerated stenosis; more facile detection of surgical clips and stents.
●● Disadvantages of CTA include radiation exposure and use of intravascular iodinated contrast material.
●● Contrast-enhancement for CTA may be contraindicated in certain circumstances, such as a documented allergy to intravenous contrast material and renal insufficiency. Special consideration should also be given to patients with multiple
myeloma.
●● CT Angiography (CTA) utilizes imaging data from standard CT acquisitions. Request for a CT exam, in addition to CT
Angiography of the same anatomic area during the same imaging session, is inappropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR NECK CTA:
The following diagnostic indications for Neck CTA are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
STENOSIS OR OCCLUSION OF THE EXTRACRANIAL CAROTID ARTERIES
●● Following work-up with duplex Doppler examination of the carotid arteries, unless diagnosis is substantiated by clinical
exam findings.
●● Common clinical manifestations may include:
–– Confusion
–– Difficulty speaking or understanding speech
–– Dizziness
–– Gait Disturbance
–– Loss of Balance or Coordination
–– Loss of Consciousness
–– Numbness, weakness or paralysis of the face, arm or leg, on one side of the body
–– Sudden severe headache, that is unexplained
–– Visual disturbance, particularly in one eye
STENOSIS OR OCCLUSION OF VERTEBRAL ARTERIES
●● In patients with signs and symptoms of Vertebrobasilar Insufficiency (VBI) or Vertebral Basilar Ischemia.
43
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR NECK CTA:
●● Symptoms of VBI are usually temporary, due to diminished blood flow in the posterior circulation of the brain.
●● Common clinical manifestations may include:
–– Acute Sensorineural Hearing Loss
–– Ataxia
–– Diplopia
–– Dysarthria
–– Dysphagia
–– Facial Numbness and Paresthesias
–– Limb and Trunk Sensory Deficits
–– Loss of Taste Sensation
–– Motor Paresis
–– Nystagmus
–– Syncope
–– Vertigo
–– Visual Field Defects
FOLLOW-UP OF ABNORMAL OR INCONCLUSIVE FINDINGS ON CAROTID DOPPLER ULTRASOUND,
PARTICULARLY WHEN VASCULAR CALCIFICATIONS PRECLUDE ADEQUATE VISUALIZATION OF THE LUMEN
ANEURYSM
ARTERIOVENOUS MALFORMATION
CONGENITAL ANOMALIES OF THE CAROTID AND VERTEBROBASILAR CIRCULATIONS
DISSECTION 4
INTRAMURAL HEMATOMA
ARTERIAL THROMBOEMBOLISM
VENOUS THROMBOSIS OR COMPRESSION
VASCULOPATHY, INCLUDING FIBROMUSCULAR DYSPLASIA (FMD) 1
TRAUMATIC VASCULAR INJURY TO THE EXTRACRANIAL CAROTID AND VERTEBRAL ARTERIES 5-7
PRE-OPERATIVE VASCULAR DELINEATION OF BLOOD SUPPLY TO TUMORS, SUCH AS CAROTID BODY
(GLOMUS) TUMORS
POST-OPERATIVE EVALUATION, FOLLOWING CAROTID ENDARTERECTOMY
●● With new sign and symptoms
●● As a substitute for catheter angiography, when otherwise indicated
REFERENCE/LITERATURE REVIEW:
1.
Phillips CD, Bubas LA. CT Angiography and MR Angiography in the Evaluation of Extracranial Carotid Vascular Disease. Radiol Clin
N Am 2002; 40(4): 783-798.
2.
Marcus CD, Ladam-Marcus VJ, Bigot J-L, et al. Carotid Arterial Stenosis: Evaluation at CT Angiography with the Volume-rendering
Technique. Radiology 1999; 211: 775-780.
3.
Randoux B, Marro B, Koskas F, et al. Carotid Artery Stenosis: Prospective Comparison of CT, Three-dimensional Gadoliniumenhanced MR, and Conventional Angiography. Radiology 2001; 220: 179-185.
4.
Schievink W. Spontaneous Dissection of the Carotid and Vertebral Arteries. N Engl J Med 2001; 344(12): 898-906.
5.
Núñez DB, Torres-León M, Múnera F. Vascular Injuries of the Neck and Thoracic Inlet: Helical CT – Angiographic Correlation.
RadioGraphics 2004; 24: 1087-1098.
6.
Múnera F, Soto JA, Palacio DM, et al. Penetrating Neck Injuries: Helical CT Angiography for Initial Evaluation. Radiology 2002; 224:
44
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
366-372.
7.
LeBlang S, Núñez DB. Noninvasive Imaging of Cervical Vascular Injuries. AJR 2000; 174: 1269-1278.
45
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
MR Angiography (MRA)
Neck
CPT CODES:
70547.................MRA of Neck without contrast
70548.................MRA of Neck with contrast
70549.................MRA of Neck without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Acquisitions from the aortic arch to the skull base, to visualize the major vessels including the extracranial carotid arteries and vertebral arteries.1-2 The major venous structures may also be interrogated with MR angiographic techniques.
IMAGING CONSIDERATIONS:
●● Duplex Doppler examination of the extracranial carotid arteries is often performed prior to MRA.
●● Advantages of MRA, compared with CTA include avoidance of radiation exposure as well as intravascular administration of iodinated contrast material.
●● Disadvantages of MRA, compared with CTA, include lower sensitivity for detection of mural calcification; usually longer
scanning time, with potential for greater motion, pulsation and turbulent flow artifact; in-plane flow causing apparent
exaggerated stenosis; greater difficulty in identifying surgical clips and stents.
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRA examination, to ensure
patient safety. Among the generally recognized contraindications to MRA exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with
MR imaging, as well as other devices considered unsafe in MRI scanners (including certain implanted materials in the
patient as well as external equipment, such as portable oxygen tanks).
●● An MRA of the neck is inherently bilateral. Duplicate requests to image the right and left side of the neck are not allowed.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR NECK MRA:
The following diagnostic indications for Neck MRA are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
STENOSIS OR OCCLUSION OF THE EXTRACRANIAL CAROTID ARTERIES
●● Following work-up with duplex Doppler examination of the carotid arteries 5, unless diagnosis is substantiated by clinical exam findings.
●● Common clinical manifestations may include:
–– Confusion
–– Difficulty speaking or understanding speech
–– Dizziness
–– Gait Disturbance
–– Loss of Balance or Coordination
–– Loss of Consciousness
–– Numbness, weakness or paralysis of the face, arm or leg, on one side of the body
–– Sudden severe headache, that is unexplained
–– Visual disturbance, particularly in one eye
46
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR NECK MRA:
STENOSIS OR OCCLUSION OF THE VERTEBRAL ARTERIES
●● Symptoms of Vertebrobasilar Insufficiency are usually temporary, due to diminished blood flow to the posterior circulation of the brain.
●● Common clinical manifestations may include:
–– Acute Sensorineural Hearing Loss
–– Ataxia
–– Diplopia
–– Dysarthria
–– Dysphagia
–– Facial Numbness and Paresthesias
–– Limb and Trunk Sensory Deficits
–– Loss of Taste Sensation
–– Motor Paresis
–– Nystagmus
–– Syncope
–– Vertigo
–– Visual Field Defects
FOLLOW-UP OF ABNORMAL OR INCONCLUSIVE FINDINGS ON CAROTID DOPPLER ULTRASOUND,
PARTICULARLY WHEN VASCULAR CALCIFICATIONS PRECLUDE ADEQUATE VISUALIZATION OF THE LUMEN
ANEURYSM6
ARTERIOVENOUS MALFORMATION
CONGENITAL ANOMALIES OF THE CAROTID AND VERTEBROBASILAR CIRCULATIONS
DISSECTION 6-7
INTRAMURAL HEMATOMA
ARTERIAL THROMBOEMBOLISM
VENOUS THROMBOSIS OR COMPRESSION
VASCULOPATHY, INCLUDING FIBROMUSCULAR DYSPLASIA (FMD) 1
TRAUMATIC VASCULAR INJURY TO THE EXTRACRANIAL CAROTID AND VERTEBRAL ARTERIES8
PRE-OPERATIVE VASCULAR DELINEATION OF BLOOD SUPPLY TO TUMORS, SUCH AS CAROTID BODY
(GLOMUS) TUMORS
POST-OPERATIVE EVALUATION, FOLLOWING CAROTID ENDARTERECTOMY
●● With new sign and symptoms
●● As a substitute for catheter angiography, when otherwise indicated
REFERENCE/LITERATURE REVIEW:
1.
Carr JC, Ma J, Desphande V, et al. High Resolution Breath-Hold Contrast-Enhanced MR Angiography of the Entire Carotid
Circulation. AJR 2002; 178: 543-549.
2.
Carroll FR, Korosec FR, Petermann GM, et al. Carotid Bifurcation: Evaluation of Time-resolved Three-dimensional Contrast-enhanced
MR Angiography. Radiology 2001; 220: 525-532.
3.
Phillips CD, Bubas LA. CT Angiography and MR Angiography in the Evaluation of Extracranial Carotid Vascular Disease. Radiol Clin
N Am 2002; 40(4): 783-798.
4.
Randoux B, Marro B, Koskas F, et al. Carotid Artery Stenosis: Prospective Comparison of CT, Three-dimensional Gadoliniumenhanced MR, and Conventional Angiography. Radiology 2001; 220: 179-185.
47
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
5.
Serfaty JM, Chirossel P, Chevallier JM, et al. Accuracy of Three-Dimensional Gadolinium-Enhanced MR Angiography in the
Assessment of Extracranial Carotid Artery Disease. AJR 2000; 175: 455-463.
6.
Djouhri H, Guillon B, Brunereau L, et al. MR Angiography for the Long-Term Follow-Up of Dissecting Aneurysms of the Extracranial
Internal Carotid Artery. AJR 2000; 174: 1137-1140.
7.
Schievink W. Spontaneous Dissection of the Carotid and Vertebral Arteries. N Engl J Med 2001;344(12): 898-906.
8.
LeBlang S, Núñez DB. Noninvasive Imaging of Cervical Vascular Injuries. AJR 2000; 174: 1269-1278.
48
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Chest
CPT CODES:
71250.................Chest CT without contrast
71260.................Chest CT with contrast
71270.................Chest CT without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Lung apices through costophrenic sulci
●● Scan coverage may vary, depending on the specific clinical indication
IMAGING CONSIDERATIONS:
●● In the majority of clinical situations, Chest Radiographs should be performed prior to advanced imaging with CT, preferably within 30 days of the Chest CT exam request.
●● Most health plans do not currently provide benefit coverage for screening studies using advanced imaging. For Chest
CT imaging, this may include lung cancer screening. 1-2
●● Radiation Dosimetry: For a conventional chest CT exam, the typical effective radiation dose is around 8 milliSieverts
(mSv) or 400 Chest X-Ray equivalents.
●● When the purpose of the study is imaging of the heart, including the coronary arteries, do not request both a chest CT
and a dedicated cardiac/coronary artery CT.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST CT:
The following diagnostic indications for Chest CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information.
This section contains:
●● Common Chest Indications
●● Additional Pulmonary Indications
●● Additional Mediastinal and Hilar Indications
●● Additional Cardiac and Pericardial Indications
●● Additional Pleural, Chest Wall and Diaphragmatic Indications
Common Thoracic Indications:
PULMONARY EMBOLISM 3-4
HEMOPTYSIS (COUGHING UP BLOOD) 5
●● Initial evaluation should be performed with Chest X-Ray
COUGH PERSISTING 3 OR MORE WEEKS WITH NORMAL CHEST X-RAY
–– Unresponsive to medical treatment and/or after evaluation for other causes ( e.g.. Postnasal drainage, asthma, gastroesophageal reflux disease 6-7 and medication effects.)
Or
–– Cough in immunosuppressed (e.g. HIV, after organ or bone marrow transplant, on infliximab other TNFa.) individual
49
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST CT:
Or
–– Other etiologies for chronic cough which include, but are not limited to: smoking, chronic bronchitis, cough-inducing
medications (e.g., ACE Inhibitors), exposure to an environmental irritant, respiratory infection and neoplasm
–– In immunocompromised individuals, a higher level of suspicion is warranted
PERSISTENT PNEUMONIA REFRACTORY TO MEDICAL TREATMENT OF ADEQUATE DURATION (AT LEAST FOUR
WEEKS) OR SUSPECTED TO BE SECONDARY TO OBSTRUCTION OR RECURRENT PNEUMONIA IN THE SAME
LOCATION WITHIN SIX MONTHS TO EVALUATE FOR OBSTRUCTIVE ETIOLOGY
OTHER INFECTIOUS AND INFLAMMATORY PROCESSES 8 – EXCLUDING PNEUMONIA
●● For initial evaluation and surveillance
●● Including but not limited to the following thoracic abnormalities:
–– Lung Abscess
–– Mediastinitis
–– Sternal Infection (particularly following cardiac surgery)
–– Empyema
–– Mediastinal Abscess
–– Other infectious processes
FEVER OF UNKNOWN ORIGIN
●● Lasting more than three weeks
●● Following standard work-up to localize the source
STRUCTURAL ABNORMALITIES ON CHEST X–RAY, WHICH REQUIRE FURTHER CLARIFICATION WITH CT
POSITIVE SPUTUM CYTOLOGY FOR MALIGNANCY
DOCUMENTED MALIGNANCY – PRIMARY NEOPLASM AND METASTATIC DISEASE 9-10
●● For staging and periodic follow-up
PRE-OPERATIVE EVALUATION FOR THORACIC SURGERY
POST-OPERATIVE COMPLICATIONS
●● For suspected or known operative complications during the initial 6-8 weeks following cardio-thoracic surgery
CONGENITAL THORACIC ANOMALIES
SARCOIDOSIS
●● Initial evaluation and periodic follow-up
TRAUMA
●● Injury involving the Chest Wall, Cardiomediastinal Structures and/or Lungs
UNEXPLAINED WEIGHT LOSS – SIGNIFICANT WEIGHT LOSS EXCEEDING 10% OF DESIRABLE BODY WEIGHT,
OVER A SHORT TIME INTERVAL (6 MONTHS OR LESS)
Additional Pulmonary Indications:
PULMONARY NODULE(S) – WITH SUSPICION OF UNDERLYING MALIGNANCY
●● Initial evaluation and periodic surveillance of stable lesions for up to 2 years at approximately 6 month intervals 11-13
●● Nodules are generally defined as < 3 cm in size
PULMONARY MASS OR SUSPICIOUS PARENCHYMAL ABNORMALITY ON RECENT CHEST X-RAY OR OTHER
IMAGING EXAM
BULLOUS EMPHYSEMA
●● Following initial evaluation with Chest Radiographs
●● Consider High Resolution Chest CT (HRCT) Technique 14
50
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST CT:
BRONCHIECTASIS
●● Consider High Resolution Chest CT (HRCT) Technique 14
INTERSTITIAL LUNG DISEASE/PULMONARY FIBROSIS
●● Consider High Resolution Chest CT (HRCT) Technique 14-15
HYPERLUCENT LUNG LESIONS IN PEDIATRIC PATIENTS
●● Including but not limited to the following thoracic abnormalities:
–– Congenital Lobar Emphysema
–– Congenital Cystic Adenomatoid Malformation
PULMONARY SEQUESTRATION
ASBESTOS-RELATED BENIGN AND MALIGNANT LESIONS, involving the lungs and pleura: 16-17
–– Pleural plaques
–– Interstitial lung disease
–– Malignant Mesothelioma
–– Pleural effusion
–– Lung cancer
OTHER PNEUMOCONIOSES
Additional Mediastinal and Hilar Indications:
EVALUATION OF THE THORACIC AORTA – ANEURYSM AND DISSECTION:
18-19
●● In patients with suspected thoracic aortic aneurysm
Or
●● In patients with confirmed thoracic aortic aneurysm with new or worsening signs/symptoms
Or
●● For ongoing surveillance of stable patients with confirmed thoracic aortic aneurysm who have not undergone imaging
of the thoracic aorta within the preceding six months
Or
●● In patients with suspected aortic dissection
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
Or
●● In patients with confirmed aortic dissection in whom surgical repair is anticipated (to assist in preoperative planning)
Or
●● For ongoing surveillance of stable patients with confirmed aortic dissection who have not undergone imaging of the
thoracic aorta within the preceding year
Or
●● In patients with confirmed aortic dissection or thoracic aortic aneurysm who have undergone surgical repair within the
preceding year and have not undergone imaging of the thoracic aorta within the preceding six months
PENETRATING ATHEROSCLEROTIC AORTIC ULCER
TRAUMATIC AORTIC INJURY 19-20
VASCULITIS OF THE THORACIC AORTA OR BRANCH VESSEL
SUPERIOR VENA CAVA (SVC) SYNDROME
MEDIASTINAL WIDENING ON RECENT CHEST X-RAY
HILAR ENLARGEMENT ON RECENT CHEST X-RAY
51
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST CT:
KNOWN HILAR AND/OR MEDIASTINAL LYMPHADENOPATHY / MASS
●● Periodic follow-up
HOARSENESS OR VOCAL CORD WEAKNESS - SUSPECTED TO RESULT FROM RECURRENT LARYNGEAL NERVE
INJURY
THYMOMA
●● Note that approximately 15% of patients with Myasthenia Gravis will have a Thymoma 21
TRACHEOBRONCHIAL LESION EVALUATION
Additional Cardiac and Pericardial Indications:
CONGENITAL HEART DISEASE 22
●● For evaluation of suspected congenital heart disease in patients whose echocardiogram is technically limited or nondiagnostic
Or
●● For initial evaluation of complex congenital heart disease in patients who have undergone echocardiography
Or
●● For evaluation of complex congenital heart disease in patients who are less than one year post surgical correction
Or
●● For evaluation of complex congenital heart disease in patients who have new or worsening symptoms
Or
●● For evaluation of complex congenital heart disease in patients with a change in physical examination
Or
●● To assist in surgical planning for patients with complex congenital heart disease
Or
●● For surveillance in asymptomatic patients with complex congenital heart disease in patients who have not had cardiac
MRI or cardiac CT within the preceding year
Note: Cardiac MRI or transesophageal echocardiography may be preferable to chest CT in order to avoid radiation
exposure
CARDIAC ANEURYSM AND PSEUDOANEURYSM
INTRA-CARDIAC AND PARA-CARDIAC MASS(ES)
●● Usually performed following echocardiography
Additional Pleural, Chest Wall and Diaphragmatic Indications:
ABNORMAL PLEURAL FLUID COLLECTION, INCLUDING EFFUSION, HEMOTHORAX, EMPYEMA AND
CHYLOTHORAX
CHEST WALL MASS
PLEURAL MASS
PNEUMOTHORAX – unexplained or recurrent
THORACIC OUTLET SYNDROME
DIAPHRAGMATIC HERNIA
UNEXPLAINED DIAPHRAGMATIC ELEVATION OR IMMOBILITY
REFERENCE/LITERATURE REVIEW:
1.
Swensen SJ. CT Screening for Lung Cancer. AJR 2002; 179: 833-836
52
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
2.
Mahadevia PJ, Fleisher L A, Frick, Kevin A. Lung Cancer Screening with Helical Computed Tomography in Older Adult Smokers: A
Decision and Cost-Effective Analysis. JAMA 2003; 289: 313-322.
3.
Fedullo PF, Tapson VF. Evaluation of Suspected Pulmonary Embolism. N Engl J Med 2003; 349: 1247-1256.
4.
Quiroz R, Kucher Zhou, Kelly. Clinical Validity of a Negative Computed Tomography Scan in Patients with Suspected Pulmonary
Embolism. JAMA 2005; 293 (16): 2012-2017.
5.
Revel MP, Fournier L S, Hennebicque AS, et al. Can CT Replace Bronchoscopy in the Detection of the Site and Cause of Bleeding in
Patients with Large or Massive Hemoptysis? AJR 2002; 179: 1217-1224.
6.
Irwin RS. Madison JM. Diagnosis and Treatment of Cough. N Engl J Med 2000; 343(23): 1715-1721.
7.
Morice AH, Kastelik JA. Chronic Cough in Adults. Thorax 2003; 58: 901-907.
8.
Tarver RD, Teague SD, Heitkamp DE, Conces DJ. Radiology of Community-Acquired Pneumonia. Radiol Clin N Am 2005; 43: 497512.
9.
Munden RF, Bruzzi J. Imaging of Non-Small Cell Lung Cancer. Radiol Clin N Am 2005; 43: 467-480.
10. Aquino SL. Imaging of Metastatic Disease to the Thorax. Radiol Clin N Am 2005; 43: 481-495.
11. Tan BB, Flaherty KR, Kazerooni EA, et al. The Solitary Pulmonary Nodule. Chest 2003; 123(1): 89S-96S.
12. Ost D, Fein AM, Feinsilver SH. The Solitary Pulmonary Nodule. N Engl J Med 2003; 348: 2535-2542.
13. Hartman TE. Radiologic Evaluation of the Solitary Pulmonary Nodule. Radiol Clin N Am 2005; 43: 459-465.
14. Kazerooni EA. High-Resolution CT of the Lungs. AJR 2001; 177: 501-519.
15. Pipavath S, Godwin JD. Imaging of Interstitial Lung Disease. Radiol Clin N Am 2005; 43: 589-599.
16. American Thoracic Society. Diagnosis and Initial Management of Nonmalignant Diseases Related to Asbestos. American Journal of
Respiratory and Critical Care Medicine. 2004; 170: 691-715.
17. Akira M, Yamamoto S, Inoue Y, Sakatani M. High-Resolution CT of Asbestosis and Idiopathic Pulmonary Fibrosis. AJR 2003; 181:
163-169.
18. Chiles C, Carr JJ. Vascular Diseases of the Thorax: Evaluation with Multidetector CT. Radiol Clin N Am 2005; 43: 543-569.
19. Macura KJ, Corl FM, Fishman EK, Bluemke DA. Pathogenesis in Acute Aortic Syndromes: Aortic Aneurysm Leak and Rupture and
Traumatic Aortic Transection. AJR 2003; 181: 303-307.
20. Parker MS, Matheson TL, Rao AV, et al. Making the Transition: The Role of Helical CT in the Evaluation of Potentially Acute Thoracic
Aortic Injuries. AJR 2001; 176: 1267-1272.
21. Truong MT, Sabloff BS, Gladish GW, et al. Invasive Thymoma. AJR 2003; 181: 1504.
22. Gilkeson RC, Ciancibello L, Zahka K. Multidetector CT Evaluation of Congenital Heart Disease in Pediatric and Adult Patients. AJR
2003; 180: 973-980.
53
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA)
Chest (Non-Coronary)
CPT CODES:
71275.................CTA of Chest (noncoronary) ,with contrast material(s), including noncontrast images, if performed, and
image postprocessing
STANDARD ANATOMIC COVERAGE:
●● Scan coverage varies depending on the clinical indication. This exam does not include cardiac and coronary artery
indications.
●● Chest CTA may be used for anatomic depiction from the pulmonary apices through the costophrenic sulci.
IMAGING CONSIDERATIONS:
Advantages of CTA:
●● Rapidly acquired exam, with excellent anatomic detail afforded by most multidetector CT scanners.
Disadvantages of CTA:
●● Potential complications from use of intravascular iodinated contrast administration (see biosafety issues, below) and
ionizing radiation.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering safety issues prior to the CTA exam.1 One of the most
significant considerations is the requirement for intravascular iodinated contrast material, which may have an adverse
effect on patients with a history of documented allergic contrast reactions or atopy, as well as on individuals with renal
impairment, who are at greater risk for contrast-induced nephropathy.
Ordering Issues:
●● Chest CTA does not cover cardiac and coronary artery imaging. Refer to the specific CPT codes for Cardiac and Coronary Artery CT/CTA evaluation.
●● There are uncommon circumstances when both CTA and MRA of the chest should be ordered for the same clinical
presentation. The specific rationale must be delineated at the time of request.
●● In general, follow-up CTA exams should be performed only when there is a clinical change, with new signs or symptoms, or specific finding(s) requiring imaging surveillance.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
Other Comments:
●● CT Angiography (CTA) utilizes the data obtained from standard CT imaging. Request for a CT exam, in addition to CT
Angiography of the same anatomic area AND during the same imaging session, is inappropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
54
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST CTA:
The following diagnostic indications for Chest CTA are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information.
This section contains:
●● General Chest CTA Indications
●● Additional Thoracic Aorta and Great Vessel Indications
●● Additional Pulmonary Artery and Vein Indication
General Chest CTA Indications:
VASCULAR INVOLVEMENT FROM NEOPLASM IN THE CHEST
SYSTEMIC VENOUS THROMBOSIS OR OCCLUSION, INCLUDING SUPERIOR VENA CAVA (SVC) SYNDROME
SUBCLAVIAN STEAL SYNDROME
THORACIC OUTLET SYNDROME
DEVELOPMENTAL ANOMALIES OF THE THORACIC VASCULATURE
2
●● Examples of congenital thoracic vascular anomalies include but are not limited to the following:
–– Aortic coarctation
–– Double aortic arch
–– Hypoplastic or atretic pulmonary arteries
–– Inferior vena caval interruption
–– Partial anomalous pulmonary venous return
–– Patent ductus arteriosus
–– Persistent left-sided superior vena cava
–– Right-sided aortic arch
–– Total anomalous pulmonary venous return
–– Transposition of the Great Vessels
–– Truncus arteriosus
POST-TRAUMATIC VASCULAR INJURY 3
Additional Thoracic Aorta and Great Vessel Indications: 4-7
EVALUATION OF THE THORACIC AORTA – ANEURYSM AND DISSECTION:
●● In patients with suspected thoracic aortic aneurysm
Or
●● In patients with confirmed thoracic aortic aneurysm with new or worsening signs/symptoms
Or
●● For ongoing surveillance of stable patients with confirmed thoracic aortic aneurysm who have not undergone imaging
of the thoracic aorta within the preceding six months
Or
●● In patients with suspected aortic dissection
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
Or
●● In patients with confirmed aortic dissection in whom surgical repair is anticipated (to assist in preoperative planning)
Or
●● For ongoing surveillance of stable patients with confirmed aortic dissection who have not undergone imaging of the
thoracic aorta within the preceding year
Or
●● In patients with confirmed aortic dissection or thoracic aortic aneurysm who have undergone surgical repair within the
preceding year and have not undergone imaging of the thoracic aorta within the preceding six months
55
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST CTA:
CONGENITAL HEART DISEASE
CARDIAC MASSES AND TUMORS
HEMATOMA
ATHEROMATOUS DISEASE, INCLUDING PENETRATING ATHEROSCLEROTIC AORTIC ULCER 4,6
VASCULITIS
STENT GRAFT EVALUATION, INCLUDING DETECTION OF AN ENDOLEAK 7
●● Pre-Procedure Assessment and Post-Procedure Follow-up
POST-OPERATIVE OR POST-INTERVENTIONAL VASCULAR PROCEDURE – FOR LUMINAL PATENCY VERSUS
STENOSIS / OCCLUSION, AS WELL AS POST-PROCEDURE COMPLICATION
●● Potential complications include but are not limited to the following:
–– Infection, such as abscess
–– Peri-anastomotic leak
–– Pseudoaneurysm
Additional Pulmonary Artery and Vein Indications: 4,8-13
PULMONARY EMBOLISM 8-9
●● For clinically suspected pulmonary embolism or follow-up when recurrent thromboembolism is a concern in patients on
adequate medical therapy
●● Evaluation of candidates for pulmonary Thromboendarterectomy
PULMONARY ARTERIAL HYPERTENSION
PULMONARY ARTERIOVENOUS MALFORMATION (AVM)
PULMONARY SEQUESTRATION
EVALUATION OF CARDIAC VENOUS ANATOMY 11-13
●● For localization of the pulmonary veins in patients with chronic or paroxysmal atrial fibrillation/flutter who are candidates
for radiofrequency ablation and have undergone appropriate electrophysiology evaluation.
REFERENCE/LITERATURE REVIEW:
1.
Weinreb JC, Larson PA, Woodard PK, et al. American College of Radiology Clinical Statement on Noninvasive Cardiac Imaging.
Radiology 2005; 235: 723-727.
2.
Siegel MJ. Multiplanar and Three-dimensional Multi-Detector Row CT of Thoracic Vessels and Airways in the Pediatric Population.
Radiology 2003;229:641-650.
3.
Alkadhi MD, Wildermuth S, Desbiolles L, et al. Vascular Emergencies of the Thorax after Blunt and Iatrogenic Trauma: Multi-Detector
Row CT and Three-dimensional Imaging. RadioGraphics. 2004;24:1239-1255.
4.
Chiles C, Carr JJ. Vascular Diseases of the Thorax: Evaluation with Multidetector CT. Radiol Clin N Am 2005; 43: 543-569.
5.
Tatli S, Yucel EK, Lipton MJ. CT and MR Imaging of the Thoracic Aorta: Current Techniques and Clinical Applications. Radiol Clin N
Am 2004; 42: 565-585.
6.
Tunnick PA, Krinsky GA, Lee VS, Kronzon I. Diagnostic Imaging of Thoracic Aortic Atherosclerosis. AJR 2000; 174: 1119-1125.
7.
Therasse E,Soulez G, Giroux M-F, et al. Stent-Graft Placement for the Treatment of Thoracic Aortic Diseases. RadioGraphics.
2005;25:157-173.
8.
Fedullo PF, Tapson V F. The Evaluation of Suspected Pulmonary Embolism. N Engl J Med 2003; 349(13): 1247-1256.
9.
Schoepf UJ, Costello P. CT Angiography for Diagnosis of Pulmonary Embolism: State of the Art. Radiology 2004; 230:329-337.
10. Kruip MJ, Leclercq MGL, van der Heul C, Prins MH, Büller HR. Diagnostic Strategies for Excluding Pulmonary Embolism in Clinical
Outcome Studies. Ann Intern Med 2003;138:941-951.
56
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
11. Ghaye B, Szapiro D, Dacher J-N, et al. Percutaneous Ablation for Atrial Fibrillation: The Role of Cross-sectional Imaging.
RadioGraphics 2003;23:S19-S33.
12. Jongbloed MR, Dirksen MS, Bax JJ, et al. Atrial Fibrillation: Multi-detector Row CT of Pulmonary Vein Anatomy prior to
Radiofrequency Catheter Ablation – Initial Experience. Radiology 2005; 234: 702-709.
13. Cronin P, Sneider MB, Kazerooni SM, et al. MDCT of the Left Atrium and Pulmonary Veins in planning Radiofrequency Ablation for
Atrial Fibrillation. AJR 2004; 183: 767-778
57
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Chest
CPT CODES:
71550.................MRI chest, without contrast
71551.................MRI chest, with contrast
71552.................MRI chest, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Chest MRI studies are often performed as problem-solving exams, following Chest CT. In these circumstances, anatomic coverage will depend on the specific indication for the study.
●● This Guideline excludes cardiac indications, which are covered under the Cardiac MRI section and corresponding CPT
codes (75557-75564).
IMAGING CONSIDERATIONS:
Advantages of Chest MRI:
●● Chest MRI may be helpful after a CT in the following scenarios:
–– Defining mediastinal and hilar lymphadenopathy (particularly after an unenhanced chest CT exam)
–– Determining direct lung tumor invasion into the mediastinum and hilar structures, without the need for iodinated
contrast material in CT
–– Assessing spinal canal extension from a postero-medially located thoracic mass
–– Evaluating a suspected Pancoast tumor (also referred to as apical pleuro-pulmonary groove or superior pulmonary
sulcus tumors) for direct chest wall extension, given the multiplanar capability of MRI
Disadvantages of Chest MRI:
●● Lung lesions are usually better imaged with CT when compared with MRI, given the superior spatial resolution of CT.
●● MRI should not be performed in patients with certain implanted devices that are not MRI compatible, such as pacemakers (see biosafety issues below).
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
58
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to chest MRI.
●● For initial evaluation of most thoracic lesions, such as pulmonary nodules and masses, chest CT is considered the
study of choice.
●● Contrast utilization for Chest MRI is at the discretion of the ordering and imaging providers.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change with new signs or
symptoms or as surveillance after treatment.
Other Comments:
●● An MRI of the chest should not be entered for imaging of the heart, which is examined using the Cardiac MRI CPT
codes 75557-75564.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST MRI:
The following diagnostic indications for Chest MRI are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
DOCUMENTED MALIGNANCY – PRIMARY NEOPLASM AND METASTATIC DISEASE
●● For staging and periodic surveillance
●● To evaluate the mediastinum, hila, pericardium, heart, chest wall and paraspinal region
PANCOAST TUMOR
●● To evaluate for chest wall extension at the superior pulmonary sulcus
MEDIASTINAL AND HILAR MASS LESIONS – WHEN ABNORMAL FINDINGS CANNOT BE THOROUGHLY
EVALUATED WITH CT
●● Particularly in patients who have an allergic history to intravascular iodinated CT contrast material or who have renal
insufficiency and thus are at greater risk for contrast-induced nephropathy
●● Chest MRI may be helpful in the following circumstances:
–– To differentiate mediastinal and hilar lesions from vascular structures, or
–– To assess vascular invasion by tumor, or
–– To detect spinal extension from a postero-medially located chest mass
THYMOMA EVALUATION OR HISTORY OF MYASTHENIA GRAVIS
●● Note that approximately 15% of patients with Myasthenia Gravis will have a Thymoma 1
EVALUATION OF THE THORACIC AORTA – ANEURYSM AND DISSECTION:
18-19
●● In patients with suspected thoracic aortic aneurysm
Or
●● In patients with confirmed thoracic aortic aneurysm with new or worsening signs/symptoms
Or
●● For ongoing surveillance of stable patients with confirmed thoracic aortic aneurysm who have not undergone imaging
of the thoracic aorta within the preceding six months
Or
●● In patients with suspected aortic dissection
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
59
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST MRI:
Or
●● In patients with confirmed aortic dissection in whom surgical repair is anticipated (to assist in preoperative planning)
Or
●● For ongoing surveillance of stable patients with confirmed aortic dissection who have not undergone imaging of the
thoracic aorta within the preceding year
Or
●● In patients with confirmed aortic dissection or thoracic aortic aneurysm who have undergone surgical repair within the
preceding year and have not undergone imaging of the thoracic aorta within the preceding six months
DEVELOPMENTAL ANOMALIES OF THE THORACIC VASCULATURE 2,4
●● Examples of congenital thoracic vascular anomalies include but are not limited to the following:
–– Aortic coarctation
–– Double aortic arch
–– Hypoplastic or atretic pulmonary arteries
–– Inferior vena caval interruption
–– Partial anomalous pulmonary venous return
–– Patent ductus arteriosus
–– Persistent left-sided superior vena cava
–– Right-sided aortic arch
–– Total anomalous pulmonary venous return
–– Transposition of the Great Vessels
–– Truncus arteriosus
PULMONARY NODULE(S) – WITH SUSPICION OF UNDERLYING MALIGNANCY
●● Initial evaluation and periodic surveillance of stable lesions for up to 2 years at approximately 6 month intervals 11-13
●● Nodules are generally defined as < 3 cm in size
SUPERIOR VENA CAVA SYNDROME
THORACIC OUTLET SYNDROME
REFERENCE/LITERATURE REVIEW:
1.
Truong MT, Sabloff BS, Gladish GW, et al. Invasive Thymoma. AJR 2003; 181: 1504.
2.
Tatle S, Yucel EK, Lipton MJ. CT and MR Imaging of the Thoracic Aorta: Current Techniques and Clinical Applications. Radiol Clin N
Am 2004; 42: 565-585.
3.
Tunnick PA, Krinsky GA, Lee VS, Kronzon I. Diagnostic Imaging of Thoracic Aortic Atherosclerosis. AJR 2000; 174: 1119-1125.
4.
Konen E, Merchant N, Provost Y, et al. Coarctation of the Aorta Before and After Correction: The Role of Cardiovascular MRI. AJR
2004; 182: 1333-1339.
60
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
MR Angiography (MRA)
Chest
CPT CODES:
71555.................MRA of Chest (excluding the myocardium) without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage varies depending on the clinical indication.
●● Chest MRA may be used for vascular anatomic depiction, from the pulmonary apices through the costophrenic sulci.
IMAGING CONSIDERATIONS:
Advantages of Chest MRA:
●● Use of MR imaging is advantageous over CT in avoiding ionizing radiation and allowing for direct multiplanar imaging.
Disadvantages of Chest MRA:
●● With MRA, artifact due to patient motion may have a particularly significant impact on exam quality.
●● MRA cannot be performed in patients with certain implanted devices that are not MRI compatible, such as pacemakers
(see biosafety issues below).
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRA examination, to ensure
patient safety. Among the generally recognized contraindications to MRA exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR
imaging, as well as other devices considered unsafe in MRI scanners (including implanted materials in the patient as
well as external equipment, such as portable oxygen tanks).
Ordering Issues:
●● There are uncommon circumstances when both MRA and CTA should be ordered for the same clinical presentation.
The specific rationale must be delineated at the time of request.
●● In general, follow-up MRA exams should be performed only when there is a clinical change, with new signs or symptoms, or specific finding(s) requiring imaging surveillance.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST MRA:
The following diagnostic indications for Chest MRA are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information.
This section contains:
●● Common Chest MRA Indications
●● Additional Thoracic Aorta and Great Vessel Indications
●● Additional Pulmonary Artery and Vein Indications
Common Chest MRA Indications: 1-3
61
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST MRA:
VASCULAR INVOLVEMENT FROM NEOPLASM IN THE CHEST
SYSTEMIC VENOUS THROMBOSIS OR OCCLUSION, INCLUDING SUPERIOR VENA CAVA (SVC) SYNDROME
SUBCLAVIAN STEAL 3
THORACIC OUTLET SYNDROME
DEVELOPMENTAL ANOMALIES OF THE THORACIC VASCULATURE 2,4
Examples of congenital thoracic vascular anomalies include but are not limited to the following:
–– Aortic coarctation
–– Double aortic arch
–– Hypoplastic or atretic pulmonary arteries
–– Inferior vena caval interruption
–– Partial anomalous pulmonary venous return
–– Patent ductus arteriosus
–– Persistent left-sided superior vena cava
–– Right-sided aortic arch
–– Total anomalous pulmonary venous return
–– Transposition of the Great Vessels
–– Truncus arteriosus
POST-TRAUMATIC VASCULAR INJURY
EVALUATION OF PERICARDIAL CONDITIONS (PERICARDIAL EFFUSION, CONSTRICTIVE PERICARDITIS, OR
CONGENITAL PERICARDIAL DISEASES)
●● In patients with suspected pericardial constriction
Or
●● In patients with suspected congenital pericardial disease
Or
●● In patients with suspected pericardial effusion (including hemopericardium) who have undergone echocardiography
deemed to be technically suboptimal in evaluation of the effusion
Or
●● In patients whose echocardiogram shows a complex pericardial effusion (loculated, containing solid material)
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
Additional Thoracic Aorta and Great Vessel Indications: 4-7
EVALUATION OF THE THORACIC AORTA – ANEURYSM AND DISSECTION:
18-19
●● In patients with suspected thoracic aortic aneurysm
Or
●● In patients with confirmed thoracic aortic aneurysm with new or worsening signs/symptoms
Or
●● For ongoing surveillance of stable patients with confirmed thoracic aortic aneurysm who have not undergone imaging
of the thoracic aorta within the preceding six months
Or
●● In patients with suspected aortic dissection
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
Or
●● In patients with confirmed aortic dissection in whom surgical repair is anticipated (to assist in preoperative planning)
Or
62
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CHEST MRA:
●● For ongoing surveillance of stable patients with confirmed aortic dissection who have not undergone imaging of the
thoracic aorta within the preceding year
Or
●● In patients with confirmed aortic dissection or thoracic aortic aneurysm who have undergone surgical repair within the
preceding year and have not undergone imaging of the thoracic aorta within the preceding six months
HEMATOMA
ATHEROMATOUS DISEASE, INCLUDING PENETRATING ATHEROSCLEROTIC AORTIC ULCER 6
VASCULITIS
STENT GRAFT EVALUATION, INCLUDING DETECTION OF AN ENDOLEAK
●● Pre-Procedure Assessment and Post-Procedure Follow-up
POST-OPERATIVE OR POST-INTERVENTIONAL VASCULAR PROCEDURE – FOR LUMINAL PATENCY VERSUS
STENOSIS / OCCLUSION AS WELL AS POST-PROCEDURE COMPLICATIONS
●● Potential complications include but are not limited to the following:
–– Infection, such as abscess
–– Peri-anastomotic leak
–– Pseudoaneurysm
CONGENITAL HEART DISEASE
CARDIAC MASSES AND TUMORS
Additional Pulmonary Artery and Vein Indications: 8-11
PULMONARY EMBOLISM 8-9
●● Rarely requested and used only in selected cases, for example when intravenous iodinated contrast material for a CTA
is contraindicated due to significant iodinated contrast allergy, and a diagnostic ventilation/perfusion (V/Q) study cannot
be obtained.
●● For clinically suspected pulmonary embolism or follow-up when recurrent thromboembolism is a concern in patients on
adequate medical therapy
●● Evaluation of candidates for pulmonary Thromboendarterectomy
PULMONARY ARTERIAL HYPERTENSION
PULMONARY ARTERIOVENOUS MALFORMATION (AVM) 10
PULMONARY SEQUESTRATION
EVALUATION OF CARDIAC VENOUS ANATOMY 11-13
●● For localization of the pulmonary veins in patients with chronic or paroxysmal atrial fibrillation/flutter are candidates for
radiofrequency ablation and have undergone appropriate electrophysiology evaluation.
REFERENCE/LITERATURE REVIEW:
1.
Ho VB, Corse WR, Hood MN, Rowedder WR. Magnetic Resonance Angiography of the Thoracic Vessels. Magn Reson Imaging Clin
N Am. 2004;12:727-747.
2.
Talti S, Yucel EK, Lipton MJ. CT and MR Imaging of the Thoracic Aorta: Current Techniques and Clinical Applications. Radiol Clin N
Am. 2004;42:565-585.
3.
Wu C, Zhang J, Babb JS, et al. Subclavian Steal Syndrome: Diagnosis with Perfusion Metrics from Contrast-Enhanced MR
Angiographic Bolus-Timing Examination – Initial Experience. Radiology. 2005;235:927-933.
4.
Pereles FS, McCarthy RM, Baskaran V, et al. Thoracic Aortic Dissection and Aneurysm: Evaluation with Nonenhanced True FISP MR
Angiography in Less than 4 Minutes. Radiology. 2002;223:270-274.
5.
Kunz RP, Oberholzer K, Kuroczynski W, et al. Assessment of Chronic Aortic Dissection: Contribution of Different ECG-Gated Breath63
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
Hold MRI Techniques. AJR 2004;182:1319-1326.
6.
Tunick PA, Krinsky GA, Lee VS, Kronzon I. Diagnostic Imaging of Thoracic Aortic Atherosclerosis. AJR 2000;174:119-1125.
7.
Konen E, Merchant N, Provost Y, et al. Coarctation of the Aorta Before the Correction: The Role of Cardiovascular MRI. AJR.
2004;182:1333-1339.
8.
Sonnet S, Buitrago-Téllez CH, Scheffler K, et al. Dynamic Time-Resolved Contrast-Enhanced Two-Dimensional MR Projection
Angiography of the Pulmonary Circulation: Standard Technique and Clinical Applications. AJR 2002;179:159-165.
9.
Kreitner K-FJ, Ley S, Kauczor HU, et al. Chronic Thromboembolic Pulmonary Hypertension: Pre- and Postoperative Assessment with
Breath-Hold MRI Imaging Techniques. Radiology 2004;232:535-543.
10. Maki DD, Siegelman ES, Roberts DA, et al. Pulmonary Arteriovenous Malformations: Three-Dimensional Gadolinium-Enhanced MR
Angiography-Initial Experience. Radiology 2001;219:243-246.
11. Ghaye B, Szapiro D, Dacher J-N, et al. Percutaneous Ablation for Atrial Fibrillation: The Role of Cross-Sectional Imaging.
RadioGraphics. 2003;23:S19-S33
64
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Breast
Also Referred to as MR Mammography (MRM)
CPT CODES:
77058.................MRI of Breast, without and/or with contrast material(s); Unilateral
77059.................MRI of Breast, without and/or with contrast material(s); Bilateral
IMAGING CONSIDERATIONS:
Technique:
●● It is strongly recommended that Breast MRI examinations be performed with a dedicated breast coil.
Limitations:
●● Breast MRI is not recommended as a screening technique in patients with average-risk for breast cancer.
●● Breast MRI is not recommended to assess suspicious breast lesions in order to avoid a biopsy.
●● Breast MRI should not be used to differentiate cysts from solid lesions, which is well evaluated with ultrasound.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely
patients with severe claustrophobia will not be suitable candidates for imaging.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to breast MRI.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
Additional Comments:
●● A bilateral MRI study of the breast is correctly coded to CPT 77059. Requesting two unilateral studies (77058) to perform a bilateral exam is inappropriate. Billing 77058 two times for the same date of service or separately over subsequent days in order to describe a bilateral procedure fragments the service into its component parts and is not allowed.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassess65
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
ment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR BREAST MRI:
For Breast Carcinoma: Diagnostic Evaluation
LESION CHARACTERIZATION, WHEN OTHER IMAGING EXAMINATIONS, SUCH AS ULTRASOUND AND
MAMMOGRAPHY, AND PHYSICAL EXAMINATION ARE INCONCLUSIVE FOR THE PRESENCE OF BREAST CANCER,
AND BIOPSY COULD NOT BE PERFORMED (E.G., POSSIBLE DISTORTION ON ONLY ONE MAMMOGRAPHIC VIEW
WITHOUT A SONOGRAPHIC CORRELATE) 1
INVASIVE CARCINOMA AND DUCTAL CARCINOMA IN SITU (DCIS) – TO DETERMINE THE EXTENT OF DISEASE
AND THE PRESENCE OF MULTIFOCALITY AND MULTICENTRICITY 1
INVASION OF BREAST CANCER DEEP TO FASCIA – MRI EVALUATION OF BREAST PRIOR TO SURGICAL
TREATMENT MAY BE USEFUL IN BOTH MASTECTOMY AND BREAST CONSERVATION CANDIDATES TO DEFINE
THE RELATIONSHIP OF THE TUMOR TO THE FASCIA AND ITS EXTENSION INTO PECTORALIS MAJOR, SERRATUS
ANTERIOR, AND/OR INTERCOSTAL MUSCLES
METASTATIC CANCER WHEN THE PRIMARY IS UNKNOWN AND SUSPECTED TO BE OF BREAST ORIGIN
– IN PATIENTS PRESENTING WITH METASTATIC DISEASE AND/OR AXILLARY ADENOPATHY AND NO
MAMMOGRAPHIC OR PHYSICAL FINDINGS OF PRIMARY BREAST CARCINOMA
NEOADJUVANT CHEMOTHERAPY – MR MAMMOGRAPHY MAY BE PERFORMED BEFORE, DURING AND AFTER
CHEMOTHERAPY, TO ASSESS RESPONSE TO TREATMENT AND EXTENT OF RESIDUAL DISEASE, PRIOR TO
SURGERY
RECURRENCE OF BREAST CANCER – IN WOMEN WITH A PRIOR HISTORY OF BREAST CANCER AND SUSPICION
OF RECURRENCE WHEN CLINICAL, MAMMOGRAPHIC, AND/OR SONOGRAPHIC FINDINGS ARE INCONCLUSIVE 1
POST-LUMPECTOMY WITH POSITIVE MARGINS – TO EVALUATE FOR RESIDUAL DISEASE IN PATIENTS WHOSE
PATHOLOGY SPECIMENS DEMONSTRATE CLOSE OR POSITIVE MARGINS FOR RESIDUAL DISEASE1
POST-OPERATIVE TISSUE RECONSTRUCTION – TO EVALUATE SUSPECTED CANCER RECURRENCE IN PATIENTS
WITH TISSUE TRANSFER FLAPS (RECTUS, LATISSIMUS DORSI, AND GLUTEAL)
DIFFERENTIATION OF PALPABLE MASS(ES) FROM SURGICAL SCAR TISSUE FOLLOWING BREAST SURGERY,
BREAST RECONSTRUCTION OR RADIATION THERAPY
AT 6 MONTHS FOLLOWING A PREVIOUS BREAST MRI WITH BI-RADS CATEGORY 3 FINDINGS. [ABNORMAL
FINDING REQUIRING FOLLOW-UP]
For Breast Carcinoma: Annual Screening
HIGH-RISK INDIVIDUALS WITH A BREAST CANCER GENETIC MUTATION, WHICH INCLUDE THE FOLLOWING:
●● BRCA1 AND BRCA2 – including BRCA mutation or first degree relative of BRCA carrier
●● LI-FRAUMENI SYNDROME – including first degree relatives
●● COWDEN SYNDROME – including first degree relatives
●● BANNAYAN-RILEY-RUVALCABA SYNDROME – including first degree relatives
LIFETIME RISK ~ 20-25% OR GREATER, AS DEFINED BY BRCAPRO OR OTHER MODELS THAT ARE LARGELY
DEPENDENT ON FAMILY HISTORY 18
HISTORY OF LOBULAR CARCINOMA IN SITU (LCIS) ON BIOPSY OR DUCTAL CARCINOMA IN SITU (DCIS) ON
BIOPSY3,6,16
FOR AN INDIVIDUAL WHO RECEIVED RADIATION TO CHEST BETWEEN THE AGES 10-30 YEARS 18
66
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
1,18
COMMON DIAGNOSTIC INDICATIONS FOR BREAST MRI:
For Breast Implant Rupture:
(Not requiring breast carcinoma diagnosis)
EVALUATION OF SYMPTOMATIC PATIENTS WITH BREAST IMPLANTS, FOR DETECTION OF IMPLANT RUPTURE
REFERENCE/LITERATURE REVIEW:
1.
ACR Practice Guideline for the Performance of Contrast-Enhanced Magnetic Resonance Imaging (MRI) of the Breast. ACR Website.
Revised 2008.
2.
Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic Accuracy of Mammography, Clinical Examination, US, and MR Imaging in
Preoperative Assessment of Breast Cancer. Radiology 2004; 233: 830-849.
3.
Bouwman, Afonso N. Eur J. Cancer Prev. 2008 Aug; 17 (4); 312-6.
4.
Hlawatsch A, Teifke A, Schmidt M, Thelan M. Preoperative Assessment of Breast Cancer: Sonography Versus MR Imaging. AJR
2002; 179: 1493-1501.
5.
Lee CH. Problem Solving MR Imaging of the Breast. Radiol Clin N Am. 2004; 42: 919-934.
6.
Haagensen CD, Lane N. Lattes R, Bodian C. Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer
1978;42:737-769.
7.
Huang W, Fisher PR, Dulaimy K, et al. Detection of Breast Malignancy: Diagnostic MR Protocol for Improved Specificity. Radiology
2004; 232: 585-591.
8.
Kriege M, Brekelmans CTM, Boetes C, et al. Efficacy of MRI and Mammography for Breast-Cancer Screening in Women with a
Familial or Genetic Predisposition. N Engl Med 2004; 351: 427-437.
9.
Kuhl CK. Current Status of Breast MR Imaging. Part 2. Clinical Applications. Radiology 2007; 244(3): 672-691.
10. Lee JM, Orel SG, Czerniecki BJ, et al. MRI Before Reexcision Surgery in Patients with Breast Cancer. AJR 2004; 182: 473-480.
11. Lee SG, Orel SG, Woo IJ, et al. MR Imaging Screening of the Contralateral Breast in Patients with Newly Diagnosed Breast Cancer:
Preliminary Results. Radiology. 2003; 226: 773-778.
12. Liberman L, Morris EA, Kim CM, et al. MR Imaging Findings in the Contralateral Breast of Women with Recently Diagnosed Breast
Cancer. AJR 2003; 180: 333-341.
13. Liberman L, Morris EA, Dershaw DD, et al. MR Imaging of the Ipsilateral Breast in Women with Percutaneously Proven Breast
Cancer. AJR 2003; 180: 901-910.
14. Middleton MS. Magnetic resonance evaluation of breast implants and soft-tissue silicone. Top Magn Reson Imaging 1998; 9(2): 92137.
15. Orel SG, Schnall MD. MR Imaging of the Breast for the Detection, Diagnosis, and Staging of Breast Cancer. Radiology 2001; 220:
13-30.
16. Rosen PP, Lieberman PH, Braun DW, Kosloff C, Adair F. Lobular carcinoma in situ of the breast: detailed analysis of 99 patients with
average follow-up of 24 years. Am J Surg Pathol 1978;2:225-251.
17. Schnall MD. Breast MR Imaging. Radiol Clin N Am 2003; 41: 43-50.
18. Schnall MD, Orel SG, Ed. Breast MR Imaging. Magnetic Resonance Imaging Clinics of North America. Philadelphia: W.B. Saunders
Company; May, 2001.
19. American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography. CA Cancer J Clin 2007; 57: 7589.
67
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Nuclear Cardiology
Myocardial Perfusion Imaging
CPT CODES:
78451……..Myocardial perfusion imaging, tomographic (SPECT) (including attenuation correction, qualitative or quantitative
wall motion, ejection fraction by first pass or gated technique, additional quantification, when performed); single
study, at rest or stress (exercise or pharmacologic)
78452……. Myocardial perfusion imaging, tomographic (SPECT) (including attenuation correction, qualitative or quantitative
wall motion, ejection fraction by first pass or gated technique, additional quantification, when performed);
multiple studies, at rest and/or stress (exercise or pharmacologic) and/or redistribution and/or rest
reinjection
78453……. Myocardial perfusion imaging, planar (including qualitative or quantitative wall motion, ejection fraction by first
pass or gated technique, additional quantification, when performed); single study, at rest or stress (exercise
or pharmacologic)
78454……..Myocardial perfusion imaging, planar (including qualitative or quantitative wall motion, ejection fraction by first
pass or gated technique, additional quantification, when performed); multiple studies, at rest and/or stress
(exercise or pharmacologic) and/or redistribution and/or rest reinjection
COMMONLY USED RADIOPHARMACEUTICALS
●● Thallium-201 Chloride
●● Technetium-99m Sestamibi
●● Technetium-99m Tetrofosmin
USES OF MYOCARDIAL PERFUSION IMAGING (MPI):
●● The primary use of MPI is in the diagnosis, exclusion or evaluation of obstructive Coronary Artery Disease (CAD)
●● MPI is also used for risk stratification with established coronary artery disease.
●● MPI may be used for assessment of myocardial viability in patients who have had myocardial infarction.
IMAGING CONSIDERATIONS:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to myocardial perfusion imaging
●● A recent EKG is strongly recommended, preferably within 30 days of request for a Myocardial Perfusion Imaging Exam.
The findings on the resting EKG may be important in determining the need for imaging, the selection of the appropriate
imaging protocol and may also show evidence of ischemia at rest or interval myocardial infarction.
●● Age, gender and the character of the chest pain provide useful predictors of CAD, as stratified in Table 1 below.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
Table 1*: Pre-Test Probability of Coronary Artery Disease by Age, Gender and Symptoms:
Very Low < 5%
Intermediate probability 10-90%
Low Probability < 10%
High Probability > 90%
*Reference for Table 1: Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA Guidelines for Exercise Testing:
Executive Summary, Circulation 1997; 96: 345-354.
68
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Age (yr)
Gender
30-39
Typical/Definite
Atypical/Probable
Non-Anginal
Angina Pectoris
Angina Pectoris
Chest Pain
Men
Intermediate
Women
Intermediate
Men
High
Women
Intermediate
40-49
50-59
Intermediate
Asymptomatic
Low
Very Low
Very Low
Very Low
Very Low
Intermediate
Intermediate
Low
Low
Very Low
Very Low
Men
High
Intermediate
Intermediate
Low
Women
Intermediate
Intermediate
Low
Very Low
Men
High
Intermediate
Intermediate
Low
Women
High
Intermediate
Intermediate
Low
60-69
●● Myocardial Perfusion Imaging and Stress Echocardiography may provide useful information on Coronary Heart Disease. Comparison data on Sensitivity and Specificity are provided in Table 2 below. Due to regional variation in technical expertise and interpretive proficiency, the clinician should use the diagnostic imaging modality that has been proven
most accurate in his/her practices.
Table 2**: Comparison of Non-Invasive Diagnostic Imaging
** Reference for Table 2: Barry L. Zaret and George A. Bellar. Clinical Nuclear Cardiology. 3rd Edition.
Philadelphia: Elsevier Mosby Publishers; 2005, page 539.
Nuclear Imaging
Stress Echo
Nuclear Imaging
Stress Echo
Sensitivity (%)
Sensitivity (%)
Specificity (%)
Specificity (%)
Exercise (7 studies)
83%
78%
83%
91%
Dobutamine (8 studies)
86%
80%
73%
86%
Adenosine (3 studies)
89%
63%
73%
86%
Dipyridamole (4 studies)
83%
68%
88%
89%
Several clinical indications listed for Myocardial Perfusion Imaging include standard methods of risk assessment, such
as the SCORE (Systematic Coronary Risk Evaluation) or the Framingham risk score calculation. These risk calculation
systems include consideration of the following factors:
●● Age
●● Sex
●● Abnormal Lipid Profile
●● Hypertension
●● Diabetes Mellitus
●● Cigarette Smoking
Other coronary risk factors such as family history of premature CAD, coronary artery calcification, C reactive protein levels,
obesity etc. are not included in the standard methods of risk assessment but are thought to contribute to coronary artery
disease risk.
●● Selection of the optimal diagnostic work-up for evaluation or exclusion of coronary artery disease should be made
within the context of available studies (which include treadmill stress test, stress myocardial perfusion imaging, stress
echocardiography, cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information
facilitates patient management decisions and does not merely add a new layer of testing.
●● Occasionally it may be appropriate to do a second noninvasive test for diagnosis or exclusion of CAD when the initially
selected test is technically suboptimal and the diagnosis of CAD cannot be established or excluded.
●● In order to optimize image quality, imaging protocols may need to be modified in specific patient populations. Thus,
patients who are obese may benefit from 2 day imaging protocols and/or prolonged image acquisition times. Similarly,
imaging in the prone position may improve accuracy in patients who are obese and women with high likelihood of
breast attenuation artifact. Patients whose baseline EKG demonstrates left bundle branch block, may be better suited
to pharmacologic stress imaging than to exercise stress protocols.
●● Rarely, absolute or relative contraindications to MPI will be encountered. MPI should not be used in pregnant or lactating women. Patients who are unable to remain motionless for several minutes or comprehend simple instructions are
69
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
not suitable candidates for MPI. Image quality in morbidly obese patients (BMI >40) is usually suboptimal such that
consideration should be given to other imaging modalities. If imaging studies using other radioactive tracers have
been recently performed, adequate time must elapse to allow for clearance of activity from the heart and surrounding
regions.
●● For patients who are unable to walk on a treadmill for non cardiac reasons (orthopedic limitations, claudication, neurological conditions, advanced lung disease, etc) exercise stress testing is not an option. These patients will require
pharmacological testing with echo or nuclear imaging.
●● It is anticipated that the evaluation of patients with acute chest pain will occur in the emergency room or in an inpatient
setting and MPI performed in these locations is not included in the AIM preauthorization program.
COMMON DIAGNOSTIC INDICATIONS FOR MYOCARDIAL PERFUSION IMAGING:
The following diagnostic indications for Myocardial Perfusion Imaging may be accompanied by pre-test considerations as well as supporting
clinical data and prerequisite information:
SUSPECTED CORONARY ARTERY DISEASE IN SYMPTOMATIC PATIENTS who have not had evaluation of coronary
artery disease (MPI, stress echo, coronary CTA or cardiac catheterization) within the preceding sixty (60) days:
●● Chest pain
–– With intermediate or high pretest probability of CAD (Table 1)
Or
–– With low or very low pretest probability of CAD (Table 1) and high risk of CAD (SCORE)
●● Atypical symptoms: syncope, shortness of breath (dyspnea), neck, jaw, arm, epigastric or back pain, or sweating (diaphoresis).
–– With moderate or high risk of CAD (SCORE)
●● Other symptoms; palpitation, dizziness, lightheadedness, near syncope, nausea, vomiting, anxiety, weakness, fatigue
etc
–– With high risk of CAD (SCORE)
●● Patients with any cardiac symptom who have diseases/conditions with which coronary artery disease commonly coexists such as:
–– Diabetes mellitus
Or
–– Abdominal aortic aneurysm
Or
–– Established and symptomatic peripheral vascular disease
Or
–– Prior history of cerebrovascular accident (CVA), transient ischemic attack (TIA) or carotid endarterectomy (CEA) or
high grade carotid stenosis (>70%)
Or
–– Chronic renal insufficiency or renal failure
●● Patients who have undergone cardiac transplantation
Or
●● Patients in whom a decision has been made to treat with Interleukin 2.
SUSPECTED CORONARY ARTERY DISEASE IN ASYMPTOMATIC PATIENTS
●● Patients with high-risk of CAD (SCORE) who have not had evaluation of coronary artery disease (MPI, stress echo,
coronary CTA or cardiac catheterization) within the preceding three (3) years
Or
●● Patients with moderate or high risk of CAD (SCORE) who have a high risk occupation that would endanger others in
the event of a myocardial infarction, for example: airline pilot, law-enforcement officer, firefighter, mass transit operator, bus driver) who have not had evaluation of coronary artery disease (MPI, stress echo, coronary CTA or cardiac
catheterization) within the preceding two (2) years
70
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR MYOCARDIAL PERFUSION IMAGING:
Or
●● Patients with diseases/conditions with which coronary artery disease commonly coexist and who have not had evaluation of coronary artery disease (MPI, stress echo, coronary CTA or cardiac catheterization) within the preceding two (2)
years:
–– Diabetes mellitus
Or
–– Abdominal aortic aneurysm
Or
–– Established and symptomatic peripheral vascular disease
Or
–– Prior history of cerebrovascular accident (CVA), transient ischemic attack (TIA) or carotid endarterectomy (CEA) or
high grade carotid stenosis (>70%)
Or
–– Chronic renal insufficiency or renal failure
●● Patients who have undergone cardiac transplantation and have had no evaluation for coronary artery disease within
the preceding one (1) year
ESTABLISHED CORONARY ARTERY DISEASE (DIAGNOSED BY PREVIOUS CARDIAC CATHETERIZATION, MPI, OR
STRESS ECHO) IN PATIENTS WHO HAVE NO SYMPTOMS OR STABLE SYMPTOMS
●● No evaluation of CAD (MPI, stress echo, coronary CTA or cardiac catheterization) within the preceding two (2) years
ESTABLISHED CORONARY ARTERY DISEASE (DIAGNOSED BY PREVIOUS CARDIAC CATHETERIZATION, MPI, OR
STRESS ECHO) IN PATIENTS WHO HAVE NEW OR WORSENING SYMPTOMS)
Note: if symptoms are typical of myocardial ischemia cardiac catheterization may be more appropriate than MPI
PATIENTS WITH NEW ONSET ARRHYTHMIAS (PATIENT CAN BE SYMPTOMATIC OR ASYMPTOMATIC)
–– This guideline applies to patients with suspected or established CAD
●● Patients with ventricular tachycardia
Or
●● Patients with atrial fibrillation or flutter and high or moderate risk of CAD (SCORE)
Or
●● Patients with atrial fibrillation or flutter and established CAD
PATIENTS WITH NEW ONSET CONGESTIVE HEART FAILURE OR RECENTLY RECOGNIZED LEFT VENTRICULAR
SYSTOLIC DYSFUNCTION (PATIENT CAN BE SYMPTOMATIC OR ASYMPTOMATIC)
–– This guideline applies to patients with suspected or established CAD
–– For patients in this category whose CAD risk (SCORE) is high, cardiac catheterization may be more appropriate than
noninvasive evaluation
●● Provided that CAD has not been excluded as the cause of LV dysfunction/ CHF by any of the following tests: MPI,
stress echo, coronary CTA or cardiac catheterization
PATIENTS WITH ABNORMAL EXERCISE TREADMILL TEST (PERFORMED WITHOUT IMAGING)
–– This guideline applies to patients with suspected or established CAD
●● Abnormal findings on an exercise treadmill test include (chest pain, ST segment change, abnormal BP response or
complex ventricular arrhythmias)
PATIENTS WHO HAVE UNDERGONE RECENT (WITHIN THE PAST 60 DAYS) STRESS ECHOCARDIOGRAPHY
●● When the stress echocardiogram is technically suboptimal, technically limited, inconclusive, indeterminate, or equivocal, such that myocardial ischemia cannot be adequately excluded.
–– It is not appropriate to perform MPI on patients who have had a recent normal or abnormal stress echocardiogram
–– A stress echocardiogram is deemed to be abnormal when there are echocardiographic abnormalities. Electrocardiographic abnormalities without echocardiographic evidence of ischemia are considered to be normal studies.
71
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR MYOCARDIAL PERFUSION IMAGING:
PATIENTS WITH ABNORMAL FINDINGS ON CARDIAC CT / CORONARY CTA
Symptomatic Patients:
●● With coronary artery calcium score > 400 Agatston units
Or
●● Intermediate severity coronary stenosis on coronary CTA
Note: If symptoms are typical of myocardial ischemia cardiac catheterization may be more appropriate than MPI
Asymptomatic patients who have not had MPI, stress echo or cardiac catheterization within the preceding two (2)
years:
●● With coronary artery calcium score > 400 Agatston units
Or
●● Intermediate severity coronary stenosis coronary CTA
PATIENTS WITH ABNORMAL FINDINGS ON CARDIAC CATHETERIZATION
●● To determine flow limiting significance of intermediate coronary stenosis
MYOCARDIAL VIABILITY EVALUATION
MPI may be used to evaluate myocardial viability in patients who
●● Have established coronary artery disease
And
●● Have left ventricular systolic dysfunction
And
●● Are candidates for revascularization
And
●● Do not have evidence of viability using other imaging modalities (for example: Stress Echo, MRI, PET)
PREOPERATIVE CARDIAC EVALUATION OF PATIENTS UNDERGOING NON-CARDIAC SURGERY
–– This guideline applies to patients undergoing non-emergency surgery.
–– It is assumed that those who require emergency surgery will undergo inpatient preoperative evaluation.
●● Patients with active cardiac conditions such as unstable coronary syndromes (unstable angina), decompensated
heart failure (NYHA function of class IV, worsening or new onset heart failure), significant arrhythmias (third degree
AV block Mobitz II AV block, uncontrolled supraventricular arrhythmia, symptomatic ventricular arrhythmias, ventricular
tachycardia), symptomatic bradycardia or severe stenotic valvular lesions. It is recommended that these conditions be
evaluated and managed per ACC/AHA guidelines prior to considering elective surgery. That evaluation may include
MPI.
Low-risk surgery (endoscopic procedures, superficial procedures, cataract surgery, breast surgery, ambulatory surgery)
●● Provided that there are no active cardiac conditions (as outlined above), MPI prior to low-risk surgery is considered not
medically necessary
Intermediate risk surgery (intraperitoneal and intrathoracic surgery, carotid endarterectomy, head and neck surgery,
orthopedic surgery, prostate surgery, gastric bypass surgery) or High-risk surgery (aortic and other major vascular surgery,
peripheral vascular surgery)
●● In patients who are unable to walk on a treadmill
And
●● The patient has at least one of the following clinical risk factors:
–– CAD including history of MI or Q waves on EKG, revascularization or angina
Or
–– Compensated heart failure or prior history of heart failure (CHF)
Or
72
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR MYOCARDIAL PERFUSION IMAGING:
–– Diabetes mellitus
Or
–– Chronic renal insufficiency or renal failure
Or
–– History of cerebrovascular disease (TIA, CVA or documented carotid stenosis requiring carotid endarterectomy)
ABNORMAL EKG FINDINGS
Some patients have resting EKG findings which would render the interpretation of an exercise EKG test difficult or
impossible. In these situations patients who, in the absence of the EKG abnormality, would not meet approval criteria for
MPI, may be approved for MPI because exercise EKG testing without imaging would provide little clinically useful data.
Patients with the following resting EKG abnormalities are included this category:
●● Left bundle branch block
Or
●● Ventricular paced rhythm
Or
●● Left ventricular hypertrophy with repolarization abnormality
Or
●● Digoxin effect
Or
●● 1 mm ST depression or more on a recent EKG (within the past 30 days)
Or
●● Pre-excitation syndromes (E.G. WPW syndrome)
UNABLE TO WALK ON A TREADMILL FOR REASONS OTHER THAN OBESITY
●● Including but not limited to orthopedic impairment, claudication, neurological conditions, advanced lung disease etc.
●● In these situations patients may not achieve an adequate exercise level to yield clinically useful information.
●● Pharmacological stress testing should be performed and therefore echo or nuclear imaging is appropriate.
REFERENCE/LITERATURE REVIEW:
1.
Hendel et al. American College of Cardiology Foundation. ACCF/ASNC/ACR/ASE/SCCT/SNM 2009 Appropriate Use Criteria for
Cardiac Radionuclide Imaging. J Am Coll Cardiol 2009; 53(23):2201-29.
2.
Balady, G., Larson, M., Vasan, R., Usefulness of Exercise Testing in the Prediction of Coronary Disease Risk Among Asymptomatic
Persons as a Function of the Framingham Risk Score. Circulation 2004:110:1920-1925
3.
Barry L. Zaret and George A. Bellar. Clinical Nuclear Cardiology. 3rd Edition. Philadelphia: Elsevier Mosby Publishers; 2005.
4.
Crean A., Dutka D. Coulden, R., Cardiac Imaging Using Nuclear Medicine and Positron Emission Tomography. Radiol Clin N Am
2004;42:619-634
5.
Elhendy A., O’Leary E., Xie F, et al. Comparative Accuracy of Real-Time Myocardial Contrast Perfusion Imaging and Wall Motion
Analysis During Dobutamine Stress Echocardiography for the Diagnosis or Coronary Artery Disease. J Am Coll Cardiol 2004:44:21852191
6.
Fleischmann K., Hunink M., Kuntz K, et al. Exercise Echocardiography or Exercise SPECT Imaging? JAMA 1998;280:913-920
7.
Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA/ASNC Guideline Update for Exercise Testing: A Report of the American College of
Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing).2002
8.
Hachamovitch R, Hayes, Friedman J, et al. Determinants of Risk and its Temporal Variation in Patients with Normal Stress Myocardial
Perfusion Scans. J Am Coll Cardiol 2003;41:1329-1340
9.
Hachamovitch R, Hayes S, Friedman, J, et al. Stress Myocardial Perfusion Single-Photon Emission Computed Tomography Is
Clinically Effective and Cost Effective in Risk Stratification of Patients with a High Likeihood or Coronary Artery Disease (CAD) But No
Known CAD. J Am Coll Cardiol 2004;43:200-208
73
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
10. Conroy R et al, Estimation of 10 year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24:9871003
11. Klocke FJ, Baird MG, Bateman TM, et al. ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging: A Report
of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee To
Revise the 1995 Guideline for the Clinical Use of Cardiac Radionuclide Imaging) 2003
12. Maganti K, Rigolin V, Stress Echocardiography Versus Myocardial SPECT for Risk Stratification of Patients with Coronary Artery
Disease. Curr Opin Cardiol 2003;18:486-493
13. Marwick T, Williams MJ, Haluska B, et al. Exercise Echocardiography Is an Accurate and Cost-Efficient Technique for Detection of
Coronary Artery Disease in Women. J Am Coll Cardiol 1995;26:355-341
14. Olmos L, Dakik H, Gordon R, et al. Long-Term Prognostic Value of Exercise Echocardiography Compared with Exercise 201Tl, ECG,
and Clinical Variables in Patients Evaluated for Coronary Artery Disease. Circulation 1998; 98: 2679-2686
15. Poornima I, Miller T, Christian T, et al. Utility of Myocardial Perfusion Imaging in Patients with Low-Risk Treadmill Scores. J Am Coll
cardiol 2004;43:194-199
16. Schinkel, AFL, Bax, JJ, Geleijnse, ML, Noninvasive Evaluation of Ischaemic Heart Disease: Myocardial Perfusion Imaging or Stress
Echocardiography? European Heart Journal 2003;24:789-800
17. Senior R, Monaghan M, Becher H, et al. Stress Echocardiography for the Diagnosis and Risk Stratification of Patients with Suspected
or known Coronary Artery Disease: A Critical Appraisal. Supported by the British Society of Echocardiography. Heart 2005;91:427-436
18. Strauss HW, Miller DD, Wittry MD, Society of Nuclear Medicine Procedure Guideline for Myocardial Perfusion Imaging. Society of
Nuclear Medicine Procedure Guidelines Manual. 2002 v. 3
19. Travin, Mark I, Bergmann S. Assessment of Myocardial Viability. Semin Nucl Med 2005;36:2-16
20. Yao SS, Qureshi E, Sherrid, M, et al. Practical Applications in Stress Echocardiography: Risk Stratification and Prognosis in Patients
with Known or Suspected Ischemic Heart Disease. J Am Coll Cardiol 2003;42:1084-1090
21. Grundy SM, Pasternak R, et al. Assessment of Cardiovascular Risk Using Multiple-Risk-Factor Assessment Equations: A Statement
for Healthcare Professionals from the Ametican Heart Association and the American College of Cardiology. Circulation. 1999;
100:1481-1492
22. Fleisher et al. ACC/AHA 2007 Guidelines on Perioperative Cardiovascular Evaluation and Care for Noncardiac Surgery. Executive
Summary. JACC, 2007; 50:1707-32
23. Anderson J et al. ACC/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial
Infarction. J Am Coll Cardiol, 2007; 50:1-157
24. Antman E, et al. ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction. J Am Coll Cardiol
2004;44:671-719
25. Mieres J, et al. Rule of Noninvasive Testing in the Clinical Evaluation of Women with Suspected Coronary Artery Disease. Circulation.
2005; 111;682-696
26. Zellweger M, et al. When to Stress Patients after Coronary Artery Bypass Surgery. J Am Coll Cardiol, 2001; 37:144-152
74
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Nuclear Cardiology
Cardiac Blood Pool Imaging
Blood Pool Imaging includes MUGA
(Multi-Gated Acquisition) & First Pass
Radionuclide Ventriculography
CPT CODES:
78472.................Gated equilibrium; planar, single study, wall motion plus ejection fraction
78473.................Gated equilibrium; planar, multiple studies, wall motion study plus ejection fraction
78481.................First pass technique; single study, wall motion study plus ejection fraction
78483.................First pass technique; multiple studies, wall motion study plus ejection fraction
78494.................Gated equilibrium: SPECT, at rest, wall motion study plus ejection fraction
78496.................This code is an add-on code to be used in conjunction with 78472. As such, this code does not require
separate review
COMMONLY USED RADIOPHARMACEUTICALS:
●● Technetium-99m
IMAGING CONSIDERATIONS:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to cardiac blood pool imaging.
●● Primarily used to evaluate global and regional ventricular function and to determine ejection fraction(s)
●● May be used in the evaluation of intracardiac shunting or diastolic function
●● First-pass studies display initial transit of the radiotracer bolus passing through the cardiopulmonary and central systemic circulations. Right and/or left ventricular function may be evaluated.
●● Equilibrium studies display gated data (MUGA) which is acquired over many cardiac cycles, using a blood pool radiotracer. Both right and left ventricles may be evaluated
●● First pass studies should be acquired on a high count-rate camera in order that images have sufficient temporal resolution. High count-rate cameras are not required for MUGA.
●● Studies may be performed at rest and/or during exercise.
●● MUGA studies are technically more difficult in patients with irregular heart rhythms. Imaging times may have to be
prolonged to acquire adequate data.
●● Some disease states and medications interfere with red blood cell labeling. These should be taken into account when
selecting the optimal imaging modality.
●● Selection of the optimal diagnostic imaging for cardiac evaluation should be made within the context of other available
studies (which include treadmill stress test, stress myocardial perfusion imaging, stress echocardiography, cardiac MRI,
cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information facilitates patient
management decisions and does not merely add a new layer of testing.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
75
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC BLOOD POOL IMAGING:
The following diagnostic indications for Cardiac Blood Pool Imaging are accompanied by pre-test considerations as well as supporting clinical
data and prerequisite information:
EVALUATION OF LEFT VENTRICULAR FUNCTION
Note: It is assumed that left ventricular function will be evaluated using a single imaging modality. Thus, if left ventricular
function has been evaluated recently by echocardiography reevaluation using blood pool imaging is not necessary except in
the situations outlined below:
●● Initial evaluation of known or suspected heart failure (systolic or diastolic)
Or
●● Evaluation of patients with resting EKG abnormalities (LBBB, RBBB with left anterior or posterior hemiblock, RVH, Q
waves suggestive of prior infarction)
Or
●● Reevaluation of patients with known heart failure (systolic or diastolic) in a patient with the change in clinical status
Or
●● Reevaluation of asymptomatic, clinically stable patients with left ventricular systolic dysfunction (Left Ventricular ejection fraction <55%) at yearly intervals.
Or
●● Baseline and serial reevaluation in patients undergoing, planning to undergo or who have undergone therapy with cardiotoxic agents (examples including but not limited to some chemotherapeutic agents for cancer, novantrone {mitoxanthone} for multiple sclerosis)
Or
●● Screening study for left ventricular dysfunction every two (2) years in clinically stable and first-degree relatives of patients with inherited cardiomyopathy
Or
●● Evaluation of suspected restrictive, infiltrative or genetic cardiomyopathy
Or
●● Evaluation on patients with diagnosed or suspected myocarditis
Or
●● Evaluation for dyssynchrony in a patient being considered for cardiac resynchronization therapy (CRT)
Or
●● Evaluation of a patient being treated with cardiac resynchronization therapy (CRT) with persistent or new symptoms
with a view to device optimization
Or
●● Evaluation of patients being considered for implantation of AICD
Or
●● When left ventricular dysfunction is suggested by other testing (chest x-ray, elevated BNP, abnormal baseline scout
imaging for stress echocardiography).
–– If left ventricular function has been evaluated using another modality, MUGA/First Pass is not necessary in this situation.
Or
●● Where a significant discrepancy (more than would be expected for the range of error of the methods) exists in the
evaluation of left ventricular dysfunction by two other imaging modalities, MUGA/First Pass can be used as an arbiter
Or
●● Pre and post cardiac transplantation
EVALUATION OF RIGHT VENTRICULAR FUNCTION
●● In patients suspected of having right ventricular dysfunction based on history and/or physical examination
Or
●● Reevaluation of patients with established right ventricular dysfunction in patients with a change in clinical status
Or
76
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC BLOOD POOL IMAGING:
●● Evaluation of right ventricular function in patients with pulmonary hypertension
Or
●● Evaluation of right ventricular function in patients with diagnoses known to cause right ventricular dysfunction including
but not limited to coronary artery disease, valvular heart disease, left ventricular dysfunction, congenital heart disease,
morbid obesity, sleep apnea syndrome, advanced lung disease, pulmonary thromboembolic disease, and right ventricular dysplasia
Or
●● Evaluation of right ventricular function in patients with myocardial infarction where right ventricular involvement is suspected
Or
●● Evaluation of right ventricular function in patients who are being evaluated for or have undergone cardiac or lung transplantation
CORONARY ARTERY DISEASE (CAD) {APPLIES TO PATIENTS WITH ESTABLISHED CORONARY ARTERY DISEASE}
●● Recent myocardial infarction (< 3 weeks) for initial assessment of LV function
–– This study is usually done prior to discharge
–– Not required if left ventricular function has been assessed using another imaging modality
Or
●● Prior myocardial infarction for reevaluation of ventricular function during recovery phase {up to six (6) months following
myocardial infarction}
Or
●● Prior myocardial infarction for reevaluation of ventricular function after the recovery phase {more than six (6)months} in
patients who develop new symptoms or signs suggestive of heart failure
Or
●● Prior myocardial infarction for reevaluation of LV function in patients being considered for AICD or cardiac resynchronization therapy (CRT)
Or
●● Patients who have undergone revascularization may reasonably undergo blood pool imaging for evaluation of post
revascularization left ventricular function even if clinically stable.
–– Limited to one study within 12 months of revascularization (usually performed between 3 and 12 months following a
revascularization procedure)
CONGENITAL HEART DISEASE
●● For detection and localization of shunts {Ventricular Septal Defect (VSD), Atrial Septal Defect (ASD), Patent Ductus
Arteriosus (PDA), Anomalous Pulmonary Venous Drainage}
–– Echocardiography is generally considered to be a preferable imaging modality in this clinical situation
●● For evaluation of RV and/or LV function in a patient with established complex congenital heart disease
VALVULAR HEART DISEASE
●● Established valvular heart disease in patients with new or worsening signs or symptoms
–– In patients with suspected valvular heart disease echocardiography is the appropriate initial imaging modality
Or
●● Patients with severe asymptomatic aortic regurgitation to assist in optimal timing of aortic valve replacement
–– Rest and stress studies are appropriate in this clinical situation
REFERENCE/LITERATURE REVIEW:
1.
DePuey et al. Imaging Guidelines for Nuclear Cardiology Procedures - A Report of the American Society of Nuclear Cardiology
Quality Assurance Committee. J Nucl Cardiol 2006;13:e21-171
2.
Barry L. Zaret and George A. Bellar. Clinical Nuclear Cardiology. 3rd Edition. Philadelphia: Elsevier Mosby Publishers; 2005.
3.
Gurusher Singh P, Diwakar J. Monitoring Chemotherapy Induced Cardiotoxicity: Role of Cardiac Nuclear Imaging. J Nucl Cardiol
77
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
2006;13:415-26
4.
DePuey EG et al. Non-perfusion Applications in Nuclear Cardiology. J Nucl Cardiol 1998;5:218-31
5.
Williams KA. Measurement of Ventricular Function with Scintigraphic Techniques: Part 1 - Imaging Hardware, Radiopharmaceuticals,
and First Pass Radionuclide Angiography. J Nucl Cardiol 2005;12:86-95
6.
Williams KA. A Historical Perspective on Measurement of Ventricular Function with Scintigraphic Techniques: Part II - Ventricular
Function with Gated Techniques for Blood Pool and Perfusion Imaging. J Nucl Cardiol 2005;12:208-15
7.
Vallejo E et al. Assessment of Left Ventricular Ejection Fraction with Quantitative Gated SPECT: Accuracy and Correlation with First
Pass Radionuclide Angiography. J Nucl Cardiol 2000;7:461-70
8.
Botvinick EH. Scintigraphic Blood Pool and Phase Image Analysis: The Optimal Tool for Evaluation of Resynchronization Therapy. J
Nucl Cardiol 2003;10:424-28
78
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Nuclear Cardiology
Infarct Imaging
CPT CODES:
78466.................Planar, infarct avid; qualitative or quantitative
78468.................Planar, infarct avid; with ejection fraction by first pass technique
78469.................SPECT, infarct avid; with or without quantification
RADIOPHARMACEUTICALS:
●● Technetium-99m Pyrophosphate
IMAGING CONSIDERATIONS:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to infarct imaging
●● Infarct imaging is typically optimal at 48-72 hours post-event 1
●● False positive findings have been attributed to the following conditions: 1
–– Amyloidosis
–– Cardiac valvular and pericardial calcification
–– Cardiomyopathy
–– Doxorubicin (Adriamycin) Treatment
–– Myocarditis and Pericarditis
–– Prior myocardial infarction, that remains persistently positive
–– Radiation Therapy
–– Ventricular aneurysm
●● Selection of the optimal diagnostic imaging for cardiac evaluation should be made within the context of other available
studies (which include treadmill stress test, stress myocardial perfusion imaging, stress echocardiography, cardiac MRI,
cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information facilitates patient
management decisions and does not merely add a new layer of testing.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR INFARCT IMAGING:
The following diagnostic indications for Infarct Imaging are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
SUSPECTED ACUTE MYOCARDIAL INFARCTION, WHICH LIKELY OCCURRED WITHIN THE LAST 7 DAYS
●● Including interrogation of the following:
–– Negative (past expected peak) cardiac enzymes
–– Abnormal baseline ECG, due to prior myocardial infarction
–– Left bundle branch block
DIFFERENTIATION OF SUBENDOCARDIAL (NON-Q-WAVE) INFARCTION VERSUS ISCHEMIA
POST-CARDIOVERSION
FOLLOWING SIGNIFICANT CHEST TRAUMA OR MAJOR SURGICAL PROCEDURE, WITH CHEST PAIN
79
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
1.
Thrall JH, Ziessman HA. Nuclear Medicine. The Requisites. 2nd Edition. St. Louis, Missouri: Elsevier Mosby Publishers, 2001,
pages 105-109.
2.
Kim SC, Adams SC, Hendel RC. Role of Nuclear Cardiology in the Evaluation of Acute Coronary Syndromes. Annals of Emerg Med
1997; 30 (2): 210-218.
3.
Zaret, Barry L. and Bellar, George A. Clinical Nuclear Cardiology. 3rd Edition. Philadelphia: Elsevier Mosby; 2005.
80
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Cardiac Echocardiography
Stress Echocardiography (SE)
CPT CODES:
93350.................Echocardiography, transthoracic during rest and cardiovascular stress test using treadmill, bicycle exercise
and/or pharmacologically induced stress, with interpretation and report;
93351.................Echocardiography, transthoracic during rest and cardiovascular stress test using treadmill, bicycle
exercise and/or pharmacologically induced stress, with interpretation and report; including performance of
continuous electrocardiographic monitoring with physician supervision
93320.................This code is an add-on code to be used in conjunction with 93350, 93351. As such, this code does not
require separate review
93321.................This code is an add-on code to be used in conjunction with 93350, 93351. As such, this code does not
require separate review
93325.................This code is an add-on code to be used in conjunction with 93350, 93351. As such, this code does not
require separate review
93352.................This code is an add-on code to be used in conjunction with 93350, 93351. As such, this code does not
require separate review
USES OF STRESS ECHOCARDIOGRAPHY (SE):
●● The primary use of SE is in the diagnosis or exclusion of obstructive Coronary Artery Disease (CAD).
●● SE is also used for risk stratification with established coronary artery disease.
●● SE may be used for assessment of myocardial viability in patients who have had myocardial infarction.
●● SE is occasionally used in the evaluation of valvular heart disease, and for the detection and management of occult
pulmonary hypertension.
IMAGING CONSIDERATIONS:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to stress echocardiography.
●● A recent EKG is strongly recommended, preferably within 7 days of request for Stress Echocardiogram. The findings
on the resting EKG may help to determine the need for imaging and may also show evidence of ischemia at rest or
interval myocardial infarction.
●● Unlike MPI, stress echocardiography does not expose the patient to ionizing radiation
●● Age, gender and the character of the chest pain provide useful predictors of CAD, as stratified in Table 1 below.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
Table 1*: Pre-Test Probability of Coronary Artery Disease by Age, Gender and Symptoms:
Very Low < 5%
Intermediate probability 10-90%
Low Probability < 10%
High Probability > 90%
*Reference for Table 1: Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA Guidelines for Exercise Testing:
Executive Summary, Circulation 1997; 96: 345-354.
81
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Age (yr)
Gender
30-39
Typical/Definite
Atypical/Probable
Non-Anginal
Angina Pectoris
Angina Pectoris
Chest Pain
Men
Intermediate
Women
Intermediate
Men
High
Women
Intermediate
40-49
50-59
Intermediate
Asymptomatic
Low
Very Low
Very Low
Very Low
Very Low
Intermediate
Intermediate
Low
Low
Very Low
Very Low
Men
High
Intermediate
Intermediate
Low
Women
Intermediate
Intermediate
Low
Very Low
Men
High
Intermediate
Intermediate
Low
Women
High
Intermediate
Intermediate
Low
60-69
●● Stress Echocardiography and Myocardial Perfusion Imaging (MPI) may provide useful information on Coronary Heart
Disease. Comparison data on Sensitivity and Specificity is provided in Table 2 below. Due to regional variation in technical expertise and interpretive proficiency, clinicians should use the diagnostic imaging modality that has been proven
most accurate in their practices.
Table 2**: Comparison of Non-Invasive Diagnostic Imaging
** Reference for Table 2: Barry L. Zaret and George A. Bellar. Clinical Nuclear Cardiology. 3rd Edition.
Philadelphia: Elsevier Mosby Publishers; 2005, page 539.
Nuclear Imaging
Stress Echo
Nuclear Imaging
Stress Echo
Sensitivity (%)
Sensitivity (%)
Specificity (%)
Specificity (%)
Exercise (7 studies)
83%
78%
83%
91%
Dobutamine (8 studies)
86%
80%
73%
86%
Adenosine (3 studies)
89%
63%
73%
86%
Dipyridamole (4 studies)
83%
68%
88%
89%
Several clinical indications listed for SE include standard methods of risk assessment such as the SCORE (Systematic
Coronary Risk Evaluation ). These risk calculation systems include consideration of the following factors:
●● Age
●● Sex
●● Abnormal Lipid Profile
●● Hypertension
●● Diabetes Mellitus
●● Cigarette Smoking
Other coronary risk factors such as family history of premature CAD, coronary artery calcification, C reactive protein levels,
obesity etc. are not included in the standard methods of risk assessment but are thought to contribute to coronary artery
disease risk.
●● Selection of the optimal diagnostic work-up for evaluation or exclusion of coronary artery disease should be made
within the context of available studies (which include treadmill stress test, stress myocardial perfusion imaging, stress
echocardiography, cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information
facilitates patient management decisions and does not merely add a new layer of testing.
●● Occasionally it may be appropriate to do a second noninvasive test for diagnosis or exclusion of CAD when the initially
selected test is technically suboptimal and the diagnosis of CAD cannot be established or excluded.
●● SE may be performed using either physical or pharmacologic stress. If physical stress is used, the choice rests
between treadmill exercise test and bicycle exercise test. While it is possible to acquire images during exercise in
patients undergoing bicycle exercise testing, image quality during treadmill exercise is suboptimal. In this situation, the
“stress” images are actually acquired immediately following peak exercise. Thus, the laboratory must be set up in a
manner that allows imaging to be completed within 45 to 60 seconds after peak exercise.
●● Some patients may not be suitable candidates for SE. Image quality is frequently suboptimal in morbidly obese patients and in those with advanced lung disease. If image quality at rest is inadequate, the test should be canceled and
82
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
consideration given to an alternative imaging modality.
●● For patients who are unable to walk on a treadmill for non cardiac reasons (orthopedic limitations, claudication, neurological conditions, advanced lung disease, etc) exercise stress testing is not an option. These patients will require
pharmacological testing with echo or nuclear imaging.
●● It is anticipated that the evaluation of patients with acute chest pain will occur in the emergency room or in an inpatient
setting and stress echo performed in these locations is not included in the AIM preauthorization program.
COMMON DIAGNOSTIC INDICATIONS FOR STRESS ECHOCARDIOGRAPHY (SE):
The following diagnostic indications for stress echocardiography may be accompanied by pre-test considerations as well as supporting
clinical data and prerequisite information:
SUSPECTED CORONARY ARTERY DISEASE IN ASYMPTOMATIC PATIENTS
●● Patients with high-risk of CAD (SCORE) who have not had evaluation of coronary artery disease (MPI, stress echo,
coronary CTA or cardiac catheterization) within the preceding three (3) years
Or
●● Patients with moderate or high risk of CAD (SCORE) who have a high risk occupation that would endanger others in
the event of a myocardial infarction (for example: airline pilot, law-enforcement officer, firefighter, mass transit operator, bus driver) who have not had evaluation of coronary artery disease (MPI, stress echo, coronary CTA or cardiac
catheterization) within the preceding two (2) years
Or
●● Patients with diseases/conditions with which coronary artery disease commonly coexists and who have not had evaluation of coronary artery disease (MPI, stress echo, coronary CTA or cardiac catheterization) within the preceding two (2)
years:
–– Diabetes mellitus
Or
–– Abdominal aortic aneurysm
Or
–– Established and symptomatic peripheral vascular disease
Or
–– Prior history of cerebrovascular accident (CVA), transient ischemic attack (TIA) or carotid endarterectomy (CEA) or
high grade carotid stenosis (>70%)
Or
–– Chronic renal insufficiency
●● Patients who have undergone cardiac transplantation and have had no evaluation for coronary artery disease within
the preceding one (1) year
SUSPECTED CORONARY ARTERY DISEASE IN SYMPTOMATIC PATIENTS who have not had evaluation of coronary
artery disease (MPI, stress echo, coronary CTA or cardiac catheterization) within the preceding sixty (60) days:
●● Chest pain
–– With intermediate or high pretest probability of CAD (Table 1)
Or
–– With low or very low pretest probability of CAD (Table 1) and high risk of CAD (SCORE)
●● Atypical symptoms: syncope, shortness of breath (dyspnea), neck, jaw, arm, epigastric or back pain, sweating (diaphoresis).
–– With moderate or high risk of CAD (SCORE)
●● Other symptoms; palpitation, dizziness, lightheadedness, near syncope, nausea, vomiting, anxiety, weakness, fatigue
etc
–– With high risk of CAD (SCORE)
●● Patients with any cardiac symptom who have diseases/conditions with which coronary artery disease commonly coexists such as:
–– Diabetes mellitus
83
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR STRESS ECHOCARDIOGRAPHY (SE):
Or
–– Abdominal aortic aneurysm
Or
–– Established and symptomatic peripheral vascular disease
Or
–– Prior history of cerebrovascular accident (CVA), transient ischemic attack (TIA) or carotid endarterectomy (CEA) or
high grade carotid stenosis (>70%)
Or
–– Chronic renal insufficiency or renal failure
●● Patients who have undergone cardiac transplantation
ESTABLISHED CORONARY ARTERY DISEASE (DIAGNOSED BY PREVIOUS CARDIAC CATHETERIZATION, MPI, OR
STRESS ECHO) IN PATIENTS WHO HAVE NO SYMPTOMS OR STABLE SYMPTOMS)
●● No evaluation of CAD (MPI, stress echo, coronary CTA or cardiac catheterization) within the preceding two (2) years
ESTABLISHED CORONARY ARTERY DISEASE (DIAGNOSED BY PREVIOUS CARDIAC CATHETERIZATION, MPI, OR
STRESS ECHO) IN PATIENTS WHO HAVE NEW OR WORSENING SYMPTOMS
Note: If symptoms are typical of myocardial ischemia cardiac catheterization may be more appropriate than MPI
PATIENTS WITH NEW ONSET ARRHYTHMIAS (PATIENT CAN BE SYMPTOMATIC OR ASYMPTOMATIC)
●● Patients with ventricular tachycardia
Or
●● Patients with atrial fibrillation or flutter and high or moderate risk of CAD (SCORE)
Or
●● Patients with atrial fibrillation or flutter and established CAD
PATIENTS WITH NEW ONSET CONGESTIVE HEART FAILURE OR RECENTLY RECOGNIZED LEFT VENTRICULAR
SYSTOLIC DYSFUNCTION (PATIENT CAN BE SYMPTOMATIC OR ASYMPTOMATIC)
–– This guideline applies to patients with suspected or established CAD
●● Provided that CAD has not been excluded as the cause of LV dysfunction/ CHF by any of the following tests: MPI,
stress echo, coronary CTA or cardiac catheterization
PATIENTS WITH ABNORMAL EXERCISE TREADMILL TEST (PERFORMED WITHOUT IMAGING)
–– This guideline applies to patients with suspected or established CAD
●● Abnormal findings on an exercise treadmill test include (chest pain, ST segment change, abnormal BP response or
complex ventricular arrhythmias)
PATIENTS WHO HAVE UNDERGONE RECENT (WITHIN THE PAST 60 DAYS) MYOCARDIAL PERFUSION IMAGING
(MPI)
●● When the MPI is technically suboptimal, technically limited, inconclusive, indeterminate, or equivocal, such that myocardial ischemia cannot be adequately excluded.
–– It is not appropriate to perform SE on patients who have had a recent normal or abnormal MPI
–– An MPI is deemed to be abnormal when there are abnormalities on the nuclear imaging portion of the test. Electrocardiographic abnormalities without evidence of ischemia on the nuclear imaging portion of the test are considered
to be normal studies.
PATIENTS WITH ABNORMAL FINDINGS ON CARDIAC CT / CORONARY CTA
Symptomatic Patients:
●● With coronary artery calcium score > 400 Agatston units
Or
●● Intermediate severity coronary stenosis on coronary CTA
Note: If symptoms are typical of myocardial ischemia cardiac catheterization may be more appropriate than Stress Echo
84
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR STRESS ECHOCARDIOGRAPHY (SE):
Asymptomatic patients who have not had MPI, stress echo or cardiac catheterization within the preceding two (2)
years:
●● With coronary artery calcium score > 400 Agatston units
Or
●● Intermediate severity coronary stenosis coronary CTA
PATIENTS WITH ABNORMAL FINDINGS ON CARDIAC CATHETERIZATION
●● To determine flow limiting significance of intermediate coronary stenosis
MYOCARDIAL VIABILITY EVALUATION
Stress Echo may be used to evaluate myocardial viability in patients who
●● Have established coronary artery disease
And
●● Have left ventricular systolic dysfunction
And
●● Are candidates for revascularization
And
●● Do not have evidence of viability using other imaging modalities (for example: MPI, MRI, PET)
Note: Pharmacologic stress echocardiography with a drug such as dobutamine that increases myocardial contractility is the
preferred form
PREOPERATIVE CARDIAC EVALUATION OF PATIENTS UNDERGOING NON-CARDIAC SURGERY
–– This guideline applies to patients undergoing non-emergency surgery.
–– It is assumed that those who require emergency surgery will undergo inpatient preoperative evaluation.
●● Patients with active cardiac conditions such as unstable coronary syndromes (unstable angina), decompensated
heart failure (NYHA function of class IV, worsening or new onset heart failure), significant arrhythmias (third degree
AV block Mobitz II AV block, uncontrolled supraventricular arrhythmia, symptomatic ventricular arrhythmias, ventricular
tachycardia), symptomatic bradycardia or severe stenotic valvular lesions. It is recommended that these conditions be
evaluated and managed per ACC/AHA guidelines prior to considering elective surgery. That evaluation may include
MPI.
Low-risk surgery (endoscopic procedures, superficial procedures, cataract surgery, breast surgery, ambulatory surgery)
●● Provided that there are no active cardiac conditions (as outlined above) MPI prior to low-risk surgery is considered not
medically necessary
Intermediate risk surgery (intraperitoneal and intrathoracic surgery, carotid endarterectomy, head and neck surgery,
orthopedic surgery, prostate surgery, gastric bypass surgery) or High-risk surgery (aortic and other major vascular surgery,
peripheral vascular surgery)
●● In patients who are unable to walk on a treadmill
And
●● The patient has at least one of the following clinical risk factors
–– CAD including history of MI or Q waves on EKG, revascularization or angina
Or
–– Compensated heart failure or prior history of heart failure (CHF)
Or
–– Diabetes mellitus
Or
–– Chronic renal insufficiency or renal failure
Or
–– History of cerebrovascular disease (TIA, CVA or documented carotid stenosis requiring carotid endarterectomy)
85
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR STRESS ECHOCARDIOGRAPHY (SE):
VALVULAR HEART DISEASE
●● Mitral Valve Disease
–– Patients who have symptoms out of proportion to the degree of mitral regurgitation documented on resting echocardiography
Or
–– For timing of valve replacement or repair in patients with 3+ mitral regurgitation (or more) who are asymptomatic
and do not meet other criteria for surgical intervention
Or
–– For patients with apparently mild mitral stenosis on TTE whose symptoms suggest a hgher degree of stenosis
●● Aortic Valve Disease
–– Patients who have apparently severe aortic stenosis and left ventricular systolic dysfunction in whom calculation
of the degree of stenosis may be affected by the low flow state
Or
–– For timing of surgery in asymptomatic severe aortic regurgitation when LV size and function are normal
PULMONARY HYPERTENSION
●● For evaluation or exclusion of exercise induced pulmonary hypertension
Or
●● For evaluation of right and/or left ventricular function during exercise in patients with established pulmonary hypertension
HYPERTROPHIC OBSTRUCTIVE CARDIOMYOPATHY
●● For the evaluation of dynamic changes during exercise in patients with an established diagnosis of Hypertrophic Obstructive Cardiomyopathy
ABNORMAL EKG FINDINGS
Some patients have resting EKG findings which would render the interpretation of an exercise EKG test difficult or
impossible. In these situations patients who, in the absence of the EKG abnormality, would not meet approval criteria for
MPI, may be approved for MPI because exercise EKG testing without imaging would provide little clinically useful data.
Patients with the following resting EKG abnormalities are included in this category:
●● Left bundle branch block
Or
●● Ventricular paced rhythm
Or
●● Left ventricular hypertrophy with repolarization abnormality
Or
●● Digoxin effect
Or
●● 1 mm ST depression or more on a recent EKG (within the past 30 days)
Or
●● Pre-excitation syndromes (E.G. WPW syndrome)
UNABLE TO WALK ON A TREADMILL FOR REASONS OTHER THAN OBESITY
●● Including but not limited to orthopedic impairment, claudication, neurological conditions, advanced lung disease etc.
●● In these situations patients may not achieve an adequate exercise level to yield clinically useful information
●● Pharmacological stress testing should be performed and therefore echo or nuclear imaging is appropriate.
86
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
1.
Pellikka, P et al. American Society of Echocardiography Recommendations for Performance, Interpretation, and Application of Stress
Echocardiography. J Am Soc Echocardiogr. 2007 Sep;20(9):1021-41
2.
Douglas P et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 Appropriateness Criteria for Stress Echocardiography. J Am
Coll Cardiol 2008;51:1127-47
3.
Balady, G., Larson, M., Vasan, R., Usefulness of Exercise Testing in the Prediction of Coronary Disease Risk Among Asymptomatic
Persons as a Function of the Framingham Risk Score. Circulation 2004:110:1920-1925
4.
Armstrong W., Zoghbi W. Stress Echocardiography-Current Methodology and Clinical Applications. J Am Coll Cardiol 2005;45: 173947
5.
Armstrong W. et al. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography. J. Am. Coll. Cardiol.,
Sep 2003; 42: 954 - 970
6.
American College of Cardiology Foundation. ACCF/ASNC Appropriateness Criteria for Single-Photon Emission Computed
Tomography Myocardial Pergusion Imaging (SPECT MPI). J Am Coll Cardiol 2005; 46(8): 1588-1605.
7.
Elhendy A., O’Leary E., Xie F, et al. Comparative Accuracy of Real-Time Myocardial Contrast Perfusion Imaging and Wall Motion
Analysis During Dobutamine Stress Echocardiography for the Diagnosis or Coronary Artery Disease. J Am Coll Cardiol 2004:44:21852191
8.
Fleischmann K., Hunink M., Kuntz K, et al. Exercise Echocardiography or Exercise SPECT Imaging? JAMA 1998;280:913-920
9.
Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA/ASNC Guideline Update for Exercise Testing: A Report of the American College of
Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing).2002
10. Maganti K, Rigolin V, Stress Echocardiography Versus Myocardial SPECT for Risk Stratification of Patients with Coronary Artery
Disease. Curr Opin Cardiol 2003;18:486-493
11. Marwick T, Williams MJ, Haluska B, et al. Exercise Echocardiography Is an Accurate and Cost-Efficient Technique for Detection of
Coronary Artery Disease in Women. J Am Coll Cardiol 1995;26:355-341
12. Olmos L, Dakik H, Gordon R, et al. Long-Term Prognostic Value of Exercise Echocardiography Compared with Exercise 201Tl, ECG,
and Clinical Variables in Patients Evaluated for Coronary Artery Disease. Circulation 1998; 98: 2679-2686
13. Schinkel, AFL, Bax, JJ, Geleijnse, ML, Noninvasive Evaluation of Ischaemic Heart Disease: Myocardial Perfusion Imaging or Stress
Echocardiography? European Heart Journal 2003;24:789-800
14. Senior R, Monaghan M, Becher H, et al. Stress Echocardiography for the Diagnosis and Risk Stratification of Patients with Suspected
or known Coronary Artery Disease: A Critical Appraisal. Supported by the British Society of Echocardiography. Heart 2005;91:427-436
15. Yao SS, Qureshi E, Sherrid, M, et al. Practical Applications in Stress Echocardiography: Risk Stratification and Prognosis in Patients
with Known or Suspected Ischemic Heart Disease. J Am Coll Cardiol 2003;42:1084-1090
16. Grundy SM, Pasternak R, et al. Assessment of Cardiovascular Risk Using Multiple-Risk-Factor Assessment Equations: A Statement
for Healthcare Professionals from the Ametican Heart Association and the American College of Cardiology. Circulation. 1999;
100:1481-1492
17. Eagle K, et al. ACC/AHA Guideline Update for Perioperative Cardiovascular Evaluation for Noncardiac Surgery. www.acc.org/clinical/
guidelines/perio/update/periupdate index.htm
18. Anderson J et al. ACC/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial
Infarction. J Am Coll Cardiol, 2007; 50:1-157
19. Antman E, et al. ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction. J Am Coll Cardiol
2004;44:671-719
20. Mieres J, et al. Rule of Noninvasive Testing in the Clinical Evaluation of Women with Suspected Coronary Artery Disease. Circulation.
2005; 111;682-696 21.
21. Fleisher et al. ACC/AHA 2007 Guidelines on Perioperative Cardiovascular Evaluation and Care for Noncardiac Surgery. Executive
Summary. JACC, 2007; 50:1707-32
87
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Transesophageal Echocardiography
(TEE)
CPT CODES:
93312 . ..............TEE real-time with image documentation (2-D) (with or without M-mode recording)
93313.................Placement of transesophageal probe only
93314.................Image acquisition, interpretation and report only
93315.................TEE for congenital cardiac anomalies
93316.................Placement of transesophageal probe only
93317.................Image acquisition, interpretation and report only
93320.................This code is an add-on code to be used in conjunction with 93312, 93314, 93315, 93317. As such, this
code does not require separate review
93321.................This code is an add-on code to be used in conjunction with 93312, 93314, 93315, 93317. As such, this
code does not require separate review
93325.................This code is an add-on code to be used in conjunction with 93312, 93314, 93315, 93317. As such, this
code does not require separate review
STANDARD ANATOMIC COVERAGE:
●● Heart, proximal great vessels, pericardium
IMAGING CONSIDERATIONS:
●● In general, it is assumed that TEE is appropriately used as an adjunct or subsequent test to transthoracic echocardiography (TTE) when suboptimal TTE images preclude obtaining a diagnostic study.
●● This guideline does not supersede the enrollee’s health plan medical policy specific to transesophageal echocardiography
●● There are some clinical situations for which TEE is a more appropriate initial imaging test than TTE. These situations
are outlined below under Common Diagnostic Indications for TEE.
●● Since TEE requires conscious sedation, it should only be performed at locations where cardiac monitoring and appropriate equipment for cardiopulmonary resuscitation are readily available.
●● Patients with oropharyngeal or esophageal pathology which contraindicates intubation of the esophagus are not suitable candidates for TEE.
●● Intraoperative TEE (93318) is beyond the scope of AIMs diagnostic imaging management program and will not be addressed in this document.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR TEE:
The following diagnostic indications for TEE are accompanied by pre-test considerations as well as supporting clinical data and prerequisite
information:
IN PATIENTS WHO HAVE, OR ARE LIKELY TO HAVE SUBOPTIMAL TRANSTHORACIC IMAGING
●● When image quality is suboptimal such that the clinical question(s) prompting the TEE has/have not been adequately
answered
Or
●● When it is likely that transthoracic imaging will be suboptimal in the following situations:
88
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
–– Previous transthoracic echocardiograms were of suboptimal quality
–– In patients with severe abnormalities of thoracic contour (Pectus deformities, severe kyphoscoliosis)
–– In patients who have recently had thoracic surgery where postoperative tenderness or the location of dressings or
Incisions would preclude imaging from the usual transthoracic locations
–– Following severe chest trauma
–– Following extensive burns to the thorax
IN PATIENTS WHOSE CLINICAL SITUATION SUGGESTS THAT TEE MAY BE PREFERABLE TO TRANSTHORACIC
ECHOCARDIOGRAPHY AS AN INITIAL IMAGING TEST
●● In evaluation of suspected acute aortic pathology
●● To determine mechanism of valvular regurgitation and suitability for valve repair
Or
●● To diagnose/manage endocarditis with a moderate or high pretest probability (e.g. bacteremia, especially staph bacteremia or fungemia)
Or
●● To diagnose/manage endocarditis involving prosthetic heart valves
Or
●● In evaluation of persistent fever in a patient with an intracardiac device
Or
●● In evaluation of a patient with atrial fibrillation/flutter to facilitate clinical decision-making with regards to anticoagulation
and/or cardioversion and/or radiofrequency ablation
Or
●● In evaluation of a patient who has undergone surgical correction of complex congenital heart disease for the exclusion
of intracardiac thrombus
IN PATIENTS WHO HAVE UNDERGONE TECHNICALLY ADEQUATE TRANSTHORACIC ECHOCARDIOGRAPHY (TTE)
●● In evaluation for cardiovascular source of embolic event in patients who have no history of atrial fibrillation or atrial flutter with normal EKG and normal TTE
REFERENCE/LITERATURE REVIEW:
1.
Douglas et al. ACC/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 Appropriateness Criteria for Transthoracic and Transesophageal
Echocardiography. J Am Coll Cardiol 2007
2.
Chetlin M et al. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography available at www.acc.org
3.
Bonow R et al. ACC/AHA 2006 Guidelines for the Management of Patients with Valvular Heart Disease. J Am Coll Cardiol 2006; 48:
e1-148
4.
Klein AL et al. Role of transesophageal echocardiography-guided cardioversion of patients with atrial fibrillation. J Am Coll Cardiol,
2001; 37:691-704
5.
Willens HJ et al. Transesophageal Echocardiography in the Diagnosis of Diseases of the Thoracic Aorta. Part 1. Aortic Dissection,
Aortic Intramural Hematoma, and Penetrating Atherosclerotic Ulcer of the Aorta. Chest. 1999;116:1772-1779
89
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Resting Thoracic Echocardiography
(TTE)
CPT CODES:
93303.................Transthoracic echocardiography or congenital cardiac anomalies; complete
93304.................Transthoracic echocardiography or congenital cardiac anomalies; follow-up or limited study
93306.................Echocardiography, transthoracic, real-time with image documentation (2D), includes M-mode recording,
when performed, complete, with spectral Doppler echocardiography, and with color flow Doppler
echocardiography
93307.................Transthoracic echocardiography; complete, without spectral Doppler echocardiography, or color flow
Doppler echocardiography.
93308.................Transthoracic echocardiography; complete, without spectral Doppler echocardiography, or color flow
Doppler echocardiography follow-up or limited study
93320.................This code is an add-on code to be used in conjunction with 93303, 93304 93308. As such, this code does
not require separate review
93321.................This code is an add-on code to be used in conjunction with 93303, 93304 93308. As such, this code does
not require separate review
93325.................This code is an add-on code to be used in conjunction with 93303, 93304 93308. As such, this code does
not require separate review
STANDARD ANATOMIC COVERAGE:
●● Heart, proximal great vessels, pericardium
IMAGING CONSIDERATIONS:
Advantages of transthoracic echocardiography:
●● No risk to the patient
●● Minimal patient discomfort
●● Widely available
●● Extremely portable
●● No exposure to ionizing radiation
Disadvantages of transthoracic echocardiography:
●● Image quality suboptimal in some patients
●● Less sensitive than transesophageal echocardiography in some clinical situations
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to transthoracic echocardiography
●● Transthoracic echocardiography should only be acquired on equipment which has the capability to perform Doppler
echocardiography (pulsed-wave and continuous wave with spectral display) and color flow velocity mapping.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
90
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
The following diagnostic indications for Transthoracic Echocardiography are accompanied by pre-test considerations as well as supporting
clinical data and prerequisite information:
Valvular Heart Disease
SUSPECTED VALVULAR HEART DISEASE
●● Evaluation of cardiac murmurs when the diagnosis of valvular heart disease has not been established.
–– After the diagnosis of valvular heart disease has been established, follow the guidelines for the specific valvular lesion (eg, established aortic stenosis)
●● Initial evaluation for mitral valve prolapse when signs or symptoms of mitral valve prolapse are present
●● Initial evaluation for bicuspid aortic valve when there is a family history (established diagnosis in a first-degree relative)
ESTABLISHED AORTIC STENOSIS OR PULMONIC STENOSIS
And
●● Changing symptoms or signs
Or
●● Reevaluation of asymptomatic patients with severe stenosis annually
Or
●● Reevaluation of asymptomatic patients with moderate stenosis every two (2) years
Or
●● Assessment of changes in hemodynamic severity and left ventricular function in patients with known aortic stenosis
during pregnancy
Or
●● Annual assessment of children age six (6) years or younger with pulmonic stenosis of any degree
ESTABLISHED AORTIC OR PULMONIC REGURGITATION
And
●● Changing symptoms or signs
Or
●● Reevaluation of asymptomatic patients with severe regurgitation annually
Or
●● Reevaluation of asymptomatic patients with mild or moderate regurgitation and ventricular dilation or dysfunction annually
ESTABLISHED BICUSPID AORTIC VALVE
And
●● Changing signs or symptoms suggesting the development of aortic valve dysfunction
Or
●● Dilated aortic root (annual echocardiography is indicated)
Or
●● Reevaluation at three (3) yearly intervals to evaluate for aortic dilation
ESTABLISHED MITRAL OR TRICUSPID STENOSIS
And
●● Changing signs or symptoms
Or
●● Reevaluation of asymptomatic patients with severe stenosis annually
Or
●● Annual reevaluation of children age six (6) years or less with established mitral stenosis of any degree
ESTABLISHED MITRAL OR TRICUSPID REGURGITATION
And
●● Changing signs or symptoms
Or
91
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
●● Reevaluation in asymptomatic patients with moderate or severe regurgitation annually
ESTABLISHED MITRAL VALVE PROLAPSE
And
●● Changing signs or symptoms
PROSTHETIC CARDIAC VALVES (MECHANICAL OR BIOPROSTHETIC) AND PATIENTS WHO HAVE UNDERGONE
VALVE REPAIR
And
●● Initial postoperative evaluation of valve function (baseline study)
Or
●● Annual reevaluation, of asymptomatic adults (age 19 years or older) who have undergone implantation of a bioprosthetic valve five (5) or more years ago and whose clinical examination reveals no new or worsening findings suggesting
dysfunction of the prosthetic valve
Or
●● Annual reevaluation of asymptomatic non adult patients (less than or equal to 18 years old) whose clinical examination
reveals no new or worsening findings suggesting dysfunction of the repaired or replaced valve
Or
●● Signs and/or symptoms suggesting dysfunction of a repaired or replaced valve
EVALUATION OF PATIENTS WITH CONGENITAL HEART DISEASE
●● Evaluation of patients in whom congenital heart disease is suspected based on signs and symptoms (including murmur, cyanosis, unexplained arterial desaturation, abnormal arterial pulses) abnormal EKG, abnormal chest x-ray
Or
●● Patients with chromosomal abnormalities or major extra cardiac abnormality associated with a high incidence of coexisting cardiac abnormality
Or
●● Patients with established congenital heart disease (repaired or unrepaired) in whom there is a change in clinical status
Or
●● Adult patients with a childhood history of congenital heart disease (with or without prior surgical repair) in whom the
original diagnosis is uncertain or when the precise nature of the structural abnormalities or hemodynamics is unclear
Or
●● Bi-annual (every 2 years) echocardiography is appropriate in clinically stable patients age six (6) years or older with
established complex congenital heart disease (with or without prior surgical repair) in whom surveillance for ventricular
function, AV valvular regurgitation or pulmonary artery pressure is important in clinical decision-making.
–– This does not include patients with successfully repaired patent ductus arteriosus, small atrial or ventricular septal
defects, bicuspid aortic valve or mitral valve prolapse
Or
●● Semiannual (every six months) echocardiography is appropriate in clinically stable patients age five (5) years or younger with established congenital heart disease (with or without prior surgical repair) in whom surveillance for ventricular
function, AV valvular regurgitation or pulmonary artery pressure is important in clinical decision-making.
Or
●● Initial outpatient postoperative evaluation of patients who have undergone surgical or catheter-based procedures to
correct congenital heart disease (within 60 days of the procedure).
Or
●● TTE is appropriate every three (3) years in the follow up of patients who have undergone catheter based closure of
atrial or ventricular septal defects
Or
●● Non adult patients (less than or equal to 18 years old) who are undergoing staged surgical correction of congenital
heart disease.
Or
92
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
●● Patients in whom a decision to perform surgical or catheter based repair of congenital heart disease has been made
and in whom echocardiography will be used to assist with procedural planning.
EVALUATION OF VENTRICULAR FUNCTION
●● Initial evaluation of hypertensive patients with suspected hypertensive heart disease
Or
●● Annual evaluation of non adult patients (less than or equal to 18 years old) with an established diagnosis of hypertension
Or
●● Initial evaluation of known or suspected heart failure (systolic or diastolic)
Or
●● Evaluation of patients with resting EKG abnormalities (LBBB, RBBB with left anterior or posterior hemiblock, LVH, RVH,
Q waves suggestive of prior infarction)
Or
●● Reevaluation of asymptomatic and/or clinically stable patients with left ventricular systolic dysfunction (Left Ventricular
ejection fraction <55%) at yearly intervals
Or
●● Reevaluation of patients with known heart failure (systolic or diastolic) in a patient with the change in clinical status
Or
●● Baseline and serial reevaluation in patients undergoing, planning to undergo or who have undergone therapy with cardiotoxic agents (examples including but not limited to some chemotherapeutic agents for cancer, novantrone {mitoxanthone} for multiple sclerosis
Or
●● Screening study for left ventricular dysfunction every two (2) years in clinically stable first-degree relatives of patients
with inherited cardiomyopathy
Or
●● Evaluation of suspected restrictive or infiltrative cardiomyopathy
Or
●● Initial evaluation of known or suspected hypertrophic obstructive cardiomyopathy (HOCM)
Or
●● Reevaluation of known hypertrophic obstructive cardiomyopathy (HOCM) in a patient with a change in clinical status to
guide or evaluate therapy
Or
●● Annual reevaluation of asymptomatic patients with known hypertrophic obstructive cardiomyopathy (HOCM)
Or
●● Evaluation for dyssynchrony in a patient being considered for cardiac resynchronization therapy (CRT)
Or
●● Evaluation of a patient being treated with cardiac resynchronization therapy (CRT) with persistent or new symptoms
with a view to device optimization
Or
●● When left ventricular dysfunction is suggested by other testing (chest x-ray, elevated BNP) and LV function has not
been evaluated by another modality since that testing was performed
Or
●● Where a significant discrepancy (more than would be expected for the range of error of the methods) exists in the
evaluation of left ventricular dysfunction by two other imaging modalities, echocardiography can be used as an arbiter
Or
●● Pre and post cardiac transplant evaluation
Or
●● Evaluation of known or suspected myocarditis
Or
93
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
●● Echocardiography to evaluate right ventricular function in patients with disease likely to affect right ventricular function
including but not limited to chronic lung diseases and sleep apnea syndrome
EVALUATION OF PATIENTS WITH CARDIAC ARRHYTHMIAS
●● In patients who have sustained (lasting more than 30 seconds) or nonsustained (more than 3 beats but terminating
within 30 seconds) ventricular tachycardia
●● In patients who have sustained (lasting more than 30 seconds) or nonsustained (more than 3 beats but terminating
within 30 seconds) supraventricular tachycardia (including but not limited to atrial fibrillation, atrial flutter, atrial tachycardia, AV node reentrant tachycardia etc)
–– It is not appropriate to perform echocardiography for evaluation of premature atrial or ventricular depolarizations
EVALUATION OF INFECTIVE ENDOCARDITIS (NATIVE OR PROSTHETIC VALVES)
●● Patients with suspected endocarditis (positive blood cultures and/or a new murmur on physical examination)
●● Reevalaution of patients with established endocarditis who have any of the following
–– Virulent organism
Or
–– Severe hemodynamic lesion
Or
–– Aortic involvement
Or
–– Persistent bacteremia
Or
–– Clinical deterioration
EVALUATION OF PATIENTS WITH KNOWN OR SUSPECTED CORONARY ARTERY DISEASE
●● Patients with known coronary artery disease
And
●● Recent (<3 weeks)myocardial infarction and hemodynamic instability or signs or symptoms suggesting a complication
of myocardial infarction including but not limited to acute mitral regurgitation, hypoxemia, abnormal chest x-ray, acute
ventricular septal rupture, free wall rupture/tamponade, shock, right ventricular involvement, heart failure, or thrombus
–– This study is usually requested on an inpatient
Or
●● Recent myocardial infarction (< 3 weeks) for initial assessment of LV function
–– This study is usually done prior to discharge
–– Not required if left ventricular function has been assessed using a different imaging modality
Or
●● Prior myocardial infarction for reevaluation of ventricular function during recovery phase {up to six (6) months following
myocardial infarction}
Or
●● Prior myocardial infarction for reevaluation of ventricular function after the recovery phase {more than six (6) months} in
patients who develop new symptoms or signs suggestive of heart failure
Or
●● Prior myocardial infarction for reevaluation of LV function in patients being considered for AICD or cardiac resynchronization therapy (CRT)
Or
●● Patients who have undergone revascularization may reasonably undergo echocardiography for evaluation of post
revascularization left ventricular function even if clinically stable.
–– Limited to one study within 12 months of revascularization (usually performed between 3 and 12 months following a
revascularization procedure)
Or
●● Annual echocardiography is appropriate in non adult patients (less than or equal to 18 years old) with an established
94
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
diagnosis of, aberrant or anomalous coronary origins or coronary artery fistula if the findings on echocardiography will
impact clinical decision making
Or
●● Echocardiography is appropriate in patients with an established diagnosis of Kawasaki disease at 6-8 weeks following
diagnosis in patients who have had coronary artery involvement at the time of diagnosis. If this study shows no coronary artery abnormalities, no subsequent echocardiograms are necessary.
Or
●● Annual echocardiography is appropriate in patients with an established diagnosis of Kawasaki disease who have small
or medium sized coronary artery aneurysms
Or
●● Semiannual (every six months) echocardiography is appropriate in patients with an established diagnosis of Kawasaki
disease who have large or giant coronary artery aneurysms or coronary artery obstruction
●● Patients with suspected coronary artery disease
And
●● Chest pain
–– Resting echocardiography may suggest a cause for the chest pain other than myocardial ischemia (mitral valve prolapse) and is therefore a reasonable imaging procedure in patients with chest pain
–– If coronary artery disease is a likely diagnosis and if a resting echocardiogram cannot be performed while the patient is experiencing the pain, a provocative test (exercise or pharmacological stress test with or without imaging as
appropriate) is preferable
–– Resting echocardiography has no role in screening for coronary artery disease in asymptomatic patients
Or
●● Echocardiography is appropriate in the evaluation of patients with suspected aberrant or anomalous coronary origins
or coronary artery fistula
Or
●● Echocardiography is appropriate in the evaluation of patients with suspected Kawasaki disease
EVALUATION OF SIGNS, SYMPTOMS OR ABNORMAL TESTING
●● Echocardiography is appropriate in the evaluation of the following newly recognized symptoms {chest pain, dyspnea, lightheadedness, syncope, palpitations, reduced functional capacity, orthopnea, paroxysmal nocturnal
dyspnea,transient ischemic attack (TIA) or cerebrovascular attack (CVA)}
Or
●● Echocardiography is appropriate in the evaluation of the following newly recognized signs suggesting structural heart
disease (murmur, cyanosis, ankle edema, ascites, elevation of jugular venous pressure, unexplained weight gain,
tachycardia, tachypnea, audible third heart, lung crackels suggestive of pulmonary edema)
Or
●● Echocardiography is appropriate in the evaluation of patients who are hemodynamically unstable or hypotensive for
unknown reasons
Or
●● Echocardiography is appropriate in further evaluation of abnormal results from other testing which suggests underlying
cardiac disease {abnormal chest X ray suggesting cardiac chamber enlargement, valvular or congenital heart disease
or congestive heart failure, abnormal EKG suggesting chamber hypertrophy, valvular or congenital heart disease
(LBBB, RBBB with anterior or posterior hemiblock, left or right ventricular hypertrophy or Q waves suggestive of prior
infarction) or abnormal laboratory results suggesting congestive heart failure such as elevated B-type natriuretic peptide (BNP)
–– When other cardiac testing raises concerns of underlying coronary artery disease, provocative testing is recommended over resting echocardiography
Or
●● Echocardiography is appropriate in the evaluation of respiratory failure of unknown cause
Or
95
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR TRANSTHORACIC ECHOCARDIOGRAPHY:
●● Echocardiography is appropriate annually in the evaluation of patients with syndromes which place them at increased
risk for the development of acquired myocardial or aortic diseases (for example, Marfan Syndrome, Ehlers-Danlos
Syndrome, Turner Syndrome, etc)
Or
●● Echocardiography is appropriate in the evaluation of suspected acute rheumatic fever
EVALUATION OF PATIENTS WITH PULMONARY EMBOLUS
●● In patients with known or suspected acute pulmonary embolus, echocardiography is useful in guiding initial decision
making (thrombectomy, thrombolysis)
–– Echocardiography is not indicated in the initial evaluation of a patient with suspected pulmonary embolism in order
to establish the diagnosis
Or
●● In patients who have had a pulmonary embolus, echocardiography may be performed to evaluate right ventricular function. If right ventricular function is abnormal, repeated studies may be necessary
EVALUATION OF PATIENTS WITH PULMONARY HYPERTENSION
●● Echocardiography is indicated for evaluation of suspected pulmonary hypertension
Or
●● Echocardiography is indicated in follow-up of pulmonary arterial pressures in patients with pulmonary hypertension to
evaluate response to treatment
Or
●● Echocardiography may be performed at 2 yearly intervals in asymptomatic adults (age 19 years or older) with an established diagnosis of pulmonary hypertension
Or
●● Echocardiography may be performed annually in asymptomatic non adult patients (less than or equal to 18 years old)
with an established diagnosis of pulmonary hypertension
●● Echocardiography may be performed to evaluate signs or symptoms which may be attributable to worsened pulmonary
hypertension
EVALUATION OF AORTIC DISEASE
●● Echocardiography is indicated in the preoperative or postoperative evaluation of pathology of the ascending aorta (aneurysm/dissection) although transesophageal echocardiography (TEE) is often preferable in this situation
–– Annual echocardiographic evaluation is usually sufficient in clinically stable patients but more frequent testing may
be appropriate in some situations (e.g. in longitudinal follow-up of large or enlarging thoracic aneurysms, in followup of recently diagnosed thoracic aneurysms until stability is established)
Or
●● Echocardiography may be performed annually in patients with other disease entities which predispose them to diseases of the aorta including but not limited to Marfan syndrome, Ehlers-Danlos syndrome and Familial Aortic Dilation
EVALUATION OF PERICARDIAL DISEASES
●● Echocardiography is indicated in the evaluation of pericardial conditions including but not limited to pericardial effusion,
pericardial mass, constrictive pericarditis, effusive-constrictive conditions, patients post cardiac surgery or suspected
pericardial tamponade.
EVALUATION OF CARDIAC MASSES OR CARDIAC SOURCE OF EMBOLUS
●● Echocardiography is indicated in the diagnosis or exclusion of a cardiac source of embolus in a patient who has had or
appears to have had a systemic embolic event (although transesophageal echocardiography (TEE) is often preferable
in this situation).
●● Echocardiography is indicated in the pre and post treatment evaluation of cardiac masses (tumor or thrombus).
–– Annual echocardiographic evaluation is usually sufficient in clinically stable patients with cardiac masses (tumors
or thrombus) but more frequent testing may be appropriate in some situations (e.g. in longitudinal follow-up of enlarging masses or in follow-up of recently diagnosed masses until stability is established)
96
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
1.
Douglas et al. ACC/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 Appropriateness Criteria for Transthoracic and Transesophageal
Echocardiography. J Am Coll Cardiol 2007
2.
Chetlin M et al. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography available at: www.acc.org
3.
Bonow R et al. ACC/AHA 2006 Guidelines for the Management of Patients with Valvular Heart Disease. J Am Coll Cardiol 2006; 48:
e1-148
4.
Zoghbi W et al Recommendations for Evaluation of the Severity of Native Valvular Regurgitation with Two-dimensional and Doppler
Echocardiography. J Am Soc Echocardiogr 2003;16:777-802
5.
Otto C. Valvular Aortic Stenosis. Disease Severity and timing of Intervention. J Am Coll Cardiol 2006;47:2141-51
6.
Newberger JW et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease A Statement for Health Professionals
From the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young,
American Heart Association Endorsed by the American Academy of Pediatrics. Circulation 2004;110:2747-2771
97
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computerized Tomography (CT)
Cardiac (Structure)
CPT CODES:
75572…….Computed tomography, heart, with contrast material, for evaluation of cardiac structure and morphology
(including 3-D image postprocessing, assessment of cardiac function, and evaluation of venous structures if
performed)
75573……..Computed tomography, heart, with contrast material, for evaluation of cardiac structure and morphology in
the setting of congenital heart disease (including 3-D postprocessing, assessment of left ventricular cardiac
function, right ventricular structure and function and evaluation of venous structures, if performed)
STANDARD ANATOMIC COVERAGE:
●● Heart and great vessels within the thorax
IMAGING CONSIDERATIONS:
Advantages of Cardiac CT
–– Rapidly acquired exams, with excellent anatomic detail afforded by most multidetector CT scanners with 16 or more
active detector rows.
Disadvantages of Cardiac CT include:
–– Potential complications from use of intravascular iodinated contrast administration (see biosafety issues, below)
–– Exposure to ionizing radiation
–– Potential factors that may limit the image quality during acquisition of Cardiac CT such as:
1. uncontrolled atrial or ventricular arrhythmias
2. inability to image at a desired heart rate, which may occur despite beta blocker administration
3. inability of the patient to comply with the requirements of scanning (patient motion during image acquisition, inability
to comply with breath hold requirements, inability to lie supine, claustrophobia)
4. not a suitable imaging modality for morbidly obese patients (BMI > 40)
5. because of the radiation exposure issues careful consideration should be given to other imaging modalities in pregnant women and children
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering safety issues prior to the cardiac CT exam. One of the
most significant considerations is the requirement for intravascular iodinated contrast material, which may have an adverse effect on patients with a history of documented allergic contrast reactions or atopy, as well as on individuals with
renal impairment, who are at greater risk for contrast-induced nephropathy. In addition, radiation safety issues including cumulative exposure to ionizing radiation should be considered.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to cardiac CT for evaluation of
cardiac structure.
●● This guideline does not apply to coronary CT angiography (CPT 75574)
●● This guideline does not apply to Cardiac CT for quantitation of coronary artery calcification (CPT 75571)
●● Selection of the optimal diagnostic work-up for cardiac evaluation should be made within the context of other available
studies (which include transthoracic and transesophageal echocardiography and cardiac MRI,), so that the resulting
information facilitates patient management decisions and does not merely add a new layer of testing.
●● There are uncommon circumstances when both Cardiac CT and Cardiac MRI should be ordered for the same clinical
presentation. The specific rationale must be delineated at the time of request.
98
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● In general, follow-up Cardiac CT exams should be performed only when there is a clinical change, with new signs or
symptoms, or specific finding(s) requiring imaging surveillance.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC CT:
The following diagnostic indications for Cardiac CT are accompanied by pre-test considerations as well as supporting clinical data and prerequisite information:
CONGENITAL HEART DISEASE
●● For evaluation of suspected or established congenital heart disease in patients whose echocardiogram is technically
limited or nondiagnostic
Or
●● For further evaluation of complex congenital heart disease in patients who have undergone echocardiography
Or
●● For evaluation of complex congenital heart disease in patients who are less than one year post surgical correction
Or
●● For evaluation of complex congenital heart disease in patients who have new or worsening symptoms and/or a change
in physical examination
Or
●● To assist in surgical planning for patients with complex congenital heart disease
Or
●● For surveillance in asymptomatic patients with complex congenital heart disease in patients who have not had cardiac
MRI or cardiac CT within the preceding year
–– Cardiac MRI or transesophageal echocardiography may be preferable to cardiac CT in order to avoid radiation
exposure
INTRA-CARDIAC AND PARA-CARDIAC MASSES AND TUMORS
●● In patients with a suspected cardiac or para-cardiac mass (thrombus, tumor, etc.) suggested by transthoracic echocardiography, transesophageal echocardiography, blood pool imaging or contrast ventriculography who have not undergone cardiac CT or cardiac MRI within the preceding 60 days
Or
●● In patients with established cardiac or para-cardiac mass (thrombus, tumor, etc.) who are clinically unstable
Or
●● In patients with established cardiac or para-cardiac mass (thrombus, tumor, etc.) who are clinically stable and have not
undergone cardiac CT or cardiac MRI within the preceding year
Or
●● In patients with established cardiac or para-cardiac mass (thrombus, tumor, etc.) who have undergone treatment
(chemotherapy, radiation therapy, thrombolysis, anticoagulation or surgery) within the preceding year and have not had
cardiac CT or cardiac MRI within the preceding 60 days
CARDIAC ANEURYSM AND PSEUDOANEURYSM
EVALUATION OF PERICARDIAL CONDITIONS (PERICARDIAL EFFUSION, CONSTRICTIVE PERICARDITIS, OR
CONGENITAL PERICARDIAL DISEASES)
●● In patients with suspected pericardial constriction
Or
●● In patients with suspected congenital pericardial disease
Or
99
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC CT:
●● In patients with suspected pericardial effusion who have undergone echocardiography deemed to be technically suboptimal in evaluation of the effusion
Or
●● In patients whose echocardiogram shows a complex pericardial effusion (loculated, containing solid material)
EVALUATION OF CARDIAC VENOUS ANATOMY
●● For localization of the pulmonary veins in patients with chronic or paroxysmal atrial fibrillation/flutter who are being
considered for first radiofrequency ablation.
Or
●● For reevaluation of the pulmonary veins on one occasion following radiofrequency ablation
Or
●● For re-evaluation of the pulmonary venous anatomy prior to repeat radiofrequency ablation provided that the patient
has not had evaluation of the pulmonary veins following the previous radiofrequency ablation
Or
●● Coronary venous localization prior to implantation of a biventricular pacemaker
EVALUATION OF THE THORACIC AORTA – ANEURYSM AND DISSECTION:
●● In patients with suspected thoracic aortic aneurysm who have not undergone imaging of the thoracic aorta within the
preceding 60 days
Or
●● In patients with confirmed thoracic aortic aneurysm with new or worsening signs/symptoms
Or
●● For ongoing surveillance of stable patients with confirmed thoracic aortic aneurysm who have not undergone imaging
of the thoracic aorta within the preceding six months
Or
●● In patients with suspected aortic dissection
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
Or
●● In patients with confirmed aortic dissection in whom surgical repair is anticipated (to assist in preoperative planning)
Or
●● For ongoing surveillance of stable patients with confirmed aortic dissection who have not undergone imaging of the
thoracic aorta within the preceding year
Or
●● In patients with confirmed aortic dissection or thoracic aortic aneurysm who have undergone surgical repair within the
preceding year and have not undergone imaging of the thoracic aorta within the preceding six months
Or
●● In patients who have sustained blunt chest trauma, penetrating aortic trauma or iatrogenic trauma as a result of aortic
instrumentation.
REFERENCE/LITERATURE REVIEW:
1.
ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR Appropriateness Criteria for Cardiac Computed Tomography and Cardiac Magnetic
Resonance Imaging. JACC 2006; 48(7): 1-23.
2.
Model Local Coverage Determination (LCD) Work Group for Cardiac Computed Tomography (CCT) and Computed Tomography
Coronary Angiography (CTCA), comprising of the American College of Cardiology (ACC), Carrier Advisory Committee (CAC),
American College of Radiology (ACR), American Society of Nuclear Cardiology (ASNC), North American Society for Cardiac Imaging
(NASCI) Society of Cardiac Angiography and Intervention (SCAI) and Society of Cardiovascular CT (SCCT).
3.
Gilkeson RC, Ciancibello L, Zahka K. Multidetector CT Evaluation of Congenital Heart Disease in Pediatric and Adult Patients. AJR
2003; 180: 973-980.
4.
Goo HWG, Park I-S, Ko JKK, et al. CT of Congenital Heart Disease: Normal Anatomy and Typical Pathologic Conditions.
100
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
RadioGraphics 2003; 23: S147-S165.
5.
Datta J, White CS, Gikleson RC, et al. Anomalous Coronary Arteries in Adults: Depiction at Multi-Detector Row CT Angiography.
Radiology 2005; 235: 812-818.
6.
Chiles C, Carr JJ. Vascular Diseases of the Thorax: Evaluation with Multidetector CT. Radiol Clin N Am 2005; 43: 543-569
101
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computerized Tomographic
Angiography
Coronary Arteries (CCTA)
CPT CODES:
75574……. Computed tomographic angiography, heart, coronary arteries and bypass grafts (where present), with contrast
material, including 3-D image postprocessing (including evaluation of cardiac structure and morphology,
assessment of cardiac function, and evaluation of venous structures, if performed)
STANDARD ANATOMIC COVERAGE:
●● Cardiac and Coronary Artery Imaging: Coverage may vary, depending on the specific clinical indication as well as prior
history of coronary artery bypass graft placement.
IMAGING CONSIDERATIONS:
Advantages of CTA:
●● Advantages of Coronary Artery CTA
–– Rapidly acquired exams, with excellent anatomic detail afforded by most multidetector CT scanners with 16 or more
active detector rows.
–– CTA has a very high negative predictive value (93 to 100%)
Disadvantages of CTA:
●● Disadvantages of Coronary Artery CTA include:
–– Exposure to ionizing radiation (2-3 times higher than the average radiation dose administered to patients undergoing cardiac catheterization)
–– Potential complications from use of intravascular iodinated contrast administration (see biosafety issues, below)
–– Potential factors that may limit the image quality during a Cardiac CT/Coronary Artery CTA exam, such as:
1. Uncontrolled atrial or ventricular arrhythmias
2. Extensive coronary artery calcification which may produce artifact
3. Coronary stent evaluation for possible restenosis, as the stent material itself as well as the quality of the scan
and scanner may produce artifacts, limiting the exam
4. Inability to image at a desired heart rate, which may occur despite beta blocker administration
5. Inability of the patient to comply with the requirements of scanning (patient motion during image acquisition, inability to comply with breath hold requirements, inability to lie supine, claustrophobia)
6. Not a suitable imaging modality for morbidly obese patients (BMI > 40)
7. Because of the radiation exposure issues careful consideration should be given to other imaging modalities in
pregnant women and children
8. CCTA images the coronary arteries directly. Therefore the information provided is anatomical. The presence
of coronary stenosis on CCTA (particularly if deemed to be of intermediate severity) does not establish that the
lesion has flow limiting significance. Thus, following abnormal CCTA, functional testing may be required to assist
in clinical decision-making.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering safety issues prior to the CCTA exam. One of the most
significant considerations is the requirement for intravascular iodinated contrast material, which may have an adverse
effect on patients with a history of documented allergic contrast reactions or atopy, as well as on individuals with renal
impairment, who are at greater risk for contrast-induced nephropathy. In addition, radiation safety issues including
cumulative exposure to ionizing radiation should be considered.
102
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to cardiac CCTA
●● CCTA exams are not covered by most healthcare insurers as a screening study, in the absence of signs, symptoms or
known disease.
●● Selection of the optimal diagnostic work-up for cardiac evaluation should be made within the context of other available
studies (which include treadmill stress test, stress myocardial perfusion imaging, stress echocardiography, cardiac MRI,
cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information facilitates patient
management decisions and does not merely add a new layer of testing.
●● In general, follow-up CCTA exams should be performed only when there is a clinical change, with new signs or symptoms, or specific finding(s) requiring imaging surveillance.
●● This guideline does not apply to Cardiac CT for quantitation of coronary artery calcification (CPT 75571)
●● This guideline does not apply to Cardiac CT for evaluation of cardiac structure (CPT 75572-75573)
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
Several clinical indications listed for CCTA include standard methods of risk assessment, such as the SCORE (Systematic
Coronary Risk Evaluation) or the Framingham risk score calculation. These risk calculation systems include consideration
of the following factors:
●● Age
●● Sex
●● Abnormal Lipid Profile
●● Hypertension
●● Diabetes Mellitus
●● Cigarette Smoking
COMMON DIAGNOSTIC INDICATIONS FOR CCTA:
The following diagnostic indications for CCTA are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
CONGENITAL CORONARY ARTERY ANOMALIES
●● For evaluation of suspected congenital anomalies of the coronary arteries
CONGESTIVE HEART FAILURE/CARDIOMYOPATHY
●● For exclusion of coronary artery disease in patients with low or moderate Coronary Heart Disease Risk (using standard methods of risk assessment, such as the SCORE risk calculation) in whom coronary artery disease has not been
excluded as the etiology of the cardiomyopathy
–– Patients with high Coronary Heart Disease Risk should undergo cardiac catheterization
Or
●● For coronary vein mapping in patients with cardiomyopathy for whom cardiac resynchronization therapy (CRT) is
planned
EVALUATION OF PATIENTS WITH SUSPECTED CORONARY ARTERY DISEASE INCLUDING THOSE WITH PRIOR
ABNORMAL CARDIAC TESTING (MPI OR STRESS ECHO)
●● Patients with abnormal MPI or stress echo within the preceding 60 days suspected to be false positive on the basis of
low Coronary Heart
Disease Risk (using standard methods of risk assessment such as the SCORE risk calculation).
–– In the absence of a contraindication (excluding renal impairment and iodinated contrast agent hypersensitivity)
patients with moderate or high Coronary Heart Disease Risk should be referred for coronary arteriography.
Or
●● Patients with equivocal MPI or stress echo within the preceding 60 days who have low or moderate Coronary Heart
Disease Risk (using standard methods of risk assessment such as the SCORE risk calculation.
–– In the absence of a contraindication (excluding renal impairment and iodinated contrast agent hypersensitivity)
103
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CCTA:
patients with high Coronary Heart Disease Risk should be referred for coronary arteriography.
–– The resulting information from the CCTA should facilitate management decisions and not merely add a new layer of
testing.
–– Patients at low or intermediate coronary heart disease risk (using standard methods of risk assessment, such
as the SCORE risk calculation) being evaluated for non-coronary artery cardiac surgery (including valvular and
ascending aortic surgery) to avoid an invasive angiogram, where all the necessary preoperative information can be
obtained using cardiac CT
●● For evaluation of suspected congenital anomalies of the coronary arteries
EVALUATION OF PATIENTS WITH ESTABLISHED CORONARY ARTERY DISEASE :
●● Noninvasive coronary arterial mapping (including internal mammary artery) in patients with established coronary artery
disease undergoing repeat surgical revascularization
REFERENCE/LITERATURE REVIEW:
1.
ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR Appropriateness Criteria for Cardiac Computed Tomography and Cardiac Magnetic
Resonance Imaging. JACC 2006; 48(7): 1-23.
2.
Model Local Coverage Determination (LCD) Work Group for Cardiac Computed Tomography (CCT) and Computed Tomography
Coronary Angiography (CTCA), comprising of the American College of Cardiology (ACC), Carrier Advisory Committee (CAC),
American College of Radiology (ACR), American Society of Nuclear Cardiology (ASNC), North American Society for Cardiac Imaging
(NASCI) Society of Cardiac Angiography and Intervention (SCAI) and Society of Cardiovascular CT (SCCT).
3.
Datta J, White CS, Gikleson RC, et al. Anomalous Coronary Arteries in Adults: Depiction at Multi-Detector Row CT Angiography.
Radiology 2005; 235: 812-818.
4.
Chiles C, Carr JJ. Vascular Diseases of the Thorax: Evaluation with Multidetector CT. Radiol Clin N Am 2005; 43: 543-569.
5.
Hoffmann U, Ferencik M, Cury R et al. Coronary CT Angiography. J Nucl Med 2006; 47:797-806
6.
DiCarli MF. CT coronary angiography: where does it fit? J Nucl Med. 2006;47:1397–1399.
7.
Conroy R et al, Estimation of 10 year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24:9871003
8.
Meyer T, Martinoff S, Hadamitsky M, et al. Improved Noninvasive Assessment of Coronary Artery Bypass Grafts with 64-Slice
Computed Tomographic Angiography in an Unselected Patient Population. J Am Coll Cardiol 2007; 49:946-50
9.
Ehara M, Kawai M, Surmely JF et al. Diagnostic Accuracy of Coronary In-Stent Restenosis Using 64-Slice Computed Tomography. J
Am Coll Cardiol 2007; 49:951-9
104
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Cardiac Computerized Tomography
(CT) for Quantitative Evaluation of
Coronary Calcification
CPT CODES:
75571…….Computed tomography, heart, without contrast material, with quantitative evaluation of coronary artery calcium
STANDARD ANATOMIC COVERAGE:
●● Coronary Artery Imaging
IMAGING CONSIDERATIONS:
Advantages of Cardiac CT for quantitative evaluation of coronary artery calcification.
–– Rapidly acquired exams.
–– Coronary artery calcification has been shown to correlate with the presence of atheromatous coronary artery disease
Disadvantages of Cardiac CT for quantitative evaluation of coronary artery calcification.
–– Exposure to ionizing radiation
–– No role in the evaluation of patients with symptoms potentially due to coronary artery disease
–– Not clear that risk stratification data provided by quantitative evaluation of coronary artery calcification impacts patient
outcomes
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering safety issues prior to performing quantitative evaluation
of coronary artery calcification
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to cardiac CT for quantitative
evaluation of coronary artery calcification
●● Cardiac CT for quantitative evaluation of coronary artery calcification is not covered by most healthcare insurers as a
screening study
●● Selection of the optimal diagnostic work-up for cardiac evaluation should be made within the context of other available
studies (which include treadmill stress test, stress myocardial perfusion imaging, stress echocardiography, cardiac MRI,
cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information facilitates patient
management decisions and does not merely add a new layer of testing.
●● This guideline pertains to cardiac CT for quantitative evaluation of coronary artery calcification using either Electron
Beam CT (EBCT) or Multi-Detector CT (MDCT)
●● This guideline does not apply to coronary CT angiography (CPT 75574)
●● This guideline does not apply to cardiac CT for evaluation of cardiac structure and function (CPT 75572-75573)
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC CT FOR QUANTITATIVE EVALUATION
OF CORONARY ARTERY CALCIFICATION:
●● The use of Cardiac CT for quantitative evaluation of coronary artery calcification has not been conclusively shown to
impact patient outcomes and is therefore considered to be not medically necessary in all clinical situations.
105
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCES/LITERATURE REVIEW:
1.
ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR Appropriateness Criteria for Cardiac Computed Tomography and Cardiac Magnetic
Resonance Imaging. JACC 2006; 48(7): 1-23.
2.
ACC/ AHA 2007 Clinical Expert Consensus Document on Coronary Artery Calcium Scoring by Computed Tomography In Global
Cardiovascular Risk Assesment and in Evaluation of Patients with Chest Pain. J. Am Coll Cardiol 2007;49: 378-402
106
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Cardiac
CPT CODES:
75557.................Cardiac MRI for morphology and function, without contrast material
75559.................Cardiac MRI for morphology and function, without contrast material, with stress imaging
75561.................Cardiac MRI for morphology and function, without contrast material, followed by contrast material
75563.................Cardiac MRI for morphology and function, without contrast material, followed by contrast material with
stress imaging
75565.................This code is an add-on code to be used in conjunction with 75557, 75559, 75561 and 75563. As such, this
code does not require separate review
CODING CONSIDERATIONS:
Only one procedure in the series 75557-75563 is appropriately reported per session. This code series is not to be used to
report cardiac MRA (see unlisted code 76598)
IMAGING CONSIDERATIONS:
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Gating Issues:
–– As with other cardiac imaging modalities, the acquisition of images is frequently gated to the electrocardiogram.
–– Thus, in patients with irregular heart rhythms, image quality may be suboptimal.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely
patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to cardiac MRI
●● Selection of the optimal diagnostic work-up for cardiac evaluation should be made within the context of other available
studies (which include treadmill stress test, stress myocardial perfusion imaging, stress echocardiography, cardiac MRI,
cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information facilitates patient
management decisions and does not merely add a new layer of testing.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
107
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC MRI:
The following diagnostic indications for Cardiac MRI are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
CORONARY ARTERY DISEASE
Patients who have had a myocardial infarction
●● To assess viability of the infarcted myocardium utilizing delayed hyperenhancement (contrast studies) when other studies (myocardial perfusion imaging or stress echocardiography) have yielded equivocal or indeterminate results
Or
●● To assess LV function post myocardial infarction when there is discordant information from other studies or when other
studies are technically suboptimal
Or
●● To assess mitral valve regurgitation post-myocardial infarction when echocardiography is technically suboptimal.
Or
●● To assess ventricular septal defects post-myocardial infarction when echocardiography is technically suboptimal.
Or
●● To delineate pericardial effusions associated with acute myocardial infarction when echocardiography is technically
suboptimal.
Patients with suspected coronary artery disease
●● For evaluation of patients with suspected congenital coronary anomalies
MYOCARDITIS
●● For the evaluation of patients with suspected myocarditis
Or
●● For follow-up evaluation LV function of patients with an established diagnosis of myocarditis
And
●● Technically suboptimal transthoracic echocardiogram
CARDIOMYOPATHY
●● To assess LV function in patients with cardiomyopathy when there is discordant information from other studies or when
other studies are technically suboptimal
Or
●● Evaluation of patients with chronic and progressive diseases of the myocardium which result in cardiomyopathy including but not limited to the following:
–– Infiltrative Cardiomyopathy – Sarcoidosis; Amyloidosis; Hemochromatosis
–– Hypertrophic Obstructive Cardiomyopathy (HOCM)
–– Non-compaction Cardiomyopathy
Or
●● Evaluation of patients with suspected arrhythmogenic right ventricular dysplasia
Or
●● For coronary vein mapping in patients with cardiomyopathy for whom cardiac resynchronization therapy (CRT) is
planned
CARDIAC ANEURYSM OR PSEUDOANEURYSM
108
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC MRI:
CONGENITAL HEART DISEASE
●● For evaluation of suspected congenital heart disease in patients whose echocardiogram is technically limited or nondiagnostic
Or
●● For further evaluation of complex congenital heart disease in patients who have undergone echocardiography
Or
●● For evaluation of complex congenital heart disease in patients who are less than one year post surgical correction
Or
●● For evaluation of complex congenital heart disease in patients who have new or worsening symptoms and/or a change
in physical examination
Or
●● To assist in surgical planning for patients with complex congenital heart disease
Or
●● For surveillance in asymptomatic patients with complex congenital heart disease in patients who have not had cardiac
CT or cardiac MRI within the preceding year
Or
●● For evaluation of suspected congenital anomalies of the coronary arteries
VALVULAR HEART DISEASE
●● Following inconclusive echocardiography or when echocardiography is not feasible
Or
●● When moderate or severe valvular disease diagnosed using other imaging modalities requires further definition and
that information is likely to affect subsequent management of the patient
–– To assess valvular lesions and measure regurgitant volume, regurgitant fraction, ejection fraction and ventricular
volumes
–– To help determine the timing for valvular surgery
INTRA-CARDIAC AND PARA-CARDIAC MASSES AND TUMORS
●● In patients with a suspected cardiac or para-cardiac mass (thrombus, tumor, etc.) suggested by transthoracic echocardiography, transesophageal echocardiography, blood pool imaging or contrast ventriculography who have not undergone cardiac MRI or cardiac CT within the preceding 60 days
Or
●● In patients with established cardiac or para-cardiac mass (thrombus, tumor, etc.) who are clinically unstable
Or
●● In patients with established cardiac or para-cardiac mass (thrombus, tumor, etc.) who are clinically stable and have not
undergone cardiac MRI or cardiac CT within the preceding year
Or
●● In patients with established cardiac or para-cardiac mass (thrombus, tumor, etc.) who have undergone treatment
(chemotherapy, radiation therapy, thrombolysis, anticoagulation or surgery) within the preceding year and have not had
cardiac MRI or cardiac CT within the preceding 60 days
EVALUATION OF CARDIAC VENOUS ANATOMY
●● For localization of the pulmonary veins in patients with chronic or paroxysmal atrial fibrillation/flutter who are being
considered for first radiofrequency ablation.
Or
●● For reevaluation of the pulmonary veins on one occasion following radiofrequency ablation
Or
●● For re-evaluation of the pulmonary venous anatomy prior to repeat radiofrequency ablation provided that the patient
has not had evaluation of the pulmonary veins following the previous radiofrequency ablation
Or
●● Coronary venous localization prior to implantation of a biventricular pacemaker
109
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC MRI:
EVALUATION OF PERICARDIAL CONDITIONS (PERICARDIAL EFFUSION, CONSTRICTIVE PERICARDITIS, OR
CONGENITAL PERICARDIAL DISEASES)
●● In patients with suspected pericardial constriction
Or
●● In patients with suspected congenital pericardial disease
Or
●● In patients with suspected pericardial effusion (including hemopericardium) who have undergone echocardiography
deemed to be technically suboptimal in evaluation of the effusion
Or
●● In patients whose echocardiogram shows a complex pericardial effusion (loculated, containing solid material)
EVALUATION OF THE THORACIC AORTA - ANEURYSM AND DISSECTION:
●● In patients with confirmed thoracic aortic aneurysm with new or worsening signs/symptoms
Or
●● For ongoing surveillance of stable patients with confirmed thoracic aortic aneurysm who have not undergone imaging
of the thoracic aorta within the preceding six months
Or
●● In patients with suspected aortic dissection
Or
●● In patients with confirmed aortic dissection who have new or worsening symptoms
Or
●● In patients with confirmed aortic dissection in whom surgical repair is anticipated (to assist in preoperative planning)
Or
●● For ongoing surveillance of stable patients with confirmed aortic dissection who have not undergone imaging of the
thoracic aorta within the preceding year
Or
●● In patients with confirmed aortic dissection or thoracic aortic aneurysm who have undergone surgical repair within the
preceding year and have not undergone imaging of the thoracic aorta within the preceding six months
Or
●● In patients who have sustained blunt chest trauma, penetrating aortic trauma or iatrogenic trauma as a result of aortic
instrumentation.
REFERENCE/LITERATURE REVIEW:
1.
ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR Appropriateness Criteria for Cardiac Computed Tomography and Cardiac Magnetic
Resonance Imaging. JACC 2006; 48(7): 1-23. 7.
2.
Pennell D, Udo S, et al. Clinical Indications for Cardiovascular Magnetic Resonance (CMR): Consensus Panel Report. European
Heart Journal 20004: 25 (21): 1940-1965
3.
Edelman RR. Contrast-enhanced MR Imaging of the Heart: Overview of the Literature. Radiology 2004; 232: 653-668.
4.
Reader S, Du Y, Lima, J, et al. Advanced Cardiac MR Imaging of Ischemic Heart Disease. RadioGraphics 2001;21:1047-1074.
5.
Dembo L, Shifrin R, Wolff S. MR Imaging in Ischemic Heart Disease. Radiol Clin N Am 2004; 42: 651-673.
6.
Schwitter J, Nanz D, Kneifel S, et al. Assessment of Myocardial Perfusion in Coronary Artery Disease by Magnetic Resonance.
Circulation 2001:103:2230-2235.
7.
Beek A, Kuhl H, Bondarenko O, et al. Delayed Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Regional
Functional Improvement After Acute Myocardial Infarction. JACC 2003;42:895-904.
8.
Hunold P, Schlosser T, Vogt F, et al. Myocardial Late Enhancement in Contrast-Enhanced Cardiac MRI: Distinction Between Infarction
Scar and Non-Infarction-Related Disease. AJR 2005;184:1420-1426.
9.
Higgins CB, de Roos A. MRI and CT of the Cardiovascular System. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.
10. Kayser H, van der Wall E, Sivananthan M. Diagnosis of Arrhythmogenic Right Ventricular Dysplasia: A Review. RadioGraphics
110
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
2002;22:639-648.
11. Hirsch R, Kilner P, Connelly M, et al. Diagnosis in Adolescents and Adults with Congenital Heart Disease. Circulation 1994;90:29372951.
12. Glockner JF, Johnston DL, McGee KP. Evaluation of Cardiac Valvular Disease with MR Imaging: Qualitative and Quantitative
Techniques. RadioGraphics 2003; 23; e9.
13. Hundley WG, Li H, Willard J, Magnetic Resonance Imaging Assessment of the Severity of Mitral Regurgitation. Circulation 1995; 92:
1151-1158.
14. Grebenc M, Rosado de Christenson M, Burke A, et al. Primary Cardiac and Pericardial Neoplasms: Radiologic-Pathologic
Correlation. RadioGraphics 2000;20:1073-1103.
15. DiBaise L, Fahmy TS. Pulmonary Vein Total Occlusion Following Caheter Ablation for Atrial Fibrillation. J Am Coll Cardiol,
2006;48:2493-2499
16. Purerfellner H. Pulmonary Vein Stenosis: Still the Achilles Heel of Ablation for Artial Fibrillation. European Heart Journal. 2005; 26
(14): 1355-1357
17. Rienmuller R, Groll R, Lipton M. CT and MR Imaging of Pericardial Disease. Radiol Clin N Am 2004;42:587-601.
18. Wang ZF, Reddy GP, Gotway MB, et al. CT and MR Imaging of Pericardial Disease. RadioGraphics 2003; 23: S167-S180.
19. Rienmüller R, Gröll R, Lipton M. CT and MR Imaging of Pericardial Disease. Radiol Clin N Am 2004; 42: 587-601.
20. Weinreb JC, Larson PA, Woodard PK, et al. American College of Radiology Clinical Statement on Noninvasive Cardiac Imaging.
Radiology 2005; 235: 723-72
111
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Positron Emission Tomography (PET)
Myocardial Imaging
CPT CODES:
78491…….PET myocardial perfusion, single study
78492…….PET myocardial perfusion, multiple studies
78459…….PET myocardial, metabolic evaluation
COMMONLY USED RADIOPHARMACEUTICALS
●● Ammonia (13NH3)
●● Rubidium Chloride (82 RbCl)
●● 2-(18F) FLURO-2DEOXY-D-GLUCOSE (FDG)
IMAGING CONSIDERATIONS:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to myocardial PET imaging.
●● Perfusion PET imaging, using Ammonia or Rubidium isotopes, is used to differentiate areas of myocardium with normal
coronary blood flow from those with abnormal coronary blood flow.
●● Rest and or stress Perfusion PET imaging can be performed.
●● Metabolic evaluation (to determine myocardial viability) is performed using PET Flurodeoxyglucose (FDG) imaging.
Metabolic PET imaging has been shown to be useful in selection of patients who are likely to benefit from revascularization
●● Perfusion PET imaging and Metabolic PET imaging may occasionally be appropriate in the evaluation of myocardial
pathologic processes other than coronary artery disease.
●● Isotopes used in PET imaging require special handling arrangements because of their short half-lives.
●● While Rubidium may be produced in a commercially available on-site generator Ammonia requires cyclotron production
●● Selection of the optimal diagnostic imaging for cardiac evaluation should be made within the context of other available
modalities (which include treadmill stress test, stress myocardial perfusion imaging, stress echocardiography, cardiac
MRI, cardiac PET imaging and invasive cardiac/coronary angiography), so that the resulting information facilitates
patient management decisions and does not merely add a new layer of testing.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
REQUIREMENTS FOR MYOCARDIAL PET IMAGING:
●● Perfusion PET imaging is generally (exceptions noted below) to be considered only when a patient has undergone
recent nuclear stress testing or stress echocardiography with equivocal results.
●● In morbidly obese patients (BMI > 40) Perfusion PET imaging can be considered as the initial test (because of a higher
likelihood of technically suboptimal image quality on nuclear stress testing and stress echocardiography in this patient
subgroup).
●● In keeping with CMS guidelines, Perfusion PET myocardial imaging may be considered as an alternative to nuclear
stress testing or stress echocardiography in symptomatic (or asymptomatic intermediate/high risk) patients greater than
65 years old.
●● Perfusion PET myocardial imaging is not appropriate for screening for coronary artery disease in asymptomatic low risk
patients regardless of age or body habitus.
●● PET metabolic imaging is used in patients with established coronary artery disease and left ventricular systolic dysfunc112
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REQUIREMENTS FOR MYOCARDIAL PET IMAGING:
tion when determination of myocardial viability will influence the decision regarding revascularization
●● PET metabolic imaging of the myocardium provides clinically useful information only when the myocardium is deemed
to be nonviable using other imaging modalities (perfusion imaging using thallium / technetium isotopes or echocardiography) or when such imaging modalities are inconclusive regarding the viability status of the myocardium.
COMMON DIAGNOSTIC INDICATIONS FOR CARDIAC PET:
The following diagnostic indications for Cardiac PET are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
PERFUSION PET IMAGING – FOR PATIENTS WHO ARE AT LEAST 65 YRS OLD OR HAVE BMI >40:
●● Evaluation of symptoms consistent with myocardial ischemia to diagnose or exclude coronary artery disease
Or
●● Established coronary artery disease with recurrent atypical symptoms
Or
●● Evaluation of regional myocardial blood flow in patients with multiple vessel coronary artery disease with a view to
identifying a “culprit” lesion for revascularization
Or
●● Evaluation of asymptomatic patients who by virtue of risk factor status are at moderate or high risk of coronary artery
disease.
PERFUSION PET IMAGING – FOR PATIENTS WHO ARE < 65 YRS OLD AND HAVE BMI <40:
●● Further evaluation of patients who have had an equivocal nuclear stress test (MPI) or stress echo within the past 60
days
METABOLIC PET IMAGING FOR EVALUATION OF MYOCARDIAL VIABILITY – WHEN ALL FOUR OF THE
FOLLOWING CONDITIONS ARE MET:
●● The patient has established coronary artery disease
And
●● Left ventricular systolic dysfunction
And
●● Viability status is not defined by other testing
And
●● Revascularization is being considered
METABOLIC PET IMAGING
●● May be considered in the evaluation of some myopathic processes excluding coronary artery disease (for example;
sarcoidosis)
REFERENCE/LITERATURE REVIEW:
1.
Marwick TH, Zuchowski C, et al. Functional Status and Quality of Life in Patients with Heart Failure Undergoing Coronary Bypass
Surgery after Assessment of Myocardial Viability. JACC 1999; 33: 750
2.
Sato H, Iwasaki T, et al. Prediction of Functional Recovery after Revascularization in Coronary Artery Disease Using 18 FDG and 123I
BMIPP SPECT. Chest 2000;117(1):65
3.
Bacharach SL, Bax JJ, et al. PET Myocardial Glucose Metabolism and Perfusion Imaging: Part 1- Guidelines for Patient Preparation
and Data Acquisition and Part 2- Guidelines for Interpretation and Reporting. J Nucl Cardiol 2003; 10: 543-554 (Part 1) and 557-571
(Part 2)
4.
National Coverage Determination for Myocardial Viability (220.6.8), Publication Number 100-3, Implementation Date 04/18/2005
5.
Zaret BL, Bellar GA, Editors. Clinical Nuclear Cardiology. 3rd Edition. Philadelphia: Elsevier Mosby; 2005.
6.
National Coverage Determination for PET for Perfusion of the Heart (220.6.1), Publication Number 100-3, Implementation Date
04/18/2005
7.
ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging. www.acc.org
113
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Abdomen
CPT CODES:
74150.................CT Abdomen; without contrast
74160.................CT Abdomen; with contrast
74170.................CT Abdomen; without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Diaphragmatic Dome to Iliac Crests
●● CT of the abdomen generally includes imaging of the following anatomic structures:
–– Liver and Biliary Tract, including the Gallbladder
–– Pancreas
–– Gastrointestinal tract
–– Spleen
–– Kidneys
–– Adrenal Glands
–– Abdominal Aorta
–– Inferior Vena Cava
–– Abdominal Lymph Nodes
–– Other Retroperitoneal Structures
●● Scan coverage may vary, depending on the specific clinical indication
IMAGING CONSIDERATIONS:
●● Radiation dosimetry: For abdominal CT exams, the typical effective radiation dose is approximately 10 milliSieverts
(mSv). This dosage correlates with an estimated 500 Chest X-Ray equivalents or approximately 4.5 years of natural
background radiation.
●● When ordering an abdominal CT exam, consideration should be given to the benefits as well as the risks from radiation
exposure and ramifications of false positive studies (both financial and psychological), which may require further workup with other imaging modalities or follow-up surveillance with CT.
●● Many health plans do not currently provide benefit coverage for screening exams (in patients without signs and symptoms of disease) that use advanced imaging.
●● Depending on the presenting signs and symptoms, other diagnostic studies, including Ultrasound, Barium Examinations and Endoscopy, may be useful to help focus on the most appropriate advanced imaging exam (such as CT, CTA,
MRI, MRA, MRCP, PET and Radionuclide Imaging).
●● Contrast-enhanced CT may be contraindicated in certain circumstances, such as a documented severe allergic reaction to intravenous contrast material and renal insufficiency.
●● For most gallbladder and hepatobiliary conditions, ascites evaluation and certain renal abnormalities (such as detection
of hydronephrosis and differentiation of cystic, complex and solid lesions), initial imaging should be considered using
Ultrasound.
●● Verification of cystic lesions in abdominal viscera can usually be well-documented with Ultrasound.
●● Ultrasound studies may be limited in obese patients.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
114
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CT:
The following diagnostic indications for Abdominal CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information.
This section contains:
•
•
•
•
•
•
•
General Abdominal CT Indications
Additional Hepatobiliary Indications
Additional Pancreatic Indications
Additional Gastrointestinal Indications
Additional Genitourinary Indications
Additional Splenic Indications
Additional Vascular Indications
General Abdominal CT Indications:
ABDOMINAL PAIN – UNEXPLAINED BY CLINICAL FINDINGS, INCLUDING PHYSICAL EXAMINATION AND OTHER
IMAGING STUDIES
●● Choice of the best diagnostic imaging exam to evaluate abdominal pain is dependent on the location of the pain as
well as other factors (such as severity of pain; associated symptoms; laboratory findings; age – pediatric versus adult
patient).
●● The following studies represent alternative imaging for abdominopelvic pain, in specific clinical scenarios:
–– Ultrasound:
1. For right upper quadrant pain, in all age groups – Abdominal Ultrasound is often the initial study of choice for
evaluation of the Gallbladder and Biliary Tract
2. For abdominal symptoms in the pediatric population – Abdominal Ultrasound frequently provides diagnostic
information, without incurring radiation exposure from CT
3. For pelvic symptoms in females – Pelvic Ultrasound (trans-abdominal and trans-vaginal scans) usually provides
excellent anatomic depiction of the uterus, adnexal structures and cul-de-sac
–– Plain Abdominal Radiographs: For initial evaluation of the bowel gas pattern, abnormal abdominal calcifications,
pneumoperitoneum and other abnormalities
–– Barium Examination or Endoscopy: For symptoms related to the gastrointestinal tract, such as epigastric pain
secondary to peptic ulcer disease
●● In many other circumstances, abdominal CT may be indicated for evaluation of unexplained abdominal pain.
ABNORMAL FINDINGS ON OTHER IMAGING EXAMS THAT REQUIRE FURTHER EVALUATION
●● For example, abdominal radiographs demonstrating abnormal calcifications suspicious for urinary tract calculus disease
ASCITES
CONGENITAL ANOMALY
FEVER OF UNKNOWN ORIGIN
HEMATOMA / HEMORRHAGE
HERNIA
●● For diagnosis of a hernia with suspected complications or presurgical planning including but not limited to the following
types of hernia:
–– Femoral
–– Incisional
–– Internal
–– Inguinal
–– Spigelian (through semilunar line, lateral to rectus abdominis muscle)
–– Ventral
DIFFUSE, UNEXPLAINED LOWER EXTREMITY EDEMA
●● Advanced imaging may be used to exclude an occult pelvic tumor or lesion causing mass effect, not identified by pelvic
ultrasound, as the cause of vascular compression and resultant lower extremity edema
115
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CT:
LYMPHADENOPATHY
●● For initial detection and follow-up
PALPABLE ABDOMINAL MASS
POST-OPERATIVE EVALUATION FOR COMPLICATIONS
●● For suspected or known operative complications, particularly during the initial 6-8 weeks following open or laparoscopic
abdomino-pelvic surgery
PRE-OPERATIVE PLANNING FOR BARIATRIC SURGERY
RETROPERITONEAL ABNORMALITY – FIBROSIS, INFLAMMATION AND NEOPLASM
TRAUMA
●● Following significant blunt or penetrating injury to the Abdomen and Pelvis
TUMOR EVALUATION: PRIMARY ABDOMINAL OR PELVIC NEOPLASM
●● Diagnosis
●● Initial staging
●● Periodic follow-up
Note: For colorectal cancer surveillance, the American Society of Clinical Oncology (ASCO) recommends the following
2005 practice guideline regarding use of CT:
“Panel recommends annual computed tomography (CT) of the chest and abdomen for 3 years after primary therapy for
patients who are at higher risk of recurrence and who could be candidates for curative-intent surgery; pelvic CT scan for
rectal cancer surveillance, especially for patients with several poor prognostic factors, including those who have not been
treated with radiation.”
TUMOR EVALUATION: METASTATIC DISEASE
●● For diagnosis
●● Initial staging
●● Periodic follow-up after treatment
May involve the following anatomic structures: 1
–– Adrenal Glands
–– Biliary Tract
–– Kidneys
–– Liver
–– Lymph Nodes
–– Other abdominal and retroperitoneal structures
–– Pancreas
–– Spleen
–– Stomach, Small Intestines and Colo-rectum
UNEXPLAINED WEIGHT LOSS – SIGNIFICANT WEIGHT LOSS EXCEEDING 10% OF DESIRABLE BODY WEIGHT,
OVER SHORT TIME INTERVAL (SIX MONTHS OR LESS), AFTER INITIAL EVALUATION FOR OTHER CAUSES
Additional Hepatobiliary Indications:
ELEVATED LIVER TRANSAMINASES:
●● Including alanine transaminase (ALT) and aspartate transaminase (AST)
●● Following an abnormal or inconclusive Abdominal Ultrasound
●● In patients on medications known to cause liver transaminase elevation, such as statins for hyperlipidemia, acetaminophen, non-steroidal anti-inflammatory drugs, Dilantin, protease inhibitors and sulfonamides. These medications should
be stopped, whenever possible, and liver chemistries repeated, before performing advanced imaging.
●● Other causes for elevated liver transaminases include excessive alcohol intake, cirrhosis, hepatitis, hepatic steatosis as
well as other hepatic and non-hepatic disorders. Consider additional diagnostic labs such as hepatitis panel and serum
alpha fetoprotein, as appropriate. 2
116
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CT:
CIRRHOSIS AND EVALUATION FOR HEPATOCELLULAR CARCINOMA 3
FOCAL LIVER LESION CHARACTERIZATION
●● Complex or solid, including but not limited to:
–– Focal Nodular Hyperplasia 5
–– Hemangioma 4
–– Hepatic Adenoma 6
–– Other focal pathologic abnormalities in the liver
JAUNDICE
●● With abnormal liver function tests (transaminases) and unexplained icterus, following an Abdominal Ultrasound
7
●● CT imaging used to evaluate for diffuse or multifocal parenchymal liver disease as well as biliary obstruction
HEPATOMEGALY
●● For clinically suspected or worsening hepatic enlargement
Additional Pancreatic Indications:
ACUTE PANCREATITIS, WITH SUSPECTED COMPLICATIONS INCLUDING PANCREATIC NECROSIS, ABSCESS,
PSEUDOCYST(S) AND/OR PERI-PANCREATIC EFFUSIONS: 8
●● Note that patients with mild acute, uncomplicated pancreatitis usually do not require cross-sectional imaging, aside
from Ultrasound identification of gallstones and/or biliary ductal calculi, as a potential cause.
PANCREATIC PSEUDOCYST
●● With prior history of pancreatitis or pancreatic trauma
PANCREATIC MASS
Additional Gastrointestinal Indications:
APPENDICITIS 9
APPENDICEAL OR PERI-APPENDICEAL MASS – UNEXPLAINED ON PHYSICAL EXAM AND OTHER IMAGING
STUDIES
BOWEL OBSTRUCTION
ENTERITIS AND/OR COLITIS 10
DIVERTICULITIS 11-12
INFLAMMATORY BOWEL DISEASE (IBD)
–– Crohn’s Disease13
–– Ulcerative Colitis
●● For follow-up of known IBD, with new signs/symptoms suggesting exacerbation
ISCHEMIC BOWEL 14
Additional Genitourinary Indications:
ADRENAL LESION
●● For characterization of an indeterminate adrenal mass identified on prior imaging 15 – such as a benign adenoma
versus a metastatic deposit
Or
●● When there is biochemical evidence of an adrenal endocrine abnormality
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Diffuse Inflammation / Phlegmon
117
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CT:
–– Fistula
–– Pyelonephritis persistent or worsening symptoms after three days of antibiotics
–– Recurrent cystitis, male with at least two episodes, female with failed antibiotic therapy
HEMATURIA
HYDRONEPHROSIS
●● Evaluation for possible obstructing ureteral or urinary bladder lesion
●● When ultrasound is non-diagnostic or abnormal and unexplained, requiring further evaluation
RENAL LESION
●● Characterization of indeterminate lesion, particularly a mass, demonstrated on prior imaging
RENAL NEOPLASM
●● For diagnosis, initial staging and pre-operative evaluation, re-staging and treatment monitoring
URINARY TRACT CALCULUS DISEASE AND/OR UNILATERAL FLANK PAIN
16
UNDESCENDED (CRYPTORCHIDISM) TESTICLE
Additional Splenic Indications:
INDETERMINATE SPLENIC LESION ON PRIOR IMAGING, SUCH AS ULTRASOUND
SPLENIC PARENCHYMAL, SUBCAPSULAR OR PERI-SPLENIC HEMATOMA
SPLENOMEGALY
●● For clinically suspected or worsening splenic enlargement
Additional Vascular Abnormalities:
ANEURYSM OF ABDOMINAL AORTA OR BRANCH VESSEL
●● For initial diagnosis, particularly in obese patients
●● For follow-up imaging may be performed with Ultrasound in non-surgical and non-obese patients, who are asymptomatic and have aneurysms < 5 cm in diameter
●● For pre-operative assessment or prior to percutaneous endovascular stent graft placement
●● For post-operative surveillance
●● For suspected complication of an aneurysm, such as aneurismal rupture or infection – requiring urgent imaging
AORTIC DISSECTION
●● May evaluate with either CT or CTA
–– Usually results from subdiaphragmatic extension of a Thoracic Aortic Dissection
ENDOVASCULAR STENT GRAFT PLACEMENT FOR ABDOMINAL AORTIC ANEURYSM 17-19
●● May evaluate with either CT or CTA
●● Primary concerns are for monitoring the aneurysm size, identifying stent migration and detecting endoleaks.
●● Prior to and as surveillance following placement of stent gaft
●● Society of Interventional Radiology - Post-procedure recommended follow-up in asymptomatic patients:
1. Initial baseline CTA is recommended in less than 1 month post-stent graft placement
2. If there are no problems related to the stent graft, then scans are obtained at 6 month intervals, for 2 years
3. Thereafter, an annual follow-up CTA may be performed
●● If symptoms/problems related to the stent graft occur, then more frequent imaging may be needed
THROMBOSIS IN THE SYSTEMIC AND PORTAL VENOUS CIRCULATIONS
●● May follow initial evaluation with Doppler Ultrasound
118
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
1.
Hopper KD, Singapuri K, Finkel A, Body CT and Oncologic Imaging. Radiology 2000; 215:27-40.
2.
Giboney Paul T. Mildly Elevated Liver Transaminase Levels in the Asymtomatic Patient. American Academy of Family Physicians.
March 2005;71: .
3.
Arguedas Miguel R, Chen VK, Eloubeidi MA, et al. Screening for Hepatocellular Carcinoma in Patients with Hepatitis C Cirrhosis: A
Cost-Utility Analysis. American Journal of Gastroenterology. 2003;98:679-690.
4.
Kim T, Federie MP, Baron RL, Peterson MS. Et al. Discrimination of Small Hepatic Hemangiomas from Hypervascular Malignant
Tumors Smaller than 3 cm with Three-Phase Helical CT. Radiology 2001;219:699-706.
5.
Brancatelli G, Federle MP, Grazioli L, et al. Focal Nodular Hyperplasia:CT Findings with Emphasis on Multiphasic Helical CT in 78
Patients. Radiology 2001;219:61-68.
6.
Grazioli L, Federle MP, Brancatelli G, et al. Hepatic Adenomas:Imaging and Pathologic Findings. RadioGraphics 2001;21:877-894.
7.
Saini S, Imaging of the Hepatobiliary Tract. N Eng J Med 1997;336:1889-1894.
8.
Balthazar EJ, Acute Pancreatitis:Assessment of Severity with Clinical and CT Evaluation. Radiology 2002;223:603-68.
9.
Paulson EK, Kalady MF, Pappas TN, Suspected Appendicitis. N Engl J Med 2003;348:236-242.
10. Kirkpatrick IDC, Greenberg HM. Evaluating the CT Diagnosis of Clostridium Difficile Colitis: Should CT Guide Therapy?
AJR2001;176:635-639
11. Stollman NH, Raskin JB. Diagnosis and Management of Diverticular Disease of the Colon in Adults. Am J Gastro 1999;94:3110-3121.
12. Ferzoco, LB., Raptopoulos, V., Silen, W., Acute Diverticulitis. N Engl J Med 1998;338:1521-1526.
13. Hanauer SB, Sandborn W. Management of Crohn’s Disease in Adults. The American Journal of Gastroenterology 2001;96:635-643
14. Wiesner W, Khurana B, Ji H, et al. CT of Acute Bowel Ischemia. Radiology 2003;226:635-650.
15. Mayo-Smith WW, Boland GW, Noto RB, et al. From the RSNA Refresher Courses. State-of-the-Art Adrenal Imaging. RadioGraphics
2001;21:995-1012.
16. Teichman JMH, Acute Renal Colic from Ureteral Calculus. N Engl J Med 2004;350:684-693.
17. Geller SC. Imaging Guidelines for Abdominal Aortic Aneurysm Repair with Endovascular Stent Grafts. J Vasc Interv Radiol 2003; 14:
S263-S264.
18. Armerding MD, Rubin GD, Beaulieu CF, et al. Aortic Aneurysmal Disease: Assessment of Stent-Graft Treatment – CT versus
Conventional Angiography. Radiology 2000; 215: 138-146.
19. Tolia AJ, Landis R, Lamparello P, et al. Type II Endoleaks after Endovascular Repair of Abdominal Aortic Aneurysms: Natural History.
Radiology 2005;235:683-686.
119
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Abdomen
CPT CODES:
74181.................MRI of Abdomen, without contrast
74182.................MRI of Abdomen, with contrast
74183.................MRI of Abdomen, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the specific clinical indication for the abdominal MRI. General landmarks extend from the
diaphragmatic dome to the iliac crests.
●● Anatomic structures may include the liver, pancreas, spleen, adrenal glands, kidneys and remainder of the abdomen.
●● Magnetic Resonance Cholangiopancreatography (MRCP) is used to evaluate the biliary and pancreatic ductal systems
non-invasively and is covered under CPT code 74181, Abdominal MRI without contrast.
IMAGING CONSIDERATIONS:
●● Abdominal MRI studies are usually targeted for further evaluation of indeterminate or questionable findings, identified
on more standard imaging exams such as Ultrasound and CT.
●● For evaluation of vascular abnormalities such as renal artery stenosis and celiac/superior mesenteric artery stenosis (in
chronic mesenteric ischemia), Doppler Ultrasound, MRA or CTA should be considered as the preferred imaging modalities.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
●● When Magnetic Resonance Cholangiopancreatography (MRCP) is requested in addition to a MRI of the abdomen,
only one MRI abdomen code should be allowed. Additional sequences obtained for MRCP are considered part of the
primary procedure.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to abdominal MRI.
120
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL MRI:
The following diagnostic indications for Abdominal MRI are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
INDETERMINATE ABDOMINAL MASS
●● For further evaluation and characterization of indeterminate lesions arising in the solid abdominal viscera and surrounding anatomic structures, including but not limited to the following anatomic sites:
–– Liver – Characterization of focal hepatic lesions, both benign (e.g., cavernous hemangioma; focal nodular hyperplasia) and malignant (e.g., hepatocellular carcinoma; liver metastases) in etiology 1
–– Pancreas
–– Spleen
–– Kidney – Evaluation of an indeterminate renal mass 2
–– Adrenal – Characterization of an adrenal mass, including differentiation of adrenal adenoma from metastasis 2
–– Other Abdominal and Retroperitoneal anatomic structures
–– Assess vascular invasion or compression by pelvic or renal tumor
TUMOR EVALUATION: PRIMARY NEOPLASM AND METASTATIC DISEASE
●● MRI staging and follow-up evaluation for biopsy-proven malignancies of the following structures: 1, 3-4, 7-11
–– Liver 1
–– Pancreas
–– Spleen
–– Kidney 2
–– Adrenal 2
–– Lymph Nodes
–– Other Abdominal and Retroperitoneal Neoplasms
–– Assess vascular invasion or compression by pelvic or renal tumor
●● Disseminated intra-abdominal tumor
–– Uterus, Cervix, Vagina or Vulva
–– Rectum
–– Testicles
–– Ovaries
–– Urinary Bladder
–– Prostate
–– Musculosketal Tumor
LYMPHADENOPATHY
●● When Abdominal CT is non-diagnostic
●● May be useful for differentiating enlarged lymph nodes from vascular structures (with flow void on MRI), as follow-up
from an unenhanced abdominal CT exam
DIFFUSE LIVER DISEASE
●● Following an inconclusive or abnormal Abdominal Ultrasound or CT
121
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL MRI:
●● Including the following hepatic disorders:
–– Cirrhosis
–– Chronic Hepatitis
–– Hemochromatosis
INFECTIOUS OR INFLAMMATORY PROCESS
●● CT is usually the initial imaging modality of choice for infectious and inflammatory conditions
●● Including but are not limited to the following:
–– Abscess
–– Diffuse Inflammation / Phlegmon
CONGENITAL ANOMALY
IN PATIENTS WITH APPROPRIATE AIM GUIDELINE INDICATIONS FOR ABDOMINAL CT, WHEN CT IS EXPECTED
TO BE LIMITED, DUE TO CONTRAINDICATIONS (SUCH AS A HISTORY OF ALLERGIC REACTION TO IODINATED
RADIOGRAPHIC CONTRAST MATERIAL)
FOR CLARIFICATION OF QUESTIONABLE OR ABNORMAL FINDINGS ON OTHER ABDOMINAL IMAGING STUDIES
MAGNETIC RESONANCE CHOLANGIOPANCREATOGRAPHY (MRCP) DIAGNOSTIC INDICATIONS:
●● Covered by CPT Code 74181 – MRI of Abdomen, without contrast
●● MRCP is performed using heavily T2-weighted images to display hyperintense signal from static or slowly-moving fluidfilled structures 3-9
●● Advantages of MRCP, when compared with ERCP, include: non-invasive imaging technique; no ionizing radiation; no
anesthesia required; often better anatomic visualization proximal to a ductal obstruction; may detect extra-ductal abnormalities not evident by ERCP
●● Disadvantages of MRCP, when compared with ERCP, include: limited spatial resolution and therefore, less sensitive
exam for detection of more subtle abnormalities; only provides diagnostic information, compared with ERCP which has
both diagnostic and therapeutic capabilities; as a consequence, MRCP may result in a delay for needed therapeutic
interventions performed with ERCP (such as sphincterotomy, stone extraction, stent placement); susceptibility artifact
on MRI may occur (for example, from metallic foreign bodies/surgical clips in the right upper abdominal quadrant) and
result in image degradation
●● Significant upper abdominal ascites and large cystic/fluid-filled structures may impede visualization of the pancreatic
and biliary ductal systems with MRCP.
COMMON INDICATIONS:
IN PATIENTS WITH SUSPECTED BILIARY AND/OR PANCREATIC DUCTAL ABNORMALITIES, FOLLOWING
INCOMPLETE OR FAILED ERCP, OR WHEN ERCP CANNOT BE SAFELY PERFORMED (for example, a significant
allergy to iodinated contrast material which would complicate performance of an ERCP)
WHEN ERCP IS PRECLUDED BY ANATOMIC CONSIDERATIONS, SUCH AS A BILIARY-ENTERIC SURGICAL
ANASTOMOSIS (for example, from previous choledochojejunostomy and partial gastrectomy with Billroth II
anastomosis)
TO EVALUATE PATIENTS WITH BILIARY TRACT DILATATION, BIOCHEMICAL EVIDENCE OF BILIARY
OBSTRUCTION AND/OR UNEXPLAINED RUQ PAIN, INCLUDING DETECTION OF CHOLEDOCHOLITHIASIS, BENIGN
STRICTURE, MASS LESION (BENIGN OR MALIGNANT), FISTULA AND OTHER PATHOLOGIC PROCESSES
STATUS POST CHOLECYSTECTOMY AND HIGH CLINICAL SUSPICION FOR CHOLEDOCHOLITHIASIS
FOLLOWING PANCREATIC DUCTAL TRAUMA, WHEN ERCP IS CONTRAINDICATED, TO ASSESS DUCTAL
INTEGRITY AND PSEUDOCYST FORMATION
122
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON INDICATIONS:
IN RECURRENT ACUTE PANCREATITIS OF UNKNOWN ETIOLOGY, TO IDENTIFY POSSIBLE CAUSES SUCH AS
CONGENITALLY ABERRANT DUCTAL ANATOMY (for example, Choledochal Cyst, Pancreas Divisum and Annular
Pancreas)
PRIMARY SCLEROSING CHOLANGITIS
REFERENCE/LITERATURE REVIEW:
1.
Kamel IR, Bluemke DA. MR Imaging of Liver Tumors. Radiol Clin N Am 2003; 41: 51-65.
2.
Israel GM, Krinsky GA. MR Imaging of the Kidneys and Adrenal Glands. Radiol Clin N Am 2003; 41: 145-159.
3.
Keogan MT, Edelman RR. Technologic Advances in Abdominal MR Imaging. Radiology 2001; 200: 310-320.
4.
Motohara T, Semelka RC, Bader TR. MR Cholangiopancreatography. Radiol Clin N Am 2003; 41: 89-96.
5.
Barish MA, Yucel EK, Ferrucci JT. Magnetic Resonance Cholangiopancreatography. N Engl J Med 1999; 341: 258-264.
6.
Park M-S, Kim TK, Kim KW, et al. Differentiation of Extrahepatic Bile Duct Cholangiocarcinoma from Benign Stricture: Findings at
MRCP versus ERCP. Radiology 2004; 223: 234-240.
7.
Vitellas KM, Keogan MT, Spritzer CE, Nelson RC. MR Cholangiopancreatography of Bile and Pancreatic Duct Abnormalities with
Emphasis on the Single-Shot Fast Spin-Echo Technique. RadioGraphics 2000; 20: 939-957.
8.
Adamek H, Weiz M, Breer H. et al. Value of Magnetic-Resonance Cholangiopancreatography (MRCP) after Unsuccessful
Endoscopic-Retrograde Cholangiopancreatography (ERCP). Endoscopy 1999; 29: 741-744.
9.
Fayad LM, Kowalski T, Mitchell DG. MR Cholangiopancreatography : Evaluation of Common Pancreatic Disease. Radiol Clin N Am
2003; 41: 97-114.
123
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA) and
MR Angiography (MRA)
Abdomen
CPT CODES:
74175.................Computed tomographic angiography, abdomen, with contrast material(s), including noncontrast images, if
performed, and image postprocessing
74185.................Magnetic resonance angiography, abdomen; without or with contrast
STANDARD ANATOMIC COVERAGE:
●● Anatomic coverage for CPT codes 74175 (CTA) and 74184 (MRA) includes the major arterial and/or venous structures
in the abdomen, from the diaphragmatic dome through the iliac crests.
IMAGING CONSIDERATIONS:
●● For CTA of the abdominal aorta and iliofemoral vasculature with lower extremity runoff, use CPT code 75635.
●● For MRA of the abdominal aorta and iliofemoral vasculature, with lower extremity runoff, use the following CPT codes:
–– CPT 74185 MRA Abdomen x 1
and
–– CPT 73725 MRA Lower Extremities x 2
●● Doppler Ultrasound examination is an excellent means to identify a wide range of vascular abnormalities, both arterial and venous in origin. This well-established modality should be considered in the initial evaluation of many vascular
disorders listed below.
●● MRA should also be considered in patients with a history of either previous contrast reaction to intravascular administration of iodinated radiographic contrast material or atopy.
●● CTA should be considered, unless contraindicated, in patients who cannot undergo MRA, due to either an inability
to tolerate MRA examination (for example, secondary to claustrophobia) or biosafety issues. Among the generally
recognized contraindications to MRI exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR imaging, as well as other devices
considered unsafe in MRI scanners (including implanted materials in the patient as well as external equipment, such as
portable oxygen tanks).
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CTA/MRA:
The following diagnostic indications for Abdominal CTA and MRA are accompanied by pre-test considerations as well as supporting clinical
data and prerequisite information:
ANEURYSM 1-2
Of the Abdominal Aorta and/or Branch Vessel
PSEUDOANEURYSM
Of the Abdominal Aorta and/or Branch Vessel
DISSECTION 3
Of the Abdominal Aorta and/or Branch Vessel
ARTERIOVENOUS MALFORMATION (AVM) OR FISTULA (AVF)
124
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CTA/MRA:
STENOSIS OR OCCLUSION OF THE ABDOMINAL AORTA OR BRANCH VESSELS 4
●● Due to:
–– Atherosclerosis
–– Thromboembolism
–– Other causes
MESENTERIC ISCHEMIA
●● May have an acute or chronic and progressive (Intestinal or Abdominal Angina) presentation 5
VENOUS THROMBOSIS OR OCCLUSION
●● Consider initial evaluation with Doppler Ultrasound
–– Portal and Mesenteric Venous Systems
–– Systemic Venous System:
1. IVC Thrombosis or Extrinsic Compression /Occlusion, for example by tumor
2. Hepatic Vein Thrombosis (Budd-Chiari Syndrome)
3. Renal Vein Thrombosis
4. Other major abdominal vessels
VASCULAR EVALUATION OF LOWER EXTREMITY CLAUDICATION 6-7
●● CPT Coding for Abdominal Aortic and Run-Off evaluation, which involves image post-processing for three-dimensional
reconstructions, should follow:
1. For CTA: 75635 - CTA of Abdominal Aorta and Bilateral Iliofemoral Lower Extremity Run-Off without contrast, followed by re-imaging with contrast
2. For MRA: 74185 - Abdominal MRA and 73725 - Bilateral Lower Extremity MRAs
●● Either CTA or MRA is indicated in a patient with classic presenting symptoms of claudication from peripheral arterial
disease, such as diminished/absent peripheral pulses and cramping pain in the legs (particularly in the thighs and
calves) when walking, which disappears at rest. Other clinical findings which support non-invasive assessment with
CTA or MRA include lower extremity cutaneous ulcers and gangrene.
●● In the absence of classic peripheral symptoms of claudication, then obtain a vascular surgical consultation and perform
lower extremity non-invasive arterial evaluation, which may include the following: segmental systolic pressure measurements, segmental limb plethysmography, continuous wave Doppler and duplex ultrasonography. Ankle brachial indices
(ABI) of < 0.9 may undergo advanced imaging. Rest pain or severe occlusive disease typically occurs with ABI < 0.5.
RENAL ARTERY STENOSIS 8-13
●● For suspected Renovascular Hypertension from Renal Artery Stenosis, required clinical information includes at least
2-3 serial blood pressure measurements and a list of current anti-hypertensive medications. Renal Artery CTA or MRA
may be performed in the following clinical scenarios: 8-12
●● Refractory hypertension, in patients on therapeutic doses of 3 or more anti-hypertensive medications. Note that for
hypertension easily managed on 1-2 anti-hypertensive medications, imaging may not be required.
●● Hypertension with renal failure or progressive renal insufficiency
●● Accelerated or malignant hypertension
●● Abrupt onset of hypertension
●● Hypertension developing in patients younger than 35 years of age 13
●● Deteriorating renal function on angiotensin converting enzyme inhibition
●● Abdominal bruit, suspected to originate in the renal artery
●● Generalized arteriosclerotic occlusive disease with hypertension 13
●● Unilateral small renal size (> 1.5 cm difference in renal size on Ultrasound)
●● Following an abnormal renal Doppler Ultrasound suggestive of renal artery stenosis
●● Recurrent, unexplained episodes of “flash” pulmonary edema
Note: Doppler Ultrasound examination of the renal arteries has been shown in the peer-reviewed literature to be efficacious
and cost-efficient in detecting renal artery stenosis. However, it is less sensitive than MRA for detection of renovascular
hypertension. 12
125
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL CTA/MRA:
PORTAL HYPERTENSION
PRE-OPERATIVE EVALUATION PRIOR TO LIVER RESECTION OR LIVER TRANSPLANTATION
PRIOR TO RESECTION OF PELVIC NEOPLASM
SURGICAL PLANNING FOR A KIDNEY DONOR
SURGICAL PLANNING FOR RENAL TUMOR RESECTION
VASCULITIS
TRAUMATIC VASCULAR INJURY
SUSPECTED LEAK FOLLOWING ABDOMINAL AORTIC SURGERY
ENDOVASCULAR STENT GRAFT PLACEMENT FOR ABDOMINAL AORTIC ANEURYSM REPAIR 13-15
●● Stent grafts must be documented as MR-compatible prior to MRA
●● Primary concerns are for monitoring the aneurysm size, identifying stent migration and detecting endoleaks.
●● Post-procedure follow-up in asymptomatic patients: 13
–– Initial baseline CTA is recommended in less than 1 month post-stent graft placement
–– If there are no problems related to the stent graft, then scans are obtained at 6 month intervals, for 2 years
–– Thereafter, an annual follow-up CTA may be performed
●● If symptoms/problems related to the stent graft occur, then more frequent imaging may be needed.
VASCULAR ANATOMIC DELINEATION FOR OTHER SURGICAL AND INTERVENTIONAL PROCEDURES
●● Including but not limited to the following clinical scenarios:
–– For surgical porto-systemic shunt placement or TIPS (transjugular intrahepatic porto-systemic shunt) 16
–– For hepatic chemo-embolization procedure
–– For vascular delineation prior to operative resection of an abdominal neoplasm 17-18
–– For pre- and post-procedure evaluation of bypass grafts, stents and vascular anastomoses
VASCULAR INVASION OR COMPRESSION BY AN ABDOMINAL TUMOR
UNEXPLAINED BLOOD LOSS IN THE ABDOMEN
REFERENCE/LITERATURE REVIEW:
1.
Glockner JF. Three Dimensional Galdolinium-Enhanced MR Angiography: Applications for Abdominal Imaging. RadioGraphics
2001;21:357-370
2.
Frauenfelder T, Wildermuth S, Marincel B, Boehm T. Nontraumatic Emergent Abdominal Vascular Conditions: Advantages of MultiDetector Row CT and Three-Dimensional Imaging. RadioGraphics. 2004;24:481-496.
3.
Talti S, Lipton MJ, Davison BD, et al. MR Imaging of Aortic and Peripheral Vascular Disease. Radiograhics 2003; 23: S59-S78.
4.
Martin ML, Tay KH, Flak B, et al. Multidetector CT Angiography of the Aortoiliac System and Lower Extemities: A Prospective
Comparison with Digital Subtraction Angiography. AJR 2003; 180 :1085-1091.
5.
Cademartiri F, Raaijmakers RHJM, Kuiper JW, et al. Multi-Detector Row CT Angiography in Patients with Abdominal Angina.
RadioGraphics 2001;.24:.969-984.
6.
Visser K, Kock MCJM, Kuntz KM, et al. Cost-Effectiveness Targets for Multi-Detector Row CT Angiography in the Work-Up of Patients
with Intermittent Claudication. Radiology 2003; 227: 647-656.
7.
Leiner T, Kessels,AGH, Nelemans PJ, et al. Peripheral Arterial disease: comparison of color Duplex US and Contrast-Enhanced MR
Angiography for Diagnosis. Radiology 2005; 235: 699-708.
8.
Safian RD, Textor SC. Renal-Artery Stenosis. N Engl J Med 2001; 344(6): 431-442.
126
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
9.
Soulez G, Olivia VL, Turpin S, et al. Imaging of Renovascular Hypertension: Respective Values of Renal Scintigraphy, Renal Doppler
US, and MR Angiography. Radiographics 2000; 20: 1355-1368.
10. Masunaga H, Takehara Y, Isoda H, et al. Assessment of Gadolinium-Enhanced Time-Resolved Three Dimensional MR Angiography
for Evaluating Renal Artery Stenosis. AJR 2001; 176: 1213-1219.
11. Korst MBJM, Joosten FBM, Postma CT, et al. Accuracy of Normal-Dose Contrast-Enhanced MR Angiography in Assessing Renal
Artery Stenosis and Accessory Renal Arteries. AJR 2000; 174: 629-634.
12. Bolduc JP, Oliva VL, Therasse E. Diagnosis and Treatment of Renovascular Hypertension: A Cost Benefit Analysis. AJR 2005; 184:
931-937.
13. ACR Appropriateness Criteria for Renovascular Hypertension. Accessed from the ACR website on January 20, 2008. Last review
date for this ACR Appropriateness Criteria: 2007.
14. Geller SC. Imaging Guidelines for Abdominal Aortic Aneurysm Repair with Endovascular Stent Grafts. J Vasc Interv Radiol 2003; 14:
S263-S264.
15. Armerding MD, Rubin GD, Beaulieu CF, et al. Aortic Aneurysmal Disease: Assessment of Stent-Graft Treatment – CT versus
Conventional Angiography. Radiology 2000; 215: 138-146.
16. Tolia AJ, Landis R, Lamparello P, et al. Type II Endoleaks after Endovascular Repair of Abdominal Aortic Aneurysms: Natural History.
Radiology 2005;235:683-686.
17. Chopra S, Dodd GD, Chintapalli KN, et al. Transjugular Intrahepatic Portosystemic Shunt: Accuracy of Helical CT Angiography in the
Detection of Shunt Abnormalities. Radiology 2000; 215: 115-122.
18. Sahani D, Saini S, Pena C, et al. Using Multidetector CT for Preoperative Vascular Evaluation of Liver Neoplasms: Technique and
Results. AJR 2002; 179: 53-59.
19. Matsuki M, Kani H, Tatsugami F, et al. Preoperative Assessment of Vascular Anatomy Around the Stomach by 3D Imaging Using
MDCT Before Laparoscopy-Assisted Gastrectomy. AJR 2004; 183: 145-151.
127
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA)
Abdominal Aorta and Bilateral
Iliofemoral Lower Extremity Run-Off
CPT CODES:
75635..................Computed tomographic angiography, abdominal aorta and bilateral iliofemoral lower extremity runoff, with
contrast material(s), including noncontrast images, if performed, and image postprocessing.
STANDARD ANATOMIC COVERAGE:
●● CPT code 75635 (CTA) includes imaging of the abdominal aorta and bilateral iliofemoral vasculature, in addition to
lower extremity run-off to the level of the popliteal regions at the knees and often extending through the calf vasculature
to the ankle and foot regions.
IMAGING CONSIDERATIONS:
●● Doppler Ultrasound examination is an excellent means to identify a wide range of vascular abnormalities, both arterial and venous in origin. This well-established modality should be considered in the initial evaluation of many vascular
disorders listed below.
●● CTA should be considered, unless contraindicated, in patients who cannot undergo MRA, due to either an inability
to tolerate MRA examination (for example, secondary to claustrophobia) or biosafety issues. Among the generally
recognized contraindications to MRI exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR imaging, as well as other devices
considered unsafe in MRI scanners (including implanted materials in the patient as well as external equipment, such as
portable oxygen tanks).
●● CT Angiography utilizes the data obtained from standard CT imaging. A request for a CT exam, in addition to a CTA of
the same anatomic area during the same imaging session, is inappropriate.
●● Additional, separate requests for a CTA of the pelvis and/or the lower extremities, along with CPT code 75635, are
inappropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CTA OF THE ABDOMINAL AORTA AND BILATERAL
ILIOFEMORAL ARTERIES WITH LOWER EXTREMITY RUN-OFF:
The following diagnostic indications for CTA of the Abdominal Aorta and Bilateral Iliofemoral Arteries with Lower Extremity Run-Off are accompanied by pre-test considerations as well as supporting clinical data and prerequisite information:
ANEURYSM 1-2
Of the Abdominal Aorta and/or Branch Vessel
PSEUDOANEURYSM
Of the Abdominal Aorta and/or Branch Vessel
DISSECTION 3
Of the Abdominal Aorta and/or Branch Vessel
STENOSIS OR OCCLUSION OF THE ABDOMINAL AORTA OR BRANCH VESSELS 4
●● Due to:
–– Atherosclerosis
128
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CTA OF THE ABDOMINAL AORTA AND BILATERAL
ILIOFEMORAL ARTERIES WITH LOWER EXTREMITY RUN-OFF:
–– Thromboembolism
–– Other causes
VASCULAR EVALUATION OF LOWER EXTREMITY CLAUDICATION 5
●● Either CTA or MRA is indicated in a patient with classic presenting symptoms of claudication from peripheral arterial
disease, such as diminished/absent peripheral pulses and cramping pain in the legs (particularly in the thighs and
calves) when walking, which disappears at rest. Other clinical findings which support non-invasive assessment with
CTA or MRA include lower extremity cutaneous ulcers and gangrene.
●● In the absence of classic peripheral symptoms of claudication, then obtain a vascular surgical consultation and perform
lower extremity non-invasive arterial evaluation, which may include the following: segmental systolic pressure measurements, segmental limb plethysmography, Continuous wave Doppler and duplex ultrasonography. Ankle brachial
indices (ABI) of < 0.9 may undergo advanced imaging. Rest pain or severe occlusive disease typically occurs with ABI
< 0.5.
CRITICAL ISCHEMIA OF LOWER EXTREMITIES
●● For example, in diabetic vascular disease with ischemic ulcers or gangrene
SURGICAL PLANNING FOR A KIDNEY DONOR
PRE- AND POST-OPERATIVE OR INTERVENTIONAL VASCULAR PROCEDURE – FOR LUMINAL PATENCY VERSUS
RE-STENOSIS (DUE TO ATHEROSCLEROSIS, THROMBOEMBOLISM, INTIMAL HYPERPLASIA OR OTHER CAUSE)
AS WELL AS POST-PROCEDURAL COMPLICATIONS (SUCH AS PSEUDOANEURYSMS RELATED TO SURGICAL
BYPASS GRAFTS OR VASCULAR STENTS)
REFERENCE/LITERATURE REVIEW:
1.
Glockner JF. Three Dimensional Galdolinium-Enhanced MR Angiography: Applications for Abdominal Imaging. RadioGraphics
2001;21:357-370.
2.
Frauenfelder T, Wildermuth S, Marincel B, Boehm T. Nontraumatic Emergent Abdominal Vascular Conditions: Advantages of MultiDetector Row CT and Three-Dimensional Imaging. RadioGraphics. 2004; 24: 481-496.
3.
Talti S, Lipton MJ, Davison BD, et al. MR Imaging of Aortic and Peripheral Vascular Disease. Radiograhics 2003; 23: S59-S78.
4.
Martin ML, Tay KH, Flak B, et al. Multidetector CT Angiography of the Aortoiliac System and Lower Extremities: A Prospective
Comparison with Digital Subtraction Angiography. AJR 2003; 180; 1085-1091.
5.
Visser K, Kock MC, Kuntz KM, et al. Cost-Effectiveness Targets for Multi-Detector Row CT Angiography in the Work-Up of Patients
with Intermittent Claudication. Radiology 2003; 227: 647-656.
129
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Pelvis
CPT CODES:
72192.................CT of Pelvis, without contrast
72193.................CT of Pelvis, with contrast
72194.................CT of Pelvis without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Iliac Crests to Ischial Tuberosities
●● Pelvic CT may include imaging of the following anatomic structures:
–– Urinary Bladder
–– Lower Retroperitoneum
–– Iliofemoral Lymph Nodes
–– Sacrum and Iliac Bones
–– Sacroiliac (SI) Joints
–– Prostate Gland and Seminal Vesicles in Males
–– Uterus, Cervix, Vagina and Ovaries in Females
●● Coverage may vary, depending on the specific clinical indication for the exam
IMAGING CONSIDERATIONS:
●● Radiation Dosimetry: For Pelvic CT scans performed without contrast, the typical effective radiation dose is 10 milliSieverts (mSv). This dosage correlates with an estimated 500 Chest X-Ray equivalents or approximately 4.5 years of
natural background radiation.
●● When ordering a Pelvic CT exam, consideration should be given to the benefits as well as the risks from radiation exposure and ramifications of false positive studies (both financial and psychological), which may require further work-up
with other imaging modalities or follow-up surveillance with CT.
●● Most health plans do not currently provide benefit coverage for screening exams that use advanced imaging.
●● Depending on the patient’s presenting signs and symptoms, pelvic imaging should be directed to the most appropriate
modality for clinical work-up. Techniques available for diagnostic evaluation of the pelvis include the following:
–– Pelvic ultrasound (trans-abdominal and trans-vaginal) as the initial imaging modality for most gynecologic abnormalities
–– Transabdominal pelvic sonography is also used for urinary bladder assessment, such as post-void residual urine
volume
–– Endoscopy and barium examinations are well-established procedures for intestinal evaluation
–– Cystoscopy is often used for lower urinary tract assessment
–– Pelvic CT
–– Pelvic MRI
●● Consider using Ultrasound for indications such as differentiation of cystic, complex and solid lesions and initial ascites
evaluation.
●● Verification of cystic lesions in the pelvis is usually well-established with Ultrasound.
●● Ultrasound studies may be limited in obese patients.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
130
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC CT:
The following diagnostic indications for Pelvic CT are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information.
This section contains:
•
•
•
•
•
General Pelvic CT Indications
Additional Intestinal Indications
Additional Genitourinary Indications
Additional Vascular Indications
Additional Osseous Indications
General Pelvic CT Indications:
ABNORMAL FINDINGS ON OTHER IMAGING EXAMS THAT REQUIRE FURTHER EVALUATION
●● For example, pelvic radiographs demonstrating abnormal calcifications suspicious for urinary tract calculus disease
ASCITES
●● Following preliminary evaluation on a Pelvic Ultrasound
CONGENITAL ANOMALY
FEVER OF UNKNOWN ORIGIN
HEMATOMA / HEMORRHAGE
HERNIA
●● For diagnosis of a hernia with suspected complications or presurgical planning including but not limited to the following
types of hernia:
–– Femoral
–– Incisional
–– Internal
–– Inguinal
–– Spigelian (through semilunar line, lateral to rectus abdominis muscle)
–– Ventral
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Diffuse Inflammation / Phlegmon
–– Fistula
DIFFUSE, UNEXPLAINED LOWER EXTREMITY EDEMA
●● Advanced imaging may be used to exclude an occult pelvic tumor or lesion causing mass effect, not identified by pelvic
ultrasound, as the cause of vascular compression and resultant lower extremity edema
LYMPHADENOPATHY
●● For initial detection and follow-up
PALPABLE PELVIC MASS
●● When undiagnosed by ultrasound in female patients
PELVIC PAIN – UNEXPLAINED BY CLINICAL FINDINGS, PHYSICAL EXAMINATION AND OTHER IMAGING STUDIES
●● Choice of the best diagnostic imaging exam to evaluate pelvic pain is dependent on the location of the pain as well
as other factors (such as severity of pain; associated symptoms; laboratory findings; and age - pediatric versus adult
patient).
●● The following studies represent alternative imaging, in specific clinical scenarios
–– Ultrasound:
1. For pelvic symptoms in the pediatric population – Ultrasound frequently provides diagnostic information, without
incurring radiation exposure from CT
2. For pelvic symptoms in females with non-specific lower pelvic pain– Pelvic Ultrasound (trans-abdominal and
131
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC CT:
trans-vaginal scans) usually provides excellent anatomic depiction of the uterus, adnexal structures and cul-desac
–– Barium examination or Endoscopy: For symptoms related to the intestinal tract, such as pelvic pain secondary to
inflammatory bowel disease
●● In other circumstances, pelvic CT may be indicated for evaluation of unexplained pelvic pain.
POST-OPERATIVE EVALUATION FOR COMPLICATIONS
●● For suspected or known operative complications, particularly during the initial 6-8 weeks following open or laparoscopic
abdomino-pelvic surgery
PRE-OPERATIVE PLANNING FOR BARIATRIC SURGERY
TUMOR EVALUATION: PRIMARY NEOPLASM OR METASTATIC DISEASE 2-6
●● For initial staging and periodic follow-up
●● May involve:
–– Colo-rectum
–– Gynecologic structures: Uterus, Cervix or Ovaries
–– Lymph Nodes
–– Prostate Gland
–– Small Intestines
–– Testicles
–– Urinary Bladder
–– Other pelvic and lower retroperitoneal structures
TRAUMA – SIGNIFICANT PELVIC INJURY
UNEXPLAINED WEIGHT LOSS – SIGNIFICANT WEIGHT LOSS EXCEEDING 10% OF DESIRABLE BODY WEIGHT,
OVER SHORT TIME INTERVAL (SIX MONTHS OR LESS) AFTER INITIAL EVALUATION FOR OTHER CAUSES
Additional Intestinal Indications:
APPENDICITIS 7
APPENDICEAL OR PERI-APPENDICEAL MASS – UNEXPLAINED ON PHYSICAL EXAM AND OTHER IMAGING
STUDIES
BOWEL OBSTRUCTION
ENTERITIS AND/OR COLITIS 9
DIVERTICULITIS10-11
INFLAMMATORY BOWEL DISEASE (IBD)
–– Crohn’s Disease12
–– Ulcerative Colitis
●● For follow-up of known IBD, with new signs/symptoms suggesting exacerbation
ISCHEMIC BOWEL 13-14
Additional Genitourinary Indications:
HYDRONEPHROSIS
●● Evaluation for possible obstructing ureteral or urinary bladder lesion
●● When ultrasound is non-diagnostic or abnormal and unexplained, requiring further evaluation
HEMATURIA
URINARY TRACT CALCULUS DISEASE AND/OR UNILATERAL FLANK PAIN
132
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC CT:
UNDESCENDED (CRYPTORCHIDISM) TESTICLE
Additional Vascular Abnormalities:
ANEURYSM OF LOWER ABDOMINAL AORTA, ILIAC ARTERIES OR BRANCH VESSELS
●● Initial diagnosis, particularly in obese patients
●● Follow-up imaging with Ultrasound in non-surgical and non-obese patients, who are asymptomatic and have aneurysms < 5 cm in diameter
●● Suspected complication of an aneurysm, such as rupture or infection16 – requiring urgent imaging
AORTO-ILIAC DISSECTION
●● May evaluate with either CT or CTA
ENDOVASCULAR REPAIR OF ABDOMINAL AORTIC ANEURYSM 17-20
●● May evaluate with CT or CTA
●● Primary concerns are in monitoring aneurysm size, identifying stent migration and detecting endoleaks.
●● Prior to and surveillance following placement of Stent Graft
●● Society of Interventional Radiology: Post-procedure recommended follow-up in asymptomatic patients: 18
–– Initial baseline CTA is recommended in less than 1 month post-stent graft placement
–– If there are no problems related to the stent graft, then scans are obtained at 6 month intervals for 2 years
–– Thereafter, an annual follow-up CTA may be performed
●● If symptoms/problems related to the stent graft occur, then more frequent imaging may be needed
ARTERIOVENOUS MALFORMATION (AVM)
●● CTA or MRA are the modalities of choice for evaluating these vascular lesions
THROMBOSIS IN THE SYSTEMIC AND PORTAL VENOUS CIRCULATIONS
●● May follow initial evaluation with Doppler Ultrasound
Additional Osseous Indications:
STRESS / INSUFFICIENCY FRACTURE IN THE PELVIS
●● Radiographs are a required first step, before other imaging is performed 21
ACUTE PELVIC TRAUMA, FOR FRACTURE EVALUATION
●● Radiographs should be performed prior to CT in most circumstances
HIP OSTEONECROSIS
●● When the patient is unable to undergo hip MRI or Radionuclide Bone Scintigraphy, which are more sensitive modalities
than hip CT, in individuals with normal hip films or inconclusive radiographic evidence of hip osteonecrosis
22
●● In known hip osteonecrosis and femoral head collapse by radiography, CT may help in the pre-operative planning, to
define the location and extent of disease in patients with painful hips 22
OSSEOUS TUMOR EVALUATION IN THE PELVIS
●● Radionuclide Bone Scintigraphy is a frequently used imaging modality for detection of skeletal metastases from most
primary tumors and usually precedes request for CT. 23
●● When an abnormality is detected on bone scanning, radiographs of the anatomic area are usually performed to document whether finding(s) may be secondary to a benign process, such as osteoarthritis or fracture.
CHRONIC HIP PAIN, WITH NEGATIVE X-RAY AND SUSPECTED OSTEOID OSTEOMA 24
●● Requires negative or inconclusive hip radiographs prior to CT imaging
SACROILIITIS
●● Following sacroiliac joint radiographs
SUSPICION OF PELVIC OSTEOMYELITIS OR SEPTIC ARTHRITIS
●● When the patient is unable to undergo Hip MRI or Radionuclide Bone Scintigraphy
133
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
1.
Van den Berg, Jos C. Inguinal hernias:MRI and ultrasound. Magn Reson Imaging Clin N Am 2004;12:689-705.
2.
Hopper KD, Singapuri K, Finkel A. Body CT and Oncologic Imaging. Radiology 2000; 215:27-40.
3.
Jeong YY, Kang HK, Chung TW, et al. Uterine Cervical Carcinoma After Therapy: CT and MR Imaging Findings. RadioGraphics
2003;23:969-981.
4.
Cannistra S. Cancer of the Ovary. N Engl J Med 2004;351:2519-2529.
5.
Jung SE. Lee JM, Rha SE, et al. CT and MR Imaging of Ovarian Tumors with Emphasis on Differential Diagnosis
6.
Bosl GJ, Motzer RJ. Testicular Germ-Cell Cancer. N Engl J Med 1997;337:242-254.
7.
Paulson EK, Kalady MF, Pappas TN. Suspected Appendicitis. N Engl J Med 2003;348:236-242.
8.
Maglinte DT, Heitkamp DE, Howard TJ, et al. Current Concepts in Imaging of Small Bowel Obstruction. Radiol Clinics N Am 2003;
31(2): 263-283.
9.
Kirkpatrick IDC, Greenberg HM. Evaluating the CT Diagnosis of Clostridium Difficile Colitis: Should CT Guide Therapy? AJR
2001;176:635-639.
10. Ferzoco, LB, Raptopoulos, V, Silen W. Acute Diverticulitis. N Engl J Med 1998;338:1521-1526.
11. Stollman NH, Raskin JB. Diagnosis and Management of Diverticular Disease of the Colon in Adults. Am J Gastroenterology 1999 94:
3110-3121.
12. Hanauer SB, Sandborn W. Management of Crohn’s Disease in Adults. Am J Gastroenterology 2001;96:635-643
13. Wiesner W, Khurana B, Ji H, et al. CT of Acute Bowel Ischemia. Radiology 2003; 226: 635-650.
14. Kim AY, Ha HK. Evaluation of Suspected Mesenteric Ischemia: Efficacy of Radiologic Studies. Radiol Clinics N Am 2003; 41(2): 327342.
15. Teichman JMH. Acute Renal Colic from Ureteral Calculus. N Engl J Med 2004; 350: 684-693.
16. Macedo TA, Stanson AW, Oderich GS, et al. Infected Aortic Aneurysms: Imaging Findings. Radiology 2004; 231: 250-257.
17. Rozenbilt AM, Patlas M, Rosenbaum AT, et al. Detection of Endoleaks after Endovascular Repair of Abdominal Aortic Aneurysm:
Value of Unenhanced and Delayed Helical CT Acquisitions. Radiology 2003; 227: 426-433.
18. Geller SC. Imaging Guidelines for Abdominal Aortic Aneurysm Repair with Endovascular Stent Grafts. J Vasc Interv Radiol 2003; 14:
S263-S264.
19. Armerding MD, Rubin GD, Beaulieu CF, et al. Aortic Aneurysmal Disease: Assessment of Stent-Graft Treatment – CT versus
Conventional Angiography. Radiology 2000; 215: 138-146.
20. Tolia AJ, Landis R, Lamparello P, et al. Type II Endoleaks after Endovascular Repair of Abdominal Aortic Aneurysms: Natural History.
Radiology 2005;235:683-686.
21. ACR Appropriateness Criteria. Musculoskeletal Imaging. For Clinical Condition: Stress/Insufficiency Fracture, Including Sacrum,
Excluding Other Vertebrae (Variant 1: Suspect Stress/Insufficiency Fracture. First Imaging Modality). 2006.
22. ACR Appropriateness Criteria. Musculoskeletal Imaging. For Clinical Condition: Unilateral and Bilateral Hip Pain. 2006.
23. ACR Appropriateness Criteria. Musculoskeletal Imaging. For Clinical Condition: Metastatic Bone Disease. 2006.
24. ACR Appropriateness Criteria. Musculoskeletal Imaging. For Clinical Condition: Chronic Hip Pain (Variant 3: X-Ray negative,
suspect osteoid osteoma). 2006.
134
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Pelvis
CPT CODES:
72195.................MRI of Pelvis, without contrast
72196.................MRI of Pelvis, with contrast
72197.................MRI of Pelvis, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Iliac Crests to Ischial Tuberosities
●● Pelvic MRI may include imaging of the following anatomic structures:
–– Urinary Bladder
–– Lower Retroperitoneum
–– Iliofemoral Lymph Nodes
–– Sacrum and Iliac Bones
–– Sacroiliac (SI) Joints
–– Prostate Gland and Seminal Vesicles in Males
–– Uterus, Cervix, Vagina and Ovaries in Females
●● Coverage may vary, depending on the specific clinical indication for the exam
IMAGING CONSIDERATIONS:
●● Depending on the patient’s presenting signs and symptoms, pelvic imaging should be directed to the most appropriate
modality for clinical work-up
●● Diagnostic evaluation of the pelvis may be performed with:
–– Pelvic ultrasound (trans-abdominal and trans-vaginal), which is the initial imaging modality for most gynecologic
abnormalities
–– Transabdominal pelvic sonography is also used for urinary bladder assessment, such as post-void residual urine
volume
–– Endoscopy and barium examinations are well established procedures for intestinal evaluation
–– Cystoscopy is often used for lower urinary tract assessment
–– Pelvic CT
–– Pelvic MRI
●● Verification of cystic lesions in the pelvis is usually well-established with Ultrasound.
●● Ultrasound studies may be limited in obese patients.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Authorization requests for
multiple MRI imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not allowed.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
135
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to pelvic MRI.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC MRI:
The following diagnostic indications for Pelvic MRI are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
ADENOMYOSIS OF THE UTERUS 1-2
ADNEXAL MASS(ES) 1,3-5
●● Usually performed to further evaluate problematic cases which are initially detected on pelvic ultrasound. Some uses
of Pelvic MRI in adnexal lesion evaluation include: differentiation of an ovarian mass from an exophytic or pedunculated fibroid; more confident identification of an ovarian dermoid/teratoma, following an ultrasound or other imaging exam;
and demonstration of findings to suggest malignancy in some adnexal masses.
●● Includes assessment of suspected hemorrhagic cystic lesions and tumors
CONGENITAL ANOMALY
ENDOMETRIOSIS 1
●● Following pelvic ultrasound
INFECTIOUS OR INFLAMMATORY PROCESS OF THE SOFT TISSUES
●● CT is usually the imaging modality of choice for infectious and inflammatory conditions
●● Including but not limited to the following: 1,4
–– Abscess
–– Diffuse Inflammation
OSTEOMYELITIS OR SEPTIC ARTHRITIS
BILATERAL HIP OSTEONECROSIS (AVASCULAR NECROSIS; ASEPTIC NECROSIS) 5
●● MRI is the modality of choice for evaluation of osteonecrosis, particularly when there is clinical suspicion with hip pain
and negative or inconclusive hip radiographs
LYMPHADENOPATHY
●● When Pelvic CT is non-diagnostic
●● May be useful for differentiating enlarged lymph nodes from vascular structures (with flow void on MRI), as follow-up
from an unenhanced pelvic CT exam
136
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC MRI:
OBSTETRICAL ABNORMALITIES PELVIMETRY OR OBSTETRICAL COMPLICATIONS
TUMOR EVALUATION: PRIMARY NEOPLASM AND METASTATIC DISEASE
●● MRI staging and follow-up evaluation for biopsy-proven malignancies of the following structures: 1, 3-4, 7-11
–– Liver 1
–– Pancreas
–– Spleen
–– Kidney 2
–– Adrenal 2
–– Lymph Nodes
–– Other Abdominal and Retroperitoneal Neoplasms
–– Assess vascular invasion or compression by pelvic or renal tumor
●● Disseminated intra-abdominal tumor
–– Uterus, Cervix, Vagina or Vulva
–– Rectum
–– Testicles
–– Ovaries
–– Urinary Bladder
–– Prostate
–– Musculosketal Tumor
UTERINE ARTERY EMBOLIZATION PROCEDURES 12
●● Often performed for treatment of persistent bleeding from uterine fibroids
PELVIC FLOOR DISORDERS ASSOCIATED WITH URINARY OR BOWEL INCONTINENCE
PELVIC VENOUS THROMBOSIS EVALUATION
SACROILIAC JOINT IMAGING FOR SACROILIITIS
SACRAL INSUFFICIENCY FRACTURE
SIGNIFICANT PELVIC INJURY
●● Following pelvic or sacral radiographs
UNDESCENDED (CRYPTORCHIDISM) TESTICLE
IN PATIENTS WITH APPROPRIATE AIM GUIDELINE INDICATIONS FOR PELVIC CT, WHEN CT IS EXPECTED TO
BE LIMITED, DUE TO CONTRAINDICATIONS (SUCH AS A HISTORY OF ALLERGIC REACTION TO IODINATED
RADIOGRAPHIC CONTRAST MATERIAL)
FOR CLARIFICATION OF QUESTIONABLE OR ABNORMAL FINDINGS ON OTHER PELVIC IMAGING STUDIES
REFERENCE/LITERATURE REVIEW:
1.
Fielding JR. MR Imaging of the Female Pelvis. Radiol Clin N Am 2003; 41: 179-192.
2.
Tami K, Kaori T, Ito T, et al. MR Imaging Findings of Adenomyosis: Correlation with Histopathologic Features and Diagnostic Pitfalls.
RadioGraphics 2005:25:21-40.
3.
Kinkel K, Lu Y, Mehdizade A, et al. Intermediate Ovarian Mass at US: Incremental Value of Second Imaging Test for Characterization
– Meta-analysis and Bayesian Analysis. Radiology (published online before print) 2005;10:1148.
4.
Szklaruk J, Tamm EP, Choi H, et al. MR Imaging of Common and Uncommon Large Pelvic Masses. RadioGraphics 2003;403-424.
5.
Andrews CL. Evaluation of the Marrow Space of the Adult Hip. RadioGraphics 2000; 20: S27-S42.
6.
Dohke M, Watanabe Y, Okumura A, et al. Comprehensive MR Imaging of Acute Gynecologic Diseases. RadioGraphics 2000; 20:
1555-1566.
7.
Scheidler J, Heuck AF. Imaging of Cancer of the Cervix. Radiol Clinics N Am 2002; 40: 577-590.
137
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
8.
Jeong YY, Kang HK, Chung TW, et al. Uterine Cervical Carcinoma After Therapy: CT and MR Imaging Findings. RadioGraphics
2003; 23: 969-981.
9.
Ascher SM, Reinhold C. Imaging of Cancer of the Endometrium. Radiol Clinics N Am 2002; 40: 563-576.
10. Cannistra SA. Cancer of the Ovary. N Engl J Med 2004; 351: 2519-2529.
11. Jung SE, Lee JM, Rha SE, et al. CT and MR Imaging of Ovarian Tumors with Emphasis on Differential Diagnosis. RadioGraphics
2002; 22: 1305-1325.
12. Pinto I, Chimeno P, Romo A, et al. Uterine Fibroids: Uterine Artery Embolization versus Abdominal Hysterectomy for Treatment – A
Prospective, Randomized, and Controlled Clinical Trial. Radiology 2003; 226: 425-431.
138
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA) and
MR Angiography (MRA)
Pelvis
CPT CODES:
72191.................Computed tomographic angiography, pelvis, with contrast material(s), including noncontrast images, if
performed, and image postprocessing
72198.................Magnetic resonance angiography, pelvis; without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Iliac Crests to Ischial Tuberosities
●● Scan coverage may vary, depending on the specific clinical indication for the exam.
IMAGING CONSIDERATIONS:
●● Doppler Ultrasound examination is an excellent means to identify a wide range of vascular abnormalities, both arterial and venous in origin. This well-established modality should be considered in the initial evaluation of many vascular
disorders listed below.
●● MRA should also be considered in patients with a history of either previous contrast reaction to intravascular administration of iodinated radiographic contrast material or atopy.
●● CTA should be considered, unless contraindicated, in patients who cannot undergo MRA, due to either an inability
to tolerate MRA examination (for example, secondary to claustrophobia) or biosafety issues. Among the generally
recognized contraindications to MRI exam performance are indwelling pacemakers or implantable cardioverter-defibrillators (ICD), intracranial aneurysm surgical clips that are not compatible with MR imaging, as well as other devices
considered unsafe in MRI scanners (including implanted materials in the patient as well as external equipment, such as
portable oxygen tanks).
●● CT Angiography utilizes the data obtained from standard CT imaging. A request for a CT exam in addition to a CT Angiography of the same anatomic area during the same imaging session is inappropriate.
●● Requests for Pelvic CTA or MRA in addition to a request for a MRA or CTA abdominal aorta and bilateral iliofemoral
lower extremity runoff study are not allowed.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC CTA/MRA:
The following diagnostic indications for Pelvic CTA and MRA are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information:
ANEURYSM
Of the Abdominal Aorta and/or Branch Vessel
PSEUDOANEURYSM
Of the Abdominal Aorta and/or Branch Vessel
DISSECTION 1
Of the Abdominal Aorta and/or Branch Vessel
INTRAMURAL HEMATOMA
Of the Abdominal Aorta and/or Branch Vessel
139
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR PELVIC CTA/MRA:
ARTERIOVENOUS MALFORMATION (AVM) OR FISTULA (AVF)
STENOSIS OR OCCLUSION OF THE LOWER ABDOMINAL AORTA, ILIAC ARTERIES OR OTHER BRANCH VESSELS
IN THE PELVIS
2-3
●● Due to:
–– Atherosclerosis
–– Thromboembolism
–– Other Causes
MESENTERIC ISCHEMIA
●● May have an acute or chronic and progressive (intestinal or abdominal angina) presentation
VENOUS THROMBOSIS OR OCCLUSION
●● Consider initial evaluation with Doppler Ultrasound
–– Systemic Venous System, including Lower IVC and/or Ilio-femoral Luminal Thrombosis
–– Mesenteric Venous System in Pelvis
TRAUMATIC VASCULAR INJURY
SURGICAL PLANNING FOR A KIDNEY DONOR
SUSPECTED LEAK FOLLOWING ABDOMINAL AORTIC SURGERY
ENDOVASCULAR STENT GRAFT PLACEMENT FOR ABDOMINAL AORTIC ANEURYSM REPAIR 4-6
●● Stent grafts must be documented as MR-compatible prior to MRA
●● Primary concerns are in monitoring aneurysm size, identifying stent migration and detecting endoleaks.
●● Prior to and surveillance following placement of a Stent Graft
●● Society of Interventional Radiology: Post-procedure recommended follow-up in asymptomatic patients: 4
–– Initial baseline CTA is recommended in less than 1 month post-stent graft placement
–– If there are no problems related to the stent graft, then scans are obtained at 6 month intervals for 2 years
–– Thereafter, an annual follow-up CTA may be performed
●● If symptoms/problems related to the stent graft occur, then more frequent imaging may be needed
VASCULAR ANATOMIC DELINEATION FOR OTHER SURGICAL AND INTERVENTIONAL PROCEDURES:
●● For vascular delineation prior to operative resection of a pelvic neoplasm
●● For pre- and post-procedure evaluation of bypass grafts, stents and vascular anastomoses
VASCULAR INVASION OR COMPRESSION BY A PELVIC TUMOR
VASCULITIS
UNEXPLAINED BLOOD LOSS IN THE PELVIS
REFERENCE/LITERATURE REVIEW:
1.
Frauenfelder MD, Thomas et al. Nontraumatic Emergent Abdominal Vascular Conditions: Advantages of Multi-Detector Row CT and
Three-Dimensional Imaging. RadioGraphics. 2004;24:496
2.
Martin Michael L. Multidector CT angiography of the Aortoiliac System and Lower Extremities: A Prospective Comparison with Digital
Subtraction Angiography. AJR, April 2003;180:1085-1091
3.
Ruehm Stefan G, et al. Pelvic and Lower Extremity Arterial Imaging: Diagnostic Performance of Three-Dimensional ContrastEnhanced MR Angiography. AJR, 2000. 174:1127-1135
4.
Gellar M.D, Stuart C, et al. Imaging Guidelines for Abdominal Aortic Aneurysm Repair with Endovascular Stent Grafts. J. Vasc Interv
Radiol 2003; 14:S263-S264
5.
Armerding MD, Mark D, et al. Aortic Aneurysmal Disease: Assessment of Stent-Graft Treatment-CT versus Conventional
Angiography. Radiology. 2000;215:138-146
140
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
6.
Tolia M.D, Anuj J. Type II Endoleaks after Endovascular Repair of Abdominal Aortic Aneurysms: Natural History. Radiology
2005;235:683-686
141
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Abdomen & Pelvis Combination
CPT CODES:
74150.................CT of Abdomen, without contrast
74160.................CT of Abdomen, with contrast
74170.................CT of Abdomen, without contrast, followed by re-imaging with contrast
and
72192.................CT of Pelvis, without contrast
72193.................CT of Pelvis, with contrast
72194.................CT of Pelvis without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Diaphragmatic Dome through Pubic Symphysis
●● Scan coverage may vary, depending on the specific clinical indication
IMAGING CONSIDERATIONS:
●● Radiation dosimetry: For abdominal and pelvic CT combinations, the typical effective radiation dose is approximately
10 milliSieverts (mSv) for each individual component, or 20 mSv for the combination study. For both exams, this
dosage correlates with an estimated 1,000 Chest X-Ray equivalents or approximately 9 years of natural background
radiation.
●● When ordering abdominal and pelvic CT exams, consideration should be given to the benefits as well as the risks from
radiation exposure and ramifications of false positive studies (both financial and psychological), which may require
further work-up with other imaging modalities or follow-up surveillance with CT.
●● Many health plans do not currently provide benefit coverage for screening exams (in patients without signs and symptoms of disease) that use advanced imaging.
●● Contrast-enhanced CT may be contraindicated in certain circumstances, such as a documented severe allergic reaction to intravenous contrast material and renal insufficiency.
●● Depending on the presenting signs and symptoms, other diagnostic studies including Ultrasound, Barium Examinations
and Endoscopy may be useful.
●● For most gallbladder and hepatobiliary conditions, certain renal abnormalities (for example, detection of hydronephrosis
and differentiation of cystic, complex and solid lesions) and ascites evaluation, initial imaging should be considered
using Ultrasound.
●● Verification of cystic lesions in the abdominal and pelvis is usually well-established with Ultrasound.
●● Ultrasound studies may be limited in obese patients.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL & PELVIC COMBINATION CT:
The following diagnostic indications for Combined Abdominal and Pelvic CT Exams are accompanied by pre-test considerations as well as
supporting clinical data and prerequisite information
This section contains:
•
General Abdominal and Pelvic CT Indications
•
Additional Gastrointestinal Indications
•
Additional Pancreatic Indications
•
Additional Genitourinary Indications
142
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL & PELVIC COMBINATION CT:
•
Additional Vascular Indications
General Abdominal and Pelvic CT Indications:
ABDOMINAL / PELVIC PAIN – unexplained by clinical findings, physical examination and other imaging studies
●● Choice of the best diagnostic imaging exam to evaluate abdominal pain is dependent on the location of the pain as well
as other factors (such as severity of pain; associated symptoms; laboratory findings; and age - pediatric versus adult
patient).
●● The following studies represent alternative imaging of abdomino-pelvic pain, in specific clinical scenarios
–– Ultrasound:
1. For right upper quadrant pain, in all age groups – Abdominal Ultrasound is often the initial study of choice
2. For abdominal symptoms in the pediatric population – Abdominal Ultrasound frequently provides diagnostic
information, without incurring radiation exposure from CT
3. For pelvic symptoms in females – Pelvic Ultrasound (trans-abdominal and trans-vaginal scans) usually provides
excellent anatomic depiction of the uterus, adnexal structures and cul-de-sac
–– Plain Abdominal Radiographs: For initial evaluation of the bowel gas pattern, abnormal abdominal calcifications,
pneumoperitoneum and other abnormalities
–– Upper or Lower Endoscopy: For symptoms related to the gastrointestinal tract, such as epigastric pain secondary
to peptic ulcer disease
ABNORMAL FINDINGS ON OTHER IMAGING EXAMS THAT REQUIRE FURTHER EVALUATION
●● For example, pelvic radiographs demonstrating abnormal calcifications suspicious for urinary tract calculus disease
ASCITES
●● Following preliminary evaluation on an Abdominal Ultrasound
CONGENITAL ANOMALY
FEVER OF UNKNOWN ORIGIN
HEMATOMA / HEMORRHAGE
HERNIA
●● For diagnosis of a hernia with suspected complications or presurgical planning including but not limited to the following
types of hernia:
–– Femoral
–– Incisional
–– Internal
–– Inguinal
–– Spigelian (through semilunar line, lateral to rectus abdominis muscle)
–– Ventral
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Diffuse Inflammation / Phlegmon
–– Fistula
DIFFUSE, UNEXPLAINED LOWER EXTREMITY EDEMA
●● Advanced imaging may be used to exclude an occult pelvic tumor or lesion causing mass effect, not identified by pelvic
ultrasound, as the cause of vascular compression and resultant lower extremity edema
LYMPHADENOPATHY
●● For initial detection and follow-up
143
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL & PELVIC COMBINATION CT:
PALPABLE ABDOMINAL / PELVIC MASS
●● When undiagnosed by ultrasound in female patients
POST-OPERATIVE EVALUATION FOR COMPLICATIONS
●● For suspected or known operative complications, particularly during the initial 6-8 weeks following open or laparoscopic
abdomino-pelvic surgery
PRE-OPERATIVE PLANNING FOR BARIATRIC SURGERY
RETROPERITONEAL ABNORMALITY - FIBROSIS, INFLAMMATION AND NEOPLASM
TRAUMA
●● Following significant blunt or penetrating injury to the Abdomen and Pelvis
TUMOR EVALUATION: PRIMARY NEOPLASM
●● For diagnosis
●● Initial staging
●● Periodic follow up
Note: For colorectal cancer surveillance, the American Society of Clinical Oncology (ASCO) recommends the following
2005 practice guideline regarding use of CT:
“Panel recommends annual computed tomography (CT) of the chest and abdomen for 3 years after primary therapy for
patients who are at higher risk of recurrence and who could be candidates for curative-intent surgery; pelvic CT scan for
rectal cancer surveillance, especially for patients with several poor prognostic factors, including those who have not been
treated with radiation.”
TUMOR EVALUATION: METASTATIC DISEASE
●● For diagnosis
●● Initial staging
●● Periodic follow up
May involve the following anatomic areas: 2-6
–– Adrenal Glands
–– Biliary Tract
–– Liver
–– Lymph Nodes
–– Other abdomino-pelvic and retroperitoneal structures
–– Pancreas
–– Spleen
–– Stomach, Small Intestines or Colo-Rectum
–– Urinary Bladder
UNEXPLAINED WEIGHT LOSS – SIGNIFICANT WEIGHT LOSS EXCEEDING 10% OF DESIRABLE BODY WEIGHT,
OVER SHORT TIME INTERVAL (SIX MONTHS OR LESS), AFTER INITIAL EVALUATION FOR OTHER CAUSES
Additional Gastrointestinal Indications:
APPENDICITIS 8
APPENDICEAL OR PERI-APPENDICEAL MASS – UNEXPLAINED ON PHYSICAL EXAM AND OTHER IMAGING
STUDIES
DIVERTICULITIS 9-10
INFLAMMATORY BOWEL DISEASE (IBD)
–– Crohn’s Disease12
–– Ulcerative Colitis
●● For follow-up of known IBD, with new signs/symptoms suggesting exacerbation
144
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL & PELVIC COMBINATION CT:
BOWEL OBSTRUCTION
ISCHEMIC BOWEL 12
ENTERITIS AND/OR COLITIS 13
Additional Pancreatic Indications:
ACUTE PANCREATITIS, WITH SUSPECTED COMPLICATIONS INCLUDING PANCREATIC NECROSIS, ABSCESS,
PSEUDOCYST(S) AND/OR PERI-PANCREATIC EFFUSIONS: 8
–– Note that patients with mild acute, uncomplicated pancreatitis usually do not require cross-sectional imaging, aside
from Ultrasound identification of gallstones and/or biliary ductal calculi, as a potential cause.
PANCREATIC PSEUDOCYST
●● With prior history of pancreatitis or pancreatic trauma
PANCREATIC MASS
Additional Genitourinary Tract Indications:
URINARY TRACT CALCULUS DISEASE AND/OR UNILATERAL FLANK PAIN 14
HYDRONEPHROSIS
●● Evaluation for possible obstructing ureteral or urinary bladder lesion
●● When ultrasound is non-diagnostic or abnormal and unexplained, requiring further evaluation
HEMATURIA
RENAL NEOPLASM
●● For diagnosis, initial staging and pre-operative evaluation, re-staging and treatment monitoring
UNDESCENDED (CRYPTORCHIDISM) TESTICLE
Additional Vascular Abnormalities:
ANEURYSM OF ABDOMINAL AORTA OR BRANCH VESSEL
●● Initial diagnosis, particularly in obese patients
●● Follow-up imaging may be performed with ultrasound in non-surgical and non-obese patients, who are asymptomatic
and have aneurysms < 5 cm in diameter
●● Pre-operative assessment or prior to percutaneous endovascular stent graft placement
●● Post-operative surveillance
●● Suspected complication of an aneurysm, such as aneurysmal rupture or infection – requiring urgent imaging
AORTIC DISSECTION
●● May evaluate with either CT or CTA
●● Usually results from subdiaphragmatic extension of a Thoracic Aortic Dissection
ENDOVASCULAR STENT GRAFT PLACEMENT FOR ABDOMINAL AORTIC ANEURYSM 15-17
●● May evaluate with CT or CTA
●● Primary concerns are in monitoring aneurysm size, identifying stent migration and detecting endoleaks.
●● Prior to and surveillance following placement of Stent Graft
●● Society of Interventional Radiology: Post-procedure recommended follow-up in asymptomatic patients: 18
–– Initial baseline CTA is recommended in less than 1 month post-stent graft placement
–– If there are no problems related to the stent graft, then scans are obtained at 6 month intervals for 2 years
–– Thereafter, an annual follow-up CTA may be performed
●● If symptoms/problems related to the stent graft occur, then more frequent imaging may be needed
ARTERIOVENOUS MALFORMATION (AVM)
●● CTA or MRA are the modalities of choice for evaluating these vascular lesions
145
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ABDOMINAL & PELVIC COMBINATION CT:
THROMBOSIS IN THE SYSTEMIC AND PORTAL VENOUS CIRCULATIONS
●● May follow initial evaluation with Doppler Ultrasound
REFERENCE/LITERATURE REVIEW:
1.
Van den Berg, Jos C. Inguinal Hernias: MRI and Ultrasound. Seminars in Ultrasound, CT and MRI 2002; 23: 156-73.
2.
Hopper, Kenneth D., Singapuri, Kishor, Finkel, Arkady. Body CT and Oncologic Imaging. Radiology 2000; 215: 27-40.
3.
Jeong, Yong Yeon, Kang, Heoung Keun, Chung, Tae Woong, et al. Uterine Cervical Carcinoma after Therapy: CT and MR Imaging
Findings. RadioGraphics 2003; 23: 969-981.
4.
Cannistra, Stephen A. Cancer of the Ovary. New England Journal of Medicine 2004; 351: 2519-2529.
5.
Jung, Seung Eun, Lee, Jae Mun, Rha, Sung Eun, et al. CT and MR Imaging of Ovarian Tumors with Emphasis on Differential
Diagnosis. RadioGraphics 2002; 22: 1305-1325.
6.
Bosl, George J., Motzer, Robert J. Testicular Germ-Cell Cancer. New England Journal of Medicine 1997; 337: 242-254.
7.
Balthazar, Emil J. Acute Pancreatitis: Assessment of Severity with Clinical and CT Evaluation. Radiology 2002; 223: 603-613.
8.
Paulson, Erik K., Kalady, Matthew F., Pappas, Theodore N. Suspected Appendicitis. New England Journal of Medicine 2003; 348(3):
236-242.
9.
Stollman, Neill H., Baskin, Jeffrey B. Diagnosis and Management of Diverticular Disease of the Colon in Adults. American Journal of
Gastroenterology 1999; 94(4): 3110-3121.
10. Ferzoco, L.B., Raptopoulos, V., Silen, W. Acute Diverticulitis. New England Journal of Medicine 1998; 338: 1521-1526.
11. Hanauer, Stephen B., Sandborn, William. Management of Crohn’s Disease in Adults. American Journal of Gastroenterology 2001;
96(3): 635-43.
12. Wiesner, Walter, Khurana, Bharti, Ji, Hoon, et al. CT of Acute Bowel Ischemia. Radiology 2003; 226: 635-650.
13. Kirkpatrick I, Greenberg H. Evaluating the CT Diagnosis of Clostridium difficile Colitis: Should CT Guide Therapy? AJR 2001; 176:
635-639.
14. Teichman, Joel M.H. Acute Renal Colic from Ureteral Calculus. New England Journal of Medicine 2004; 350: 684-693.
146
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computerized Tomography (CT)
CT Colonography
(Virtual Colonoscopy)
CPT CODES:
74263.................Screening CT Colonography including image post processing
74261.................Diagnostic CT Colonography without contrast
74262.................Diagnostic CT Colonography with contrast including non-contrast images if performed
STANDARD ANATOMIC COVERAGE:
●● Use of helical CT and reconstruction algorithms to provide endoluminal visualization of the colon, as well as anatomic
depiction throughout much of the abdomen and pelvis. Both 2D and 3D reconstructions are routinely used for colonic
evaluation. Colonic preparation is required, similar to standard fiberoptic colonoscopy. Another similarity to fiberoptic
colonoscopy is the requirement for air insufflation to distend the colon.
IMAGING CONSIDERATIONS:
●● The CPT codes for CT of the abdomen (74150-74170) and CT of the Pelvis (72192 – 72194) should not be used when
a CT Colonography exam is requested.
●● When ordering CT studies, consideration should be given to the benefits as well as the risks from radiation exposure
and ramifications of false positive studies (both financial and psychological), which may require further work-up with
other imaging modalities or follow-up surveillance with CT.
●● Depending on the presenting signs and symptoms, other studies such as fiberoptic colonoscopy and barium examination may be helpful for evaluation of the colon.
●● CT Colonography requires cleansing bowel preparation and air insufflation for colonic distention, similar to fiberoptic
colonoscopy.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR DIAGNOSTIC CT COLONOGRAPHY:
The following diagnostic indication for Diagnostic CT Colonography is accompanied by pre-test considerations and supporting clinical data
Indications for Diagnostic CT Colonography (74261, 74262):
FAILED OR INCOMPLETE FIBEROPTIC COLONOSCOPY OF THE ENTIRE COLON, DUE TO INABILITY TO PASS THE
COLONOSCOPE PROXIMALLY. FAILURE TO ADVANCE THE COLONOSCOPE MAY BE SECONDARY TO:
●● Obstructing neoplasm
●● Spasm
●● Redundant colon
●● Altered anatomy or scarring from previous surgery
●● Stricture
●● Extrinsic compression
COAGULOPATHY
LIFETIME OR LONG-TERM ANTICOAGULATION, WITH INCREASED PATIENT RISK IF DISCONTINUED
147
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR DIAGNOSTIC CT COLONOGRAPHY:
COMPLICATIONS FROM PRIOR FIBEROPTIC COLONOSCOPY
DIVERTICULITIS, WITH INCREASED RISK OF PERFORATION
INCREASED SEDATION RISK
●● For example, COPD or previous adverse reaction to anesthesia
KNOWN COLONIC OBSTRUCTION, WHEN STANDARD FIBEROPTIC COLONOSCOPY IS CONTRAINDICATED
Indications for Screening CT Colonography (74263):
AS AN ALTERNATIVE TO EITHER CONVENTIONAL (OPTICAL) COLONOSCOPY OR DOUBLE CONTRAST BARIUM
ENEMA FOR COLORECTAL CANCER SCREENING, IN INDIVIDUALS BEGINNING AT THE AGE OF 50 YEARS AND AT
A FREQUENCY OF EVERY 5 YEARS 7
REFERENCE/LITERATURE REVIEW:
1.
Chung DJ, Huh KC, Choi WJ, Kim JK. CT Colonography Using 16-MDCT in the Evaluation of Colorectal Cancer. AJR 2005; 184:
98-103.
2.
Cohnen M, Vogt C, Beck A, et al. Feasibility of MDCT Colonography in Ultra-Low-Dose Technique in the Detection of Colorectal
Lesions: Comparison with High-Resolution Video Colonoscopy. AJR 2004; 183: 1355-1359.
3.
Halligan S, Altman DG, Taylor SA, et al. CT Colonography in the Detection of Colorectal Polyps and Cancer: Systematic Review,
Meta-Analysis, and Proposed Minimum Data Set for Study Level Reporting. Radiology 2005; 237: 893-904.
4.
Macari M, Bini EJ. CT Colonography: Where Have We Been and Where Are We Going? Radiology 2005; 237 (3): 819-833.
5.
Neri E, Giusti P, Battolla L, et al. Colorectal Cancer: Role of CT Colonography in Preoperative Evaluation after Incomplete
Colonoscopy. Radiology 2002; 223 (3): 615-619.
6.
Van Gelder RE, Birnie E. Florie J, et al. CT Colonography and Colonoscopy: Assessment of Patient Preference in a 5-week Follow-up
Study. Radiology 2004; 233: 328-337.
7.
Bernard Levin, MD, David A. Lieberman, MD, Beth McFarland, MD, Robert A. Smith, PhD, Durado Brooks, MD, MPH, Kimberly S.
Andrews, Chiranjeev Dash, MD, MPH, Francis M. Giardiello, MD, Seth Glick, MD, Theodore R. Levin, MD, Perry Pickhardt, MD,
Douglas K. Rex, MD, Alan Thorson, MD, Sidney J. Winawer, MD and the American Cancer Society Colorectal Cancer Advisory Group,
the US Multi-Society Task Force, and the American College of Radiology Colon Cancer Committee. Screening and Surveillance for
the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: A Joint Guideline from the American Cancer Society, the US
Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin 2008. Accessed through
the internet at “caonline.amcancersoc.org”, under ACS Guidelines for Cancer Prevention and Early Detection, on March 10, 2008.
148
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Cervical Spine
CPT CODES:
72125.................CT of Cervical Spine, without contrast
72126.................CT of Cervical Spine, with contrast
72127.................CT of Cervical Spine, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Entire cervical spine (C1-C7), from the craniocervical junction through the T1 vertebra.
●● Axial images are routinely obtained, with capability for coronal and sagittal reconstructions.
IMAGING CONSIDERATIONS:
●● MRI is the modality of choice for most cervical spine imaging indications, unless contraindicated or not tolerated by the
patient (for example, secondary to claustrophobia).
●● CT is the preferred technique for certain clinical scenarios such as suspected fracture, follow-up of known fracture,
osseous tumor evaluation and congenital vertebral defects in the pediatric population, as well as procedures such as
cervical spine CT Myelography.
●● Do not use CT Cervical Spine for imaging of the soft tissues of the neck. See CPT codes 70490-70492 CT soft tissue
neck for this service.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CERVICAL SPINE CT:
The following diagnostic indications for Cervical Spine CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
MRI is the preferred modality for most cervical spine imaging, except for a few indications which include CT
evaluation of bony abnormalities (such as suspected fracture or fracture follow-up; osseous tumor assessment;
developmental vertebral abnormalities) and CT myelography.
FRACTURE EVALUATION 1-2
SIGNIFICANT ACUTE TRAUMA TO THE CERVICAL SPINE REGION 3-4
LESS SEVERE CERVICAL SPINE TRAUMA AND NEW NEUROLOGIC FINDING(S) OR PROGRESSIVELY WORSENING
NECK PAIN
ABNORMAL CERVICAL SPINE RADIOGRAPHS
POST-MYELOGRAM CT
WHEN THE PATIENT’S CONDITION MEETS THE CERVICAL SPINE MRI GUIDELINES, BUT THERE IS EITHER A
CONTRAINDICATION TO MRI OR THE PATIENT CANNOT TOLERATE MRI EXAMINATION (FOR EXAMPLE, DUE TO
CLAUSTROPHOBIA).
For most other indications, MRI is the preferred modality for advanced cervical spine imaging, unless contraindicated.
150
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CERVICAL SPINE CT:
PERSISTENT PAIN / RADICULOPATHY
●● In Adults, persistent symptoms despite ≥ 3-4 weeks of conservative therapy and failed or inadequate response to treatment, which may include the following:
–– Medications, such as NSAIDs and muscle relaxants
–– Steroids
–– Physical therapy/exercises
–– Activity modification
●● In the Pediatric population, as well as in patients with documented rheumatologic disease afflicting the joints, pain in
the cervical spine region may not require completion of the 3-4 week course of conservative treatment
●● Neck pain not meeting the above criteria but associated with” red flag”symptoms such as unexplained weight loss,
history of malignant disease, fever, abnormal serum electrophoresis suggestive of multiple myeloma, history of drug
abuse or tuberculosis
SIGNS AND SYMPTOMS OF SPINAL CORD AND/OR NERVE ROOT COMPRESSION (FOR EXAMPLE, DUE TO
CERVICAL SPINE STENOSIS OR DISC HERNIATION)
●● Including but not limited to the following signs and symptoms:
–– Hyperactive Reflexes
–– Muscle Weakness
–– Sensory Loss
–– Spasticity
NECK OR SHOULDER PAIN AND NEW NEUROLOGIC FINDINGS RELATED TO THE CERVICAL SPINE OR
DOCUMENTED NEUROLOGIC DEFICIT ON PHYSICAL EXAM (FOR EXAMPLE: REFLEX ABNORMALITY; MUSCLE
WEAKNESS; OBJECTIVE SENSORY ABNORMALITY IN THE CERVICAL DERMATOME DISTRIBUTION)
DEMYELINATING DISORDERS, SUCH AS MULTIPLE SCLEROSIS, WHEN MRI IS CONTRAINDICATED
MYELOPATHY
SPINAL CORD INFARCT
POST-MYELOGRAM CT OR CT FOLLOWING OTHER INTERVENTIONAL PROCEDURE
PREOPERATIVE EVALUATION AND PLANNING
POST-OPERATIVE EVALUATION, WITH NEW NEUROLOGIC FINDINGS OR WITH PERSISTENT OR RECURRENT
PAIN
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Osteomyelitis
–– Discitis
TUMOR EVALUATION 5
●● Including but not limited to the following:
–– Primary or Metastatic Neoplasm involving the Vertebrae
–– Tumor Spread within the Spinal Canal
–– Spinal Cord Neoplasm
ARNOLD CHIARI MALFORMATION
CONGENITAL SPINE ANOMALIES
●● Cervical spine dysraphism and other congenital anomalies involving the cervical spine and/or spinal cord
●● Congenital vertebral defects for assessment of bony defects such as segmentation and fusion anomalies
151
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CERVICAL SPINE CT:
SYRINGOHYDROMYELIA (SYRINX)
SEVERE SCOLIOSIS, FOR THE FOLLOWING PATIENT POPULATIONS: 6
●● In patients with a high risk for neural axis abnormalities, such as infantile and juvenile idiopathic scoliosis and congenital scoliosis; or
●● With adolescent idiopathic scoliosis and atypical findings (pain, rapid progression, development of neurologic signs/
symptoms); or
●● With scoliosis related to other pathologic processes such as neurofibromatosis; or
●● For pre-operative evaluation of severe scoliosis
Note: For Pediatric patients, who may require imaging of significant portions of the spine or the entire spine, MRI should be
considered to minimize radiation exposure
REFERENCE/LITERATURE REVIEW:
1.
Blackmore CC, Emerson SS, Mann FA, Koepsell TD. Cervical Spine Imaging in Patients with Trauma: Determination of Fracture Risk
to Optimize Use. Radiology 1999;211:759-765.
2.
Bub L, Balckmore CC, Mann FA, Lomoschitz FM. Cervical Spine Fractures in Patients 65 Years and Older: A Clinical Prediction Rule
for Blunt Trauma. Radiology 2005;234:143-149.
3.
Hanson JA, Blackmore CC, Mann FA, Wilson AJ. Cervical Spine Injury. A Clinical Decision Rule to Identify High-Risk Patients for
Helical CT Screening. AJR 2000;174:713-717
4.
Keenan HT, Hollingshead MC, Chung CJ, Ziglar MK. Using CT of the Cervical Spine for Early Evaluation of Pediatric Patients with
Head Trauma. AJR 2001;177:1405-1409.
5.
Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the Spinal Cord and Filum Terminale: Radiologic-Pathologic Correlation.
RadioGraphics 2000;20:1721-1749.
6.
Jaramillo D, Poussaint TY, Grottkau BE, et al. Scoliosis: Evidence-Based Diagnostic Evaluation. Neuroimag Clin N Am 2003; 13:
335-341.
152
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Cervical Spine
CPT CODES:
72141.................MRI of Cervical Spine, without contrast
72142.................MRI of Cervical Spine, with contrast
72156.................MRI of Cervical Spine, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Entire cervical spine (C1-C7), from the craniocervical junction through the T1 vertebra.
●● Axial images are routinely obtained, with capability for coronal and sagittal reconstructions.
IMAGING CONSIDERATIONS:
●● For most cervical spine abnormalities, MRI is the examination of choice.
●● CT of the cervical spine is often reserved for suspected fracture, follow-up of a known fracture, osseous tumor evaluation, congenital vertebral defects and procedures such as cervical spine CT Myelography.
●● In most other clinical situations, MRI is the preferred modality for cervical spine imaging, unless contraindicated [due
to pacemaker, implantable cardioverter-defibrillator (ICD), and other non-compatible devices unsafe for use in an MRI
scanner] or not tolerated by the patient (usually secondary to claustrophobia).
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Authorization requests for
multiple MRI imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not allowed. These variations or extra sequences are included within the original imaging request
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the cervical spine.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
153
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR CERVICAL SPINE MRI:
The following diagnostic indications for Cervical Spine MRI are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information:
Unless contraindicated, MRI is the preferred modality for most cervical spine imaging, except for a few indications
which include CT evaluation of bony abnormalities (such as suspected fracture or fracture follow-up; osseous
tumor assessment; developmental vertebral abnormalities) and CT myelography.
PERSISTENT PAIN / RADICULOPATHY
●● In Adults, persistent symptoms despite ≥ 3-4 weeks of conservative therapy and failed or inadequate response to treatment, which may include the following:
–– Medications, such as NSAIDs and muscle relaxants
–– Steroids
–– Physical therapy/exercises
–– Activity modification
●● In the Pediatric population, as well as in patients with documented rheumatologic disease afflicting the joints, pain in
the cervical spine region may not require completion of the 3-4 week course of conservative treatment
●● Neck pain not meeting the above criteria but associated with” red flag”symptoms such as unexplained weight loss,
history of malignant disease, fever, abnormal serum electrophoresis suggestive of multiple myeloma, history of drug
abuse or tuberculosis
NECK OR SHOULDER PAIN AND NEW NEUROLOGIC FINDINGS RELATED TO THE CERVICAL SPINE OR
DOCUMENTED NEUROLOGIC DEFICIT ON PHYSICAL EXAM (FOR EXAMPLE: REFLEX ABNORMALITY; MUSCLE
WEAKNESS; OBJECTIVE SENSORY ABNORMALITY IN THE CERVICAL DERMATOME DISTRIBUTION)
SIGNS AND SYMPTOMS OF SPINAL CORD AND/OR NERVE ROOT COMPRESSION (FOR EXAMPLE, DUE TO
CERVICAL SPINE STENOSIS OR DISC HERNIATION)
●● Including but not limited to the following signs and symptoms:
–– Hyperactive Reflexes
–– Muscle Weakness
–– Sensory Loss
–– Spasticity
MYELOPATHY
SPINAL CORD INFARCT
DEMYELINATING DISORDERS, SUCH AS MULTIPLE SCLEROSIS 2
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Osteomyelitis
–– Discitis
TUMOR EVALUATION 3
●● Including but not limited to the following:
–– Primary or Metastatic Neoplasm involving the Vertebrae
–– Tumor Spread within the Spinal Canal
–– Spinal Cord Neoplasm
154
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR CERVICAL SPINE MRI:
FRACTURE EVALUATION
SIGNIFICANT ACUTE TRAUMA TO THE CERVICAL SPINE REGION 4-5
LESS SEVERE CERVICAL SPINE TRAUMA AND NEW NEUROLOGIC FINDING(S) OR PROGRESSIVELY WORSENING
NECK PAIN
ABNORMAL CERVICAL SPINE RADIOGRAPHS
PREOPERATIVE EVALUATION AND PLANNING
POST-OPERATIVE EVALUATION, WITH NEW NEUROLOGIC FINDINGS OR WITH PERSISTENT OR RECURRENT
PAIN
ARNOLD CHIARI MALFORMATION
SYRINGOHYDROMYELIA (SYRINX)
SEVERE SCOLIOSIS, FOR THE FOLLOWING PATIENT POPULATIONS: 6
●● In patients with a high risk for neural axis abnormalities, such as infantile and juvenile idiopathic scoliosis and congenital scoliosis; or
●● With adolescent idiopathic scoliosis and atypical findings (pain, rapid progression, development of neurologic signs/
symptoms); or
●● With scoliosis related to other pathologic processes such as neurofibromatosis; or
●● For pre-operative evaluation of severe scoliosis
CONGENITAL SPINE ANOMALIES
●● Cervial spine dysraphism and other congenital anomalies involving the cervical spine and/or spinal cord
●● Congenital vertebral defects for assessment of bony defects such as segmentation and fusion anomalies
REFERENCE/LITERATURE REVIEW:
1.
Atchison J, Lafayette-Lucey A. How to Diagnose and Manage Neck Pain. Internal Medicine 1998;19:10-22.
2.
Bot J, Blezer E, Kamphorst W, et al. The Spinal Cord in Multiple Sclerosis: Relationship of High spatial-Resolution Quantitative MR
Imaging Findings to Histopathologic Results. Radiology 2004;233:531-540.
3.
Koeller K, Rosenblum RS, Morrison A. Neoplasms of the Spinal Cord and Filum Terminale: Radiologic-Pathologic Correlation.
RadioGraphics 2000;20:1721-1749.
4.
Sliker C, Mirvis S, Shanmuganathan K. Assessing Cervical Spine Stability in Obtunded Blunt Trauma Patients: Review of Medical
Literature. Radiology 2005;234:733-739.
5.
Benedetti P, Fahr L, Kuhns L, et al. MR Imaging Findings in Spinal Ligamentous Injury. AJR 2000; 175:661-665.
6.
Jaramillo D, Poussaint TY, Grottkau BE, et al. Scoliosis: Evidence-Based Diagnostic Evaluation. Neuroimag Clin N Am 2003; 13:
335-341.
155
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Thoracic Spine
CPT CODES:
72128.................CT of Thoracic Spine, without contrast
72129.................CT of Thoracic Spine, with contrast
72130.................CT of Thoracic Spine, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Entire thoracic spine (T1-T12), from the cervicothoracic region through the thoracolumbar junction
●● Axial images are routinely obtained, with capability for coronal and sagittal reconstructions
IMAGING CONSIDERATIONS:
●● Advanced diagnostic imaging of the thoracic spine is indicated in selected clinical scenarios and is performed significantly less often than in the lumbar and cervical regions.
●● MRI is the modality of choice for most thoracic spine imaging indications, unless contraindicated or not tolerated by the
patient (for example, secondary to claustrophobia).
●● CT is the preferred technique for certain clinical scenarios such as suspected fracture, osseous tumor evaluation, congenital vertebral defects and interventional procedures such as CT Myelography.
●● Authorization request for re-imaging, due to technically limited exams, is the responsibility of the imaging provider.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers
COMMON DIAGNOSTIC INDICATIONS FOR THORACIC SPINE CT:
The following diagnostic indications for Thoracic Spine CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
MRI is the preferred modality for most thoracic spine imaging, except for a few indications which include CT
evaluation of bony abnormalities (such as suspected fracture or fracture follow-up; occasional osseous tumor
assessment; developmental vertebral abnormalities) and CT myelography.
FRACTURE EVALUATION 1
SIGNIFICANT ACUTE TRAUMA TO THE THORACIC SPINE REGION
LESS SEVERE THORACIC SPINE TRAUMA AND NEW NEUROLOGIC FINDING(S) OR PROGRESSIVELY
WORSENING BACK PAIN
ABNORMAL THORACIC SPINE RADIOGRAPHS
POST-MYELOGRAM CT OR CT FOLLOWING OTHER THORACIC INTERVENTIONAL PROCEDURE
WHEN THE PATIENT’S CONDITION MEETS THE THORACIC SPINE MRI GUIDELINES, BUT THERE IS EITHER A
CONTRAINDICATION TO MRI OR THE PATIENT CANNOT TOLERATE MRI EXAMINATION (FOR EXAMPLE, DUE TO
CLAUSTROPHOBIA).
For most other indications, MRI is the preferred modality for advanced thoracic spine imaging, unless contraindicated.
156
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR THORACIC SPINE CT:
PERSISTENT PAIN / RADICULOPATHY
●● In Adults, persistent symptoms despite ≥ 4-6 weeks of conservative therapy and failed or inadequate response to treatment, which may include the following:
–– Medications, such as NSAIDs and muscle relaxants
–– Steroids
–– Physical therapy/exercises
–– Activity modification
●● In the Pediatric population, as well as in patients with documented rheumatologic disease afflicting the joints, pain in
the thoracic spine region may not require completion of the 4-6 week course of conservative treatment.
●● Upper Back pain not meeting the above criteria but associated with” red flag”symptoms such as unexplained weight
loss, history of malignant disease, fever, abnormal serum electrophoresis suggestive of multiple myeloma, history of
drug abuse or tuberculosis
SIGNS AND SYMPTOMS OF SPINAL CORD AND/OR NERVE ROOT COMPRESSION (FOR EXAMPLE, DUE TO
THORACIC SPINAL STENOSIS OR DISC HERNIATION)
●● Including but not limited to the following signs and symptoms:
–– Hyperactive Reflexes
–– Muscle Weakness
–– Sensory Loss
–– Spasticity
BACK PAIN AND NEW NEUROLOGIC FINDINGS RELATED TO THE THORACIC SPINE OR DOCUMENTED
NEUROLOGIC DEFICIT ON PHYSICAL EXAM (FOR EXAMPLE: REFLEX ABNORMALITY; MUSCLE WEAKNESS;
OBJECTIVE SENSORY ABNORMALITY IN THE THORACIC DERMATOME DISTRIBUTION)
DEMYELINATING DISORDERS, SUCH AS MULTIPLE SCLEROSIS, WHEN MRI IS CONTRAINDICATED 2
MYELOPATHY
SPINAL CORD INFARCT
PREOPERATIVE EVALUATION AND PLANNING
POST-OPERATIVE EVALUATION, WITH NEW NEUROLOGIC FINDINGS OR WITH PERSISTENT OR RECURRENT
PAIN
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Osteomyelitis
–– Discitis
TUMOR EVALUATION
●● Including but not limited to the following:
–– Primary or Metastatic Neoplasm involving the Vertebrae
–– Tumor Spread within the Spinal Canal
–– Spinal Cord Neoplasm
CONGENITAL SPINE ANOMALIES
●● Thoracic spine dysraphism and other congenital anomalies involving the thoracic spine and/or spinal cord
●● Congenital vertebral defects for assessment of bony defects such as segmentation and fusion anomalies
SYRINGOHYDROMYELIA (SYRINX)
SEVERE SCOLIOSIS, INCLUDING THE FOLLOWING PATIENT POPULATIONS: 3
●● In patients with a high risk for neural axis abnormalities, such as infantile and juvenile idiopathic scoliosis and congeni157
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR THORACIC SPINE CT:
tal scoliosis; or
●● With adolescent idiopathic scoliosis and atypical findings (pain, rapid progression, development of neurologic signs/
symptoms); or
●● With scoliosis related to other pathologic processes such as neurofibromatosis; or
●● For pre-operative evaluation of severe scoliosis
Note: For Pediatric patients, who may require imaging of significant portions of the spine or the entire spine, MRI should be
considered to minimize radiation exposure
REFERENCE/LITERATURE REVIEW:
1.
Wintermark M, Mouhsine E, Theumann N, et al. Thoracolumbar Spine Fractures in Patients who have Sustained Severe Trauma:
Depiction with Multi-Detector Row CT. Radiology 2003; 227: 681-689.
2.
Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the Spinal Cord and Filum Terminale: Radiologic-Pathologic Correlation.
RadioGraphics 2000; 20: 1721-1749.
3.
Jaramillo D, Poussaint TY, Grottkau BE, et al. Scoliosis: Evidence-Based Diagnostic Evaluation. Neuroimag Clin N Am 2003; 13:
335-341.
158
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Thoracic Spine
CPT CODES:
72146.................MRI of Thoracic Spine, without contrast
72147.................MRI of Thoracic Spine, with contrast
72157.................MRI of Thoracic Spine, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Entire thoracic spine (T1-T12), from the cervicothoracic region through the thoracolumbar junction.
●● Imaging planes generally include sagittal and axial/oblique axial (parallel with the disc spaces) views.
IMAGING CONSIDERATIONS:
●● Advanced imaging of the thoracic spine is indicated in selected clinical scenarios and is performed significantly less
often than in the cervical and lumbar regions.
●● CT is the preferred technique for certain indications, including fracture detection, follow-up of a known fracture, osseous tumor assessment, congenital vertebral defects and for interventional procedures, such as CT Myelography.
●● In most other clinical situations, MRI is the modality of choice for thoracic spine imaging, unless contraindicated or not
tolerated by the patient (for example, secondary to claustrophobia).
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the thoracic spine.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● CT may be used after MRI if diagnosis still in doubt or when MRI cannot be done.
159
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR THORACIC SPINE MRI:
The following diagnostic indications for Thoracic Spine MRI are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information:
Unless contraindicated, MRI is the preferred modality for most thoracic spine imaging, except for a few indications
which include CT evaluation of bony abnormalities (such as suspected fracture or fracture follow-up; occasional
osseous tumor assessment; developmental vertebral abnormalities) and CT myelography.
PERSISTENT PAIN / RADICULOPATHY
●● In Adults, persistent symptoms despite ≥ 4-6 weeks of conservative therapy and failed or inadequate response to treatment, which may include the following:
–– Medications, such as NSAIDs and muscle relaxants
–– Steroids
–– Physical therapy/exercises
–– Activity modification
●● In the Pediatric population, as well as in patients with documented rheumatologic disease afflicting the joints, pain in
the thoracic spine region may not require completion of the 4-6 week course of conservative treatment.
●● Upper Back pain not meeting the above criteria but associated with” red flag”symptoms such as unexplained weight
loss, history of malignant disease, fever, abnormal serum electrophoresis suggestive of multiple myeloma, history of
drug abuse or tuberculosis
NEW NEUROLOGIC FINDINGS RELATED TO THE THORACIC SPINE OR PROGRESSIVE NEUROLOGIC DEFICIT,
PARTICULARLY UNDER TREATMENT
●● For example, progressive weakness or objective sensory abnormality in thoracic dermatome distribution
SIGNS AND SYMPTOMS OF SPINAL CORD AND/OR NERVE ROOT COMPRESSION (FOR EXAMPLE, DUE TO
THORACIC SPINE STENOSIS OR DISC HERNIATION)
●● Including but not limited to the following signs and symptoms:
–– Hyperactive Reflexes
–– Muscle Weakness
–– Sensory Loss
–– Spasticity
BACK PAIN AND NEW NEUROLOGIC FINDINGS RELATED TO THE THORACIC SPINE OR DOCUMENTED
NEUROLOGIC DEFICIT ON PHYSICAL EXAM (FOR EXAMPLE: REFLEX ABNORMALITY; MUSCLE WEAKNESS;
OBJECTIVE SENSORY ABNORMALITY IN THE THORACIC DERMATOME DISTRIBUTION)
DEMYELINATING DISORDERS, SUCH AS MULTIPLE SCLEROSIS 2
MYELOPATHY
SPINAL CORD INFARCT
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Osteomyelitis
–– Discitis
160
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR THORACIC SPINE MRI:
TUMOR EVALUATION 2
●● Including but not limited to the following:
–– Primary or Metastatic Neoplasm involving the Vertebrae
–– Tumor Spread within the Spinal Canal
–– Spinal Cord Neoplasm
FRACTURE EVALUATION
POST-TRAUMATIC NEUROLOGIC DEFICIT AND POSSIBLE SPINAL CORD INJURY
PREOPERATIVE EVALUATION AND PLANNING
POST-OPERATIVE EVALUATION, WITH NEW NEUROLOGIC FINDINGS OR WITH PERSISTENT OR RECURRENT
PAIN
ABNORMAL THORACIC SPINE RADIOGRAPHS
SEVERE SCOLIOSIS, FOR THE FOLLOWING PATIENT POPULATIONS: 6
●● In patients with a high risk for neural axis abnormalities, such as infantile and juvenile idiopathic scoliosis and congenital scoliosis; or
●● With adolescent idiopathic scoliosis and atypical findings (pain, rapid progression, development of neurologic signs/
symptoms); or
●● With scoliosis related to other pathologic processes such as neurofibromatosis; or
●● For pre-operative evaluation of severe scoliosis
CONGENITAL SPINE ANOMALIES
●● Thoracic spine dysraphism and other congenital anomalies involving the thoracic spine and/or spinal cord
●● Congenital vertebral defects for assessment of bony defects such as segmentation and fusion anomalies
SYRINGOHYDROMYELIA (SYRINX)
REFERENCE/LITERATURE REVIEW:
1.
Bot JCJ, Blezer ELA, Kamphorst W, et al. The Spinal Cord in Multiple Sclerosis: Relationship of High-Spatial-Resolution Quantitative
MR Imaging Findings to Histopathologic Results. Radiology 2004;233:531-540.
2.
Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the Spinal Cord and Filum Terminale: Radiologic-Pathologic Correlation.
RadioGraphics 2000;20:1721-1749.
3.
Jaramillo D, Poussaint TY, Grottka BE. Scoliosis: Evidence-Based Diagnostic Evaluation. Neuroimag Clin N Am 2003; 13: 335-341.
161
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Lumbar Spine
CPT CODES:
72131.................CT of Lumbar Spine, without contrast
72132.................CT of Lumbar Spine, with contrast
72133.................CT of Lumbar Spine, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Entire lumbar spine (L1-L5), from the thoracolumbar region through the lumbosacral junction.
●● Axial images are routinely obtained, with capability for coronal and sagittal reconstructions
IMAGING CONSIDERATIONS:
●● CT of the lumbar spine is often reserved for suspected fracture, follow-up of a known fracture, skeletal abnormalities such as spondylolysis and spondylolisthesis in operative candidates, congenital vertebral defects, osseous tumor
evaluation, and procedures such as Lumbar CT Myelography.
●● For most other lumbar spine abnormalities, MRI is the modality of choice, unless contraindicated or not tolerated by the
patient (for example, secondary to claustrophobia).
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR LUMBAR SPINE CT:
The following diagnostic indications for Lumbar Spine CT are accompanied by pre-test considerations as well as supporting clinical data and
prerequisite information:
MRI is the preferred modality for most lumbar spine advanced imaging, except for a few indications which include
CT evaluation of bony abnormalities (such as suspected fracture or fracture follow-up; skeletal abnormalities
such as spondylolysis and spondylolisthesis in operative candidates; osseous tumor assessment; developmental
vertebral abnormalities) as well as Lumbar CT Myelography.
FRACTURE EVALUATION
SIGNIFICANT ACUTE TRAUMA TO THE LUMBAR SPINE REGION
LESS SEVERE LUMBAR SPINE TRAUMA AND NEW NEUROLOGIC FINDING(S) OR PROGRESSIVELY WORSENING
LOWER BACK PAIN
ABNORMAL LUMBAR SPINE RADIOGRAPHS
SPONDYLOLYSIS AND SPONDYLOLISTHESIS
●● Following non-diagnostic or abnormal lumbar spine radiographs (including oblique views), in an operative candidate
CT FOLLOWING MYELOGRAPHY OR OTHER LUMBAR INTERVENTIONAL PROCEDURE 1-2
WHEN THE PATIENT’S CONDITION MEETS THE LUMBAR SPINE MRI GUIDELINES, BUT THERE IS EITHER A
CONTRAINDICATION TO MRI OR THE PATIENT CANNOT TOLERATE MRI EXAMINATION (FOR EXAMPLE, DUE TO
CLAUSTROPHOBIA).
For most other indications, MRI is the preferred modality for advanced lumbar spine imaging, unless contraindicated.
162
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR LUMBAR SPINE CT:
PERSISTENT PAIN / RADICULOPATHY
●● In Adults, persistent symptoms despite ≥ 4-6 weeks of conservative therapy and failed or inadequate response to treatment, which may include the following:
–– Medications, such as NSAIDs and muscle relaxants
–– Steroids
–– Physical therapy/exercises
–– Activity modification
●● In the Pediatric population, as well as in patients with documented rheumatologic disease afflicting the joints, pain in
the lumbar spine region may not require completion of the 4-6 week course of conservative treatment
●● Lower Back pain not meeting the above criteria but associated with” red flag”symptoms such as unexplained weight
loss, history of malignant disease, fever, abnormal serum electrophoresis suggestive of multiple myeloma, history of
drug abuse or tuberculosis
SIGNS AND SYMPTOMS OF SPINAL CORD AND/OR NERVE ROOT COMPRESSION (FOR EXAMPLE, DUE TO
LUMBAR SPINAL STENOSIS OR DISC HERNIATION)
●● Including but not limited to the following signs and symptoms:
–– Hyperactive Reflexes
–– Muscle Weakness
–– Sensory Loss
–– Spasticity
LOWER BACK OR LEG PAIN AND NEW NEUROLOGIC FINDINGS RELATED TO THE LUMBAR SPINE OR
DOCUMENTED NEUROLOGIC DEFICIT ON PHYSICAL EXAM (FOR EXAMPLE: REFLEX ABNORMALITY; MUSCLE
WEAKNESS; OBJECTIVE SENSORY ABNORMALITY IN THE LUMBAR DERMATOME DISTRIBUTION)
DEMYELINATING DISORDERS, SUCH AS MULTIPLE SCLEROSIS, WHEN MRI IS CONTRAINDICATED AND THERE
ARE SYMPTOMS REFERABLE TO THE LOWER LUMBAR REGION
MYELOPATHY INVOLVING THE LOWER SPINAL CORD
SPINAL CORD INFARCT
CAUDA EQUINA SYNDROME
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Arachnoiditis
–– Discitis
–– Osteomyelitis
TUMOR EVALUATION 9
●● Including but not limited to the following:
–– Primary or Metastatic Neoplasm involving the Vertebrae
–– Tumor Spread within the Spinal Canal
–– Spinal Cord Neoplasm
CONGENITAL SPINE ANOMALIES
●● Lumbar spine dysraphism and other congenital anomalies involving the lumbar spine and/or lower spinal cord (Conus
Medullaris). filum terminale or nerve roots
●● Congenital vertebral defects for assessment of bony defects such as segmentation and fusion anomalies
SYRINGOHYDROMYELIA (SYRINX)
163
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR LUMBAR SPINE CT:
SEVERE SCOLIOSIS, INCLUDING THE FOLLOWING PATIENT POPULATIONS: 10
●● With high risk for neural axis abnormalities, such as infantile and juvenile idiopathic scoliosis and congenital scoliosis;
or
●● With adolescent idiopathic scoliosis and atypical findings (pain, rapid progression, development of neurologic signs/
symptoms); or
●● With scoliosis related to other pathologic processes, such as neurofibromatosis; or
●● For pre-operative evaluation of severe scoliosis
Note: For Pediatric patients, who may require imaging of significant portions of the spine or the entire spine, MRI should be
considered to minimize radiation exposure
PREOPERATIVE EVALUATION AND PLANNING
POST-OPERATIVE EVALUATION, WITH NEW NEUROLOGIC FINDINGS OR WITH PERSISTENT OR RECURRENT
LOWER BACK PAIN
●● Including but not limited to the following:
–– Differentiation of recurrent disc herniation from scarring
–– Evaluation for post-surgical complications, such as epidural hematoma/abscess
REFERENCE/LITERATURE REVIEW:
1.
Resnick DK, Malone DG, Ryken TC. Guidelines for the Use of Discography for the Diagnosis of Painful Degenerative Lumbar Disc
Disease. Neurosurg Focus 2002; 13 (2):1-9.
2.
Guyer RD, Ohnmeiss DD. Contemporary Concepts in Spine Care Lumbar Discography. Spine 1995; 20(18): 2048-2059.
3.
Deyo RA, Weinstein JN. Low Back Pain. N Engl J Med 2001;344 (5):363-370.
4.
Chou R, Qaseem A, Snow V, et al. Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American
College of Physicians and the American Pain Society. Ann Intern Med 2007; 147: 478-491.
5.
Brant-Zawadzki MN, Dennis SC, Gade GF, Weinstein MP. Low Back Pain – What the Clinician Wants to Know. Radiology
2000;217:231-330.
6.
Jarvik JG, Deyo RA. Diagnostic Evaluation of Low Back Pain with Emphasis on Imaging. Ann of Intern Med 2002;137:586-597.
7.
Gillan MGC, Gilbert FJ, Andrew JE, et al. Influence of Imaging on Clinical Decision Making in the Treatment of Lower Back Pain.
Radiology 2001;220:393-399.
8.
Gilbert FJ, Grant AM, Gillan MGC, et al. Low Back Pain: Influence of Early MR Imaging or CT on Treatment and Outcome-Multicenter
Randomized Trial. Radiology 2004; 231: 343-351.
9.
Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the Spinal Cord and Filum Terminale: Radiologic-Pathologic Correlation.
RadioGraphics 2000;20:1721-1749.
10. Jaramillo D, Poussaint TY, Grottkau BE, et al. Scoliosis: Evidence-Based Diagnostic Evaluation. Neuroimag Clin N Am 2003; 13:
335-341.
164
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Lumbar Spine
CPT CODES:
72148.................MRI of Lumbar Spine, without contrast
72149.................MRI of Lumbar Spine, with contrast
72158.................MRI of Lumbar Spine, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Entire lumbar spine (L1-L5), from the thoracolumbar region through the lumbosacral junction.
●● Imaging planes generally include sagittal and axial/oblique axial (parallel with disc spaces) views.
IMAGING CONSIDERATIONS:
●● For most other lumbar spine abnormalities, MRI is the modality of choice, unless contraindicated or not tolerated by the
patient (for example, secondary to claustrophobia).
●● Lumbar spine CT is often reserved for suspected fracture, follow-up of a known fracture, skeletal abnormalities such as
spondylolysis and spondylolisthesis in operative candidates, congenital vertebral defects, osseous tumor evaluation,
and procedures such as Lumbar CT Myelography.
●● For the majority of patients with acute low back pain, symptoms and/or physical exam findings will improve or resolve
during a trial of conservative treatment and diagnostic imaging is not necessary1
●● Definitive diagnosis is not achieved in as many as 85% of patients with low pack pain1
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the lumbar spine.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
165
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR LUMBAR SPINE MRI:
The following diagnostic indications for Lumbar Spine MRI are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information:
Unless contraindicated, MRI is the preferred modality for most lumbar spine advanced imaging, except for a few
indications which include CT evaluation of bony abnormalities (such as suspected fracture or fracture followup; skeletal abnormalities including spondylolisthesis in operative candidates; osseous tumor assessment; and
developmental vertebral abnormalities) as well as CT Myelography.
PERSISTENT PAIN / RADICULOPATHY
●● In Adults, persistent symptoms despite ≥ 4-6 weeks of conservative therapy and failed or inadequate response to treatment, which may include the following:
–– Medications, such as NSAIDs and muscle relaxants
–– Steroids
–– Physical therapy/exercises
–– Activity modification
●● In the Pediatric population, as well as in patients with documented rheumatologic disease afflicting the joints, pain in
the lumbar spine region may not require completion of the 4-6 week course of conservative treatment
●● Lower Back pain not meeting the above criteria but associated with” red flag”symptoms such as unexplained weight
loss, history of malignant disease, fever, abnormal serum electrophoresis suggestive of multiple myeloma, history of
drug abuse or tuberculosis
SIGNS AND SYMPTOMS OF SPINAL CORD AND/OR NERVE ROOT COMPRESSION (FOR EXAMPLE, DUE TO
LUMBAR SPINAL STENOSIS OR DISC HERNIATION)
●● Including but not limited to the following signs and symptoms:
–– Hyperactive Reflexes
–– Muscle Weakness
–– Sensory Loss
–– Spasticity
LOWER BACK OR LEG PAIN AND NEW NEUROLOGIC FINDINGS RELATED TO THE LUMBAR SPINE OR
DOCUMENTED NEUROLOGIC DEFICIT ON PHYSICAL EXAM (FOR EXAMPLE: REFLEX ABNORMALITY; MUSCLE
WEAKNESS; OBJECTIVE SENSORY ABNORMALITY IN THE LUMBAR DERMATOME DISTRIBUTION)
DEMYELINATING DISORDERS, SUCH AS MULTIPLE SCLEROSIS 12
MYELOPATHY INVOLVING THE LOWER SPINAL CORD
SPINAL CORD INFARCT
CAUDA EQUINA SYNDROME
INFECTIOUS OR INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Arachnoiditis
–– Discitis
–– Osteomyelitis
166
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR LUMBAR SPINE MRI:
TUMOR EVALUATION 13
●● Including but not limited to the following:
–– Primary or Metastatic Neoplasm involving the Vertebrae
–– Tumor Spread within the Spinal Canal
–– Spinal Cord Neoplasm
FRACTURE EVALUATION
PREOPERATIVE EVALUATION AND PLANNING
POST-TRAUMATIC NEUROLOGIC DEFICIT AND POSSIBLE SPINAL CORD INJURY
POST-OPERATIVE EVALUATION, WITH NEW NEUROLOGIC FINDINGS OR WITH PERSISTENT OR RECURRENT
LOWER BACK PAIN
●● Including but not limited to the following:
–– Differentiation of recurrent disc herniation from scarring
–– Evaluation for post-surgical complications
ABNORMAL LUMBAR SPINE RADIOGRAPHS
SPONDYLOLYSIS AND SPONDYLOLISTHESIS
●● Following non-diagnostic or abnormal lumbar spine radiographs (including oblique views), in an operative candidate
SEVERE SCOLIOSIS, FOR THE FOLLOWING PATIENT POPULATIONS: 14
●● In patients with a high risk for neural axis abnormalities, such as infantile and juvenile idiopathic scoliosis and congenital scoliosis; or
●● With adolescent idiopathic scoliosis and atypical findings (pain, rapid progression, development of neurologic signs/
symptoms); or
●● With scoliosis related to other pathologic processes such as neurofibromatosis; or
●● For pre-operative evaluation of severe scoliosis
CONGENITAL SPINE ANOMALIES
●● Lumbar spine dysraphism and other congenital anomalies involving the lumbar spine and/or spinal cord
●● Congenital vertebral defects for assessment of bony defects such as segmentation and fusion anomalies
TETHERED CORD AND OTHER CONGENITAL ANOMALIES INVOLVING THE LUMBAR SPINE AND/OR LOWER
SPINAL CORD (CONUS MEDULLARIS), FILUM TERMINALE OR NERVE ROOTS
SYRINGOHYDROMYELIA (SYRINX)
REFERENCE/LITERATURE REVIEW:
1.
Jarvik J. Imaging of adults with low back pain in the primary care setting. Neuroimag Clin N Am 2003; 13: 293-305.
2.
Chou R, Qaseem A, Snow V, et al. Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American
College of Physicians and the American Pain Society. Ann Intern Med 2007; 147: 478-491.
3.
Deyo RA, Weinstein JN. Low Back Pain. N Engl J Med 2001;344:363-370.
4.
Brant-Zawadzki MN, Dennis SC, Gade GF, Weinstein MP. Low Back Pain. What the Clinician Wants to Know. Radiology
2000;217:321-330.
5.
Staiger TO, Paauw DS, Deyo RA, Jarvik JG. Imaging studies for acute low back pain. When and when not to order them.
Postgraduate Medicine Online 1999;105(4).
6.
Quality Standards Subcommittee of the American Academy of Neurology. Practice parameters: Magnetic resonance imaging in the
evaluation of low back syndrome. Neurology 1994;44:767-770.
7.
Jarvik JG, Deyo RA. Diagnostic Evaluation of Low Back Pain with Emphasis on Imaging. Ann Intern Med 2002;137:586-597.
8.
Gillan MGC, Gilbert FJ, Andrew JE, et al. Influence of Imaging on Clinical Decision Making in the Treatment of Lower Back Pain.
167
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
Radiology 2001; 220:393-399.
9.
Jarvik JG, Hollingworth W, Martin B, et al. Rapid Magnetic Resonance Imaging vs Radiographs for Patients With Low Back Pain: A
Randomized Controlled Trial. JAMA 2003;289:2810-2818.
10. Gray DT, Hollingworth W, Balckmore CC, et al. Conventional Radiography, Rapid MR Imaging and Conventional MR Imaging for Low
Back Pain: Activity-based Costs and Reimbursement. Radiology 2003;227:669-680.
11. Mazanec DJ, Podichetty,VK, Hsia A. Lumbar Canal Stenosis: Start with Nonsurgical Therapy. Cleveland Clinic Journal of Medicine.
2002;69(11):909-917.
12. Bot JCJ, Blezer ELA, Kamphorst W, et al. The Spinal Cord in Multiple Sclerosis: Relationship of High-Spatial-Resolution Quantitative
MR Imaging Findings to Histopathologic Results. Radiology 2004;223:531-540.
13. Koeller KK, Rosenblum RS, Morrision AL. Neoplasms of the Spinal Cord and Filum Terminale: Radiologic-Pathologic Correlation.
RadioGraphics 200;20:1721-1749.
14. Jaramillo D, Poussaint TY, Grottkau BE. Scoliosis: Evidence-Based Diagnostic Evaluation. Neuroimag Clin N Am 2003; 13: 335-341.
168
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
MR Angiography (MRA)
Spinal Canal
CPT CODES:
72159.................Magnetic Resonance Angiography of Spinal Canal
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the specific clinical indication for the spinal canal MRA.
●● General landmarks extend from the cranio-cervical junction through the lumbosacral region.
IMAGING CONSIDERATIONS:
●● MRA of the spinal canal is an infrequently requested exam. Potential applications which have been described include
evaluation of spinal arteriovenous fistula (AVF) and arteriovenous malformation (AVM). These vascular lesions are
usually detected by MRI or myelography. Intra-arterial digital subtraction angiography (DSA) of the spinal vasculature
may be necessary to define the precise location and type of vascular abnormality.
●● MRI of the spinal canal CPT 72159 includes imaging of the entire spinal canal. Requests for multiple exams to address
each anatomic area of the spinal canal are inappropriate.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
MAGNETIC RESONANCE ANGIOGRAPHY OF THE SPINAL CANAL:
●● MR Angiography (MRA) of the spinal canal is an evolving technology under clinical development. This clinical application of MRA and its impact on health outcomes will continue to undergo review, as new evidence-based studies
are published. Interval routine coverage for MR angiography of the spinal canal is not generally available and is not
considered the standard of care at this time.
169
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Upper Extremity
CPT CODES:
73200.................CT upper extremity, without contrast
73201.................CT upper extremity, with contrast
73202.................CT upper extremity, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the specific clinical indication for the exam and varies considerably, based on anatomic
considerations (from shoulder through fingers) and clinical manifestations.
●● Depending on the protocol used, the CT data acquisition(s) may allow for diagnostic multi-planar reconstructions
through the region of interest.
IMAGING CONSIDERATIONS:
●● Conventional radiographs should be obtained before advanced imaging in the majority of cases.
●● CT is often the preferred modality for evaluation of displaced fractures and subluxations, whereas stress fractures and
some incomplete and non-displaced fractures may be better imaged with MRI or Radionuclide Bone Scintigraphy.
●● If radiographic findings are typical of osteomyelitis, advanced imaging may not be necessary.
●● In osteomyelitis, CT may be helpful in defining bone sequestra.
●● For evaluation of musculoskeletal tumors, MRI is generally preferred over CT, unless there is a contraindication to
performance of an MRI exam.
●● Conservative treatment includes 4-6 weeks of physical therapy, temporary joint rest or immobilization and medications,
such as non-steroidal anti-inflammatory drugs (NSAIDs), as directed by the patient’s Physician.
●● Use of contrast (intravenous or intra-articular for CT arthrogram) is at the discretion of both the ordering and imaging
physicians.
●● A complete CT of the upper extremity includes imaging of the entire arm. When imaging is requested for the right and
left extremity, a maximum of two CT exams is allowed.
●● Brachial Plexus imaging: The brachial plexus is a network of nerves in the neck, passing under the clavicle and into the
axilla. Assign either a CT or MRI of the upper extremity for imaging the brachial plexus.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY CT:
The following diagnostic indications for Upper Extremity CT are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information:
INFECTIOUS AND INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Septic Arthritis
–– Osteomyelitis – when MRI is contraindicated or when defining a suspected bone sequestra
PALPABLE MASS ON PHYSICAL EXAM
PRIMARY (BENIGN AND MALIGNANT) BONE OR SOFT TISSUE TUMOR
169
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY CT:
METASTATIC TUMOR
●● Involving the soft tissues and/or osseous structures
SIGNIFICANT TRAUMA
●● Usually preceded by initial plain film radiographs
SOFT TISSUE TUMORS
FRACTURE EVALUATION
●● To confirm a suspected (occult) fracture or
●● To define the extent of an acute fracture and position of fracture fragments, or
●● To assess fracture healing, for callous formation and solid bony union
NEUROPATHIC OSTEODYSTROPHY (CHARCOT JOINT)
●● Following conventional radiographs, when there is need for additional diagnostic information from a CT exam to direct
treatment decisions (such as concern for an underlying infectious process)
PRE- AND POST-OPERATIVE EVALUATION
ABNORMALITY ON X-RAY OR BONE SCINTIGRAPHY
PERSISTENT UPPER EXTREMITY PAIN – UNRESPONSIVE TO 4-6 WEEKS OF CONSERVATIVE TREATMENT
●● Following initial assessment with conventional radiographs
OSTEONECROSIS [AVASCULAR NECROSIS (AVN); ASEPTIC NECROSIS]
●● Requires initial plain films, prior to advanced imaging
●● MRI is often the preferred imaging modality, particularly for evaluation in the early stages of Osteonecrosis
●● Common anatomic locations for Osteonecrosis in the Upper Extremity are:
–– Humeral Head
–– Radial Head
–– Carpal Navicular Bone
–– Lunate Bone (lunate osteonecrosis also referred to as Kienbock’s disease)
INTRA-ARTICULAR LOOSE BODY, INCLUDING SYNOVIAL OSTEOCHONDROMATOSIS
CT ACCOMPANYING AN ARTHROGRAM (CT ARTHROGRAPHY)
HEMARTHROSIS (BLOODY JOINT EFFUSION), DOCUMENTED BY ARTHROCENTESIS
WHEN THE PATIENT’S CONDITION MEETS THE UPPER EXTREMITY MRI GUIDELINES, BUT THERE IS EITHER A
CONTRAINDICATION TO MRI OR THE PATIENT CANNOT TOLERATE MRI EXAMINATION (FOR EXAMPLE, DUE TO
CLAUSTROPHOBIA)
REFERENCE/LITERATURE REVIEW:
1.
Buckwalter KA, Rydberg J, Kopecky KK, et al. Musculoskeletal Imaging with Multislice CT. AJR 2001; 176: 979-986.
2.
Chiles C, Davis KW, Williams DW. Navigating the Thoracic Inlet. RadioGraphics 1999;19:1161-1176.
3.
Fayad LM, Johnston P, Fishman EK. Multidetector CT of Musculoskeletal Disease in the Pediatric Patient: Principles, Techniques, and
Clinical Applications. RadioGraphics 2005; 25: 603-618.
4.
Pretorius ES, Fishman EK. Volume-rendered Three-dimensional Spiral CT: Musculoskeletal Applications. RadioGraphics 1999; 19:
1143-1160
170
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Upper Extremity (Any Joint)
WLP CG-RAD 07
CPT CODES:
73221.................MRI upper extremity, any joint, without contrast
73222.................MRI upper extremity, any joint, with contrast
73223.................MRI upper extremity, any joint, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the specific clinical indication for the exam and varies considerably, based on anatomic
(from shoulder joint through hand/digits) and clinical considerations.
●● MRI routinely provides multi-planar imaging through the region of interest.
IMAGING CONSIDERATIONS:
●● Conventional radiographs of the upper extremity are to be obtained before advanced diagnostic imaging is performed,
in the majority of cases.
●● Use of contrast (intravenous or intra-articular) is at the discretion of both the ordering and imaging physicians.
●● CT is often the preferred modality for evaluation of displaced fractures and subluxations, whereas stress fractures and
some incomplete and non-displaced fractures may be better imaged with MRI or Radionuclide Bone Scintigraphy.
●● MRI is used more often to evaluate internal derangements of the joints and related tendinous, ligamentous and cartilaginous structures.
●● MRI is also useful for evaluation of possible osteomyelitis, despite negative or non-diagnostic plain films and/or triplephase bone scintigraphy. One exception for osteomyelitis is detection of bone sequestra, which may be better depicted
with CT.
●● If radiographic findings are typical of osteomyelitis, advanced imaging may not be necessary.
●● For evaluation of musculoskeletal tumors, MRI is generally preferred over CT, unless there is a contraindication to
performance of an MRI exam.
●● For suspected osteonecrosis, MRI is often more sensitive than CT and bone scintigraphy.
●● Implanted surgical hardware, including joint prostheses, may produce sufficient local artifact to preclude adequate
imaging through the region containing hardware.
●● Conservative treatment includes 4-6 weeks of physical therapy, temporary joint rest or immobilization and medications,
such as non-steroidal anti-inflammatory drugs (NSAIDs), as directed by the patient’s Physician.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
●● When a request is received for a MR arthrogram of the shoulder, enter CPT codes 73221, MRI upper extremity, any
joint. Do not enter the MR Angiography (MRA) CPT code 73225.
●● When requested, a code for an MRI of the upper extremity, any joint, may be entered for each major joint area of the
arm.
–– Shoulder
–– Elbow
–– Wrist
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
171
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the lumbar spine.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY MRI:
The following diagnostic indications for Upper Extremity MRI are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information.
This section contains:
●● General Indications for Upper Extremity MRI in Joint Evaluation
●● Additional Indications for Shoulder Joint
●● Additional Indications for Shoulder Imaging: Specific Criteria
●● Additional Indications for Elbow
●● Additional Indications for Wrist and Hand Imaging
General Indications for Upper Extremity MRI in Joint Evaluation:
SIGNIFICANT TRAUMA
●● Usually preceded by initial plain film radiographs
FRACTURE EVALUATION
●● To confirm a suspected (occult) fracture or
●● To define the extent of an acute fracture and position of fracture fragments, or
●● To assess fracture healing, for callous formation and solid bony union
NEUROPATHIC OSTEODYSTROPHY (CHARCOT JOINT)
●● Following conventional radiographs, when there is need for additional diagnostic information from an MRI exam to
direct treatment decisions (such as concern for an underlying infectious process)
LIGAMENT AND TENDON INJURIES
●● If no response to 4-6 weeks of conservative treatment
172
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY MRI:
JOINT LOCKING
JOINT INSTABILITY (SENSATION OF JOINT GIVING WAY)
OSTEONECROSIS [AVASCULAR NECROSIS (AVN); ASEPTIC NECROSIS]
●● Requires initial plain films, prior to advanced imaging
●● Common anatomic locations for Osteonecrosis in the Upper Extremity are:
–– Humeral Head
–– Radial Head
–– Carpal Navicular Bone
–– Lunate Bone (lunate osteonecrosis also referred to as Kienbock’s disease)
OSTEOCHONDRAL LESION
INTRA-ARTICULAR LOOSE BODY, INCLUDING SYNOVIAL OSTEOCHONDROMATOSIS
MRI ACCOMPANYING AN ARTHROGRAM (MR ARTHROGRAPHY)
HEMARTHROSIS (BLOODY JOINT EFFUSION), DOCUMENTED BY ARTHROCENTESIS
INFECTIOUS AND INFLAMMATORY PROCESSES
●● Including but not limited to the following:
–– Abscess
–– Septic Arthritis
–– Osteomyelitis
PALPABLE MASS ON PHYSICAL EXAM
PRE AND POST OPERATIVE EVALUATION
PRIMARY (BENIGN AND MALIGNANT) BONE OR SOFT TISSUE TUMOR
METASTATIC TUMOR
–– Involving the soft tissues and/or osseous structures
SOFT TISSUE TUMORS
ABNORMALITY ON X-RAY OR BONE SCINTIGRAPHY
PERSISTENT UPPER EXTREMITY PAIN – UNRESPONSIVE TO 4-6 WEEKS OF CONSERVATIVE TREATMENT
SUSPECTED ENTRAPMENT NEUROPATHY [CUBITAL TUNNEL DETAIL ], CARPAL TUNNEL NOT CONSIDERED
MEDICALLY NECESSARY
Additional Indications for the Shoulder Joint:
ROTATOR CUFF TEAR
●● When the diagnosis is uncertain, conservative treatment should be instituted for 4-6 weeks, to monitor response to
therapy
GLENOID LABRAL TEAR
OTHER GLENOID LABRAL AND ASSOCIATED LIGAMENTOUS LESIONS
●● Including but not limited to the following:
–– Bankart Lesion
–– Bankart Variation Lesions
–– ALPSA (Anterior Labroligamentous Periosteal Sleeve Avulsion) Lesion
–– HAGL (Humeral Avulsion of the Inferior Glenohumeral Ligament) Lesion
SUSPECTED OCCULT SHOULDER FRACTURE
●● With high clinical suspicion and negative or inconclusive shoulder radiographs
173
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY MRI:
ADHESIVE CAPSULITIS
●● Following physical therapy
Additional Indications for Shoulder Imaging: Specific Criteria
SYMPTOMS AND PHYSICAL ASSESSMENT INDICATING THE NEED FOR MRI AFTER FOUR WEEKS OF PHYSICAL
THERAPY, INCLUDING AT LEAST TWO OF THE FOLLOWING:
●● Anteriro or posterior shoulder instability
Or
●● External rotation pain or weakness
Or
●● Impingement signs
Or
●● Loss of abduction
Or
●● Persistent pain with activity
Additional Indications for Elbow Imaging:
EPICONDYLITIS
●● Generally considered a clinical diagnosis and imaging not medically necessary
●● If unresponsive to conservative treatment, specialist evaluation should be obtained prior to advanced imaging
BICEPS TENDON RUPTURE
●● At insertion onto radial tuberosity
TRICEPS TENDON RUPTURE
●● From olecranon insertion site
MEDIAL COLLATERAL LIGAMENT TEAR
PREOPERATIVE ASSESSMENT HETEROTOPIC OSSIFICATION
CAPITELLAR OSTEOCHONDRITIS
SUSPECTED OCCULT ELBOW FRACTURE
●● With high clinical suspicion and negative or inconclusive elbow radiographs
Additional Indications for Wrist and Hand Imaging:
TRIANGULAR FIBROCARTILAGE COMPLEX (TFCC) TEAR
SCAPHOID FRACTURE
ULNAR COLLATERAL LIGAMENT TEAR (GAMEKEEPER’S THUMB)
REFERENCE/LITERATURE REVIEW:
1.
Farbar JM, Buckwalther KA. Sports-Related Injuries of the Shoulder: Instability. Radiol Clin N Am 2002;40:235-249.
2.
Fleckenstein JL, Wolfe GI. MRI vs EMG: Which has the Upper Hand in Carpal Tunnel Syndrome? Neurology 2002;58:1583-1584.
3.
Fritz RC. Magnetic Resonance Imaging of Sports-Related Injuries to the Shoulder: Impingement and Rotator Cuff. Radiol Clin N Am
2002;40:217-234.
4.
Jarvik JG, Yuen E, Haynor DR, et al. MR Nerve Imaging in a Prospective Cohort of Patients with Suspected Carpal Tunnel Syndrome.
Neurology 2002;58:1597-1602.
5.
Jbara M, Chen Q, Marten P, et al. Shoulder MR Arthrography: How, Why, When. Radiol Clin N Am 2005;43:683-692.
6.
Katz JN, Simmons BP. Carpal Tunnel Syndrome. N Eng J Med 2002;346:1807-1812.
174
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
7.
Mohana-Borges AVR, Chung CB, Resnick D. MR Imaging and MR Arthrography of the Postoperative Shoulder: Spectrum of Normal
and Abnormal Findings. RadioGraphics 2004; 24: 69-85.
8.
Sofka CM, Potter HG. Imaging of Elbow Injuries in the Child and Adult Athelete. Radiol Clin N Am 2002;40:251-265.
9.
Stoller DW, Tirman PFJ, Bredella MA. Diagnostic Imaging: Orthopedics. Salt Lake City, Utah: Amirsys; 2004.
175
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Upper Extremity (Non-Joint)
CPT CODES:
73218.................MRI upper extremity, any joint, without contrast
73219.................MRI upper extremity, any joint, with contrast
73220.................MRI upper extremity, any joint, without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the specific clinical indication for the exam and varies considerably, based on anatomic
(from shoulder joint through hand/digits) and clinical considerations.
●● MRI routinely provides multi-planar imaging through the region of interest.
IMAGING CONSIDERATIONS:
●● Conventional radiographs should be obtained before advanced diagnostic imaging is performed, in the majority of
cases.
●● CT is often the preferred modality for evaluation of displaced fractures and subluxations, whereas stress fractures and
some incomplete or non-displaced fractures may be better imaged with MRI or Radionuclide Bone Scintigraphy.
●● MRI is often the preferred modality for evaluation of soft tissue abnormalities and for interrogation of possible osteomyelitis, despite negative or non-diagnostic plain films and/or triple-phase bone scintigraphy. One exception for osteomyelitis is detection of bone sequestra, which may be better depicted with CT.
●● If radiographic findings are typical of osteomyelitis, advanced diagnostic imaging may not be necessary.
●● Use of contrast is at the discretion of both the ordering and imaging physicians.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
●● When requested, a code for a MRI of the upper extremity, non-joint may be entered for each major area of the arm.
–– Upper arm
–– Lower arm (forearm)
–– Hand
●● Brachial Plexus Imaging: The brachial plexus is a network of nerves in the neck, passing under the clavicle and into the
axilla. Assign either a CT or MRI of the upper extremity (non-joint) for imaging the brachial plexus.
●● Conservative treatment includes 4-6 weeks of physical therapy, temporary joint rest or immobilization and medications,
such as non-steroidal anti-inflammatory drugs (NSAIDs), as directed by the patient’s Physician.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging.
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemak176
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
ers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the lumbar spine.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY MRI (NON-JOINT):
The following diagnostic indications for Upper Extremity MRI (Non-Joint) are accompanied by pre-test considerations as well as supporting
clinical data and prerequisite information:
INFECTIOUS AND INFLAMMATORY PROCESSES
●● Including but not limited to the following:
–– Abscess
–– Osteomyelitis
–– Inflammatory Myopathy
–– Myositis
PALPABLE MASS ON PHYSICAL EXAM
PRIMARY (BENIGN AND MALIGNANT) BONE OR SOFT TISSUE TUMOR
METASTATIC TUMOR
●● Involving the soft tissues and/or osseous structures
SOFT TISSUE TUMORS
SIGNIFICANT TRAUMA
●● Usually preceded by initial plain film radiographs
FRACTURE EVALUATION
●● To confirm a suspected (occult) fracture or
●● To define the extent of an acute fracture and position of fracture fragments
●● To assess fracture healing, for callous formation and solid bony union
PRE- AND POST-OPERATIVE EVALUATION
ABNORMALITY ON X-RAY OR BONE SCINTIGRAPHY
PERSISTENT UPPER EXTREMITY PAIN – UNRESPONSIVE TO 4-6 WEEKS OF CONSERVATIVE TREATMENT
SUSPECTED ENTRAPMENT NEUROPATHY [CUBITAL TUNNEL DETAIL ], CARPAL TUNNEL NOT CONSIDERED
MEDICALLY NECESSARY
BRACHIAL PLEXOPATHY
177
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY MRI (NON-JOINT):
BRACHIAL PLEXUS MASS
ULNAR COLLATERAL LIGAMENT TEAR (GAME KEEPER’S THUMB)
REFERENCE/LITERATURE REVIEW:
1.
Demondion X, Bacqueville E, Paul C, et al. Thoracic Outlet: Assessment with MR Imaging in Asymptomatic and Symptomatic
Populations. Radiology 2003;227:461-468.
2.
Qayyum A, MacVicar AD, Padhani AR, et al. Symptomatic Brachial Plexopathy following Treatment for Breast Cancer: Utility of MR
Imaging with Surface-Coil Techniques. Radiology 2000;214:837-842.
3.
Stoller DW, Tirman PFJ, Bredella MA. Diagnostic Imaging: Orthopedics. Salt Lake City, Utah: Amirsys; 2004.
4.
Wittenberg KH, Adkins MC. MR Imaging of Nontraumatic Brachial Plexopathies: Frequency and Spectrum of Findings. RadioGraphics
2000;20:1023-1032.
178
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA) and
MR Angiography (MRA)
Upper Extremity
CPT CODES:
73206.................Computed tomographic angiography, upper extremity, with contrast material(s), including noncontrast
images, if performed, and image postprocessing
73225.................Magnetic resonance angiography, upper extremity, without and with contrast (Note: Upper Extremity
MRA is not currently a covered benefit by the Centers for Medicare and Medicaid Services, through a
National Coverage Determination)
STANDARD ANATOMIC COVERAGE:
●● Depends on the specific anatomic area of interest, from the axillary region through the hand and digits.
IMAGING CONSIDERATIONS:
●● CT and MR angiographic techniques include arterial and/or venous assessment, depending on the clinical indication.
●● Other generally available non-invasive arterial studies of the upper extremity circulation should be considered prior to
advanced diagnostic imaging with CTA or MRA. These include segmental systolic pressure measurements, plethysmographic analysis, Continuous wave Doppler and/or duplex ultrasonography.
●● CT Angiography utilizes the data obtained from standard CT imaging. A request for a CT exam in addition to a CT Angiography of the same anatomic area during the same imaging session is inappropriate.
●● For MR arthrography of the upper extremity, see CPT codes 73221-73223.
●● For imaging the brachial plexus, see CT upper extremity or MRI upper extremity, non-joint.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY CTA AND MRA:
The following diagnostic indications for Upper Extremity CTA and MRA are accompanied by pre-test considerations as well as supporting
clinical data and prerequisite information:
STENO-OCCLUSIVE DISEASE
●● Usually atherosclerotic in origin
THROMBOEMBOLIC DISEASE – ARTERIAL OR VENOUS
ANEURYSM
ARTERIAL ENTRAPMENT SYNDROME
ARTERIO-VENOUS MALFORMATION (AVM) OR FISTULA (AVF)
DISSECTION
INTRAMURAL HEMATOMA
PRE- AND POST-OPERATIVE OR INTERVENTIONAL VASCULAR PROCEDURE – FOR LUMINAL PATENCY VERSUS
RE-STENOSIS (DUE TO ATHEROSCLEROSIS, THROMBOEMBOLISM, INTIMAL HYPERPLASIA OR OTHER CAUSE)
AS WELL AS POST-PROCEDURAL COMPLICATIONS (SUCH AS PSEUDOANEURYSMS RELATED TO SURGICAL
BYPASS GRAFTS OR VASCULAR STENTS)
179
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY CTA AND MRA:
DIALYSIS GRAFT EVALUATION
●● Following duplex Doppler assessment
RAYNAUD’S SYNDROME
VASCULITIS
VASCULAR INVASION OR COMPRESSION BY A MUSCULOSKELETAL NEOPLASM
REFERENCE/LITERATURE REVIEW:
1.
Bilecen D, Aschwanden M, Heidecker HG, Bongartz G. Optimized Assessment of Hand Vascularization on Contrast-Enhanced MR
Angiography with a Subsystolic Continuous Compression Technique. AJR 2004; 182: 180-182.
2.
Froger CL, Duijm LEM, Liem YS, et al. Stenosis Detection with MR Angiography and Digital Subtraction Angiography in Dysfunctional
Hemodialysis Access Fistulas and Grafts. Radiology 2005; 234: 284-291.
3.
Karcaaltincaba M, Akata D, Aydingoz U, et al. Three Dimensional MDCT Angiography of the Extremities: Clinical Application with
Emphasis on Musculoskeletal Uses. AJR 2004; 183: 113-117.
4.
Loewe C. Peripheral MR Angiography. Magn Reson Imaging Clin N Am 2004;.12:.749-479
180
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Computed Tomography (CT)
Lower Extremity
CPT CODES:
73700.................CT lower extremity without contrast
73701.................CT lower extremity with contrast
73702.................CT lower extremity without contrast, followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the anatomic area of concern and varies considerably, based on anatomic (from hip
through toes) and clinical considerations.
●● Depending on the protocol used, the CT data acquisition(s) may allow for diagnostic multi-planar reconstructions
through the region of interest.
IMAGING CONSIDERATIONS:
●● Conventional radiographs should be obtained before advanced imaging in the majority of cases.
●● CT is often the preferred modality for evaluation of displaced fractures and subluxations, whereas stress fractures and
some incomplete and non-displaced fractures may be better imaged with MRI or Radionuclide Bone Scintigraphy.
●● If radiographic findings are typical of osteomyelitis, advanced imaging may not be necessary.
●● In osteomyelitis, CT may be helpful in defining bony sequestra.
●● Use of contrast (intravenous and intra-articular) is at the discretion of both the ordering and imaging physicians.
●● A complete CT of the Lower Extremity includes imaging of the entire leg. When imaging is requested for the right and
left extremity, a maximum of two CT exams is allowed.
●● Conservative treatment includes 4-6 weeks of physical therapy, temporary joint rest or immobilization and medications,
such as non-steroidal anti-inflammatory drugs (NSAIDs), as directed by the patient’s Physician.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR LOWER EXTREMITY CT:
The following diagnostic indications for Lower Extremity CT are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information:
INFECTIOUS AND INFLAMMATORY PROCESS
●● Including but not limited to the following:
–– Abscess
–– Septic Arthritis
–– Osteomyelitis – when MRI is contraindicated or when defining a suspected bone sequestra
PALPABLE MASS ON PHYSICAL EXAM
TUMOR EVALUATION
●● Involving the soft tissues and/or osseous structures
●● When MRI is contraindicated or when evaluating osseous involvement by tumor
SIGNIFICANT TRAUMA
●● Usually preceded by initial plain film radiographs
181
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR LOWER EXTREMITY CT:
FRACTURE EVALUATION
●● To confirm a suspected (occult) fracture or
●● To define the extent of an acute fracture and position of fracture fragments, or
●● To assess fracture healing, for callous formation and solid bony union
OSTEONECROSIS [AVASCULAR NECROSIS (AVN); ASEPTIC NECROSIS]
●● Requires initial plain films, prior to advanced imaging
●● MRI is often the preferred imaging modality, particularly for evaluation during the early stages of Osteonecrosis
BONE SCINTIGRAPHY ABNORMALITY
PERSISTENT LOWER EXTREMITY PAIN – UNRESPONSIVE TO 4-6 WEEKS OF CONSERVATIVE TREATMENT
●● Initial assessment on conventional radiographs should be performed
●● For hip to assess femoro-acetabular impingement (FAI)
SOFT TISSUE TUMORS
TARSAL COALITION
●● Following foot radiographs
NEUROPATHIC OSTEODYSTROPHY (CHARCOT JOINT)
●● Following conventional radiographs, when there is need for additional diagnostic information from a CT exam to direct
treatment decisions (such as concern for an underlying infectious process)
PRE- AND POST-OPERATIVE EVALUATION
●● When ordered by an operating surgeon in pre-and post-op situations
CT ACCOMPANYING AN ARTHROGRAM (CT ARTHROGRAPHY)
WHEN THE PATIENT’S CONDITION MEETS THE LOWER EXTREMITY MRI GUIDELINES, BUT MRI IS EITHER
CONTRAINDICATED OR THE PATIENT IS CLAUSTROPHOBIC AND CANNOT TOLERATE MRI EXAMINATION.
REFERENCE/LITERATURE REVIEW:
1.
Buckwalter KA, Rydberg J, Kopecky KK, et al. Musculoskeletal Imaging with Multislice CT. AJR 2001; 176: 979-986.
2.
Fayad LM, Johnston P, Fishman EK. Multidetector CT of Musculoskeletal Disease in the Pediatric Patient: Principles, Techniques, and
Clinical Applications. RadioGraphics 2005; 25: 603-618.
3.
Mutschler C, Vande Berg BC, Lecouvet FE, et al. Postoperative Meniscus: Assessment at Dual-Detector Row Spiral CT Arthrography
of the Knee. Radiology 2003; 228: 635-641.
4.
Pretorius ES, Fishman EK. Volume-rendered Three-dimensional Spiral CT: Musculoskeletal Applications. RadioGraphics 1999; 19:
1143-1160.
182
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Lower Extremity (Joint & Non-Joint)
CPT CODES:
73718.................MRI lower extremity, other than joint, without contrast
73719.................MRI lower extremity, other than joint, with contrast
73720.................MRI lower extremity, other than joint, without contrast followed by re-imaging with contrast
73721.................MRI lower extremity, any joint, without contrast
73722.................MRI lower extremity, any joint, with contrast
73723.................MRI lower extremity, any joint, without contrast followed by re-imaging with contrast
STANDARD ANATOMIC COVERAGE:
●● Scan coverage depends on the specific clinical indication and varies considerably, based on anatomic and clinical
considerations.
●● If medically appropriate, an MRI exam may be requested for each major area of the right and left lower extremities:
–– Hip
–– Thigh
–– Knee
–– Lower Leg (calf)
–– Ankle
–– Foot (includes toes)
●● Routine MRI examinations provide multi-planar imaging of the joint or non-joint region(s) of interest.
IMAGING CONSIDERATIONS:
●● Conventional radiographs should be obtained before advanced imaging in the majority of cases.
●● Use of contrast (intravenous and intra-articular) is at the discretion of both the ordering and imaging physicians.
●● CT is often the preferred modality for evaluation of displaced fractures and subluxations, whereas stress fractures and
some incomplete and non-displaced fractures may be better imaged with MRI or Radionuclide Bone Scintigraphy.
●● MRI is often used to evaluate soft tissue abnormalities and to interrogate for possible osteomyelitis, despite negative or
non-diagnostic plain films and/or triple-phase bone scintigraphy. One exception for osteomyelitis is detection of bone
sequestra, which may be better depicted with CT.
●● If radiographic findings are typical of osteomyelitis, advanced imaging may not be necessary.
●● For suspected osteonecrosis, MRI is often more sensitive than CT or bone scintigraphy.
●● Implanted surgical hardware, including joint prostheses, may produce sufficient local artifact to preclude adequate
imaging through the region containing hardware.
●● For suspected Baker’s cysts, ultrasound should be performed before advanced imaging exams.
●● The CPT code assignment for an MRI procedure is based on the anatomic area imaged. Requests for multiple MRI
imaging of the same anatomic area to address patient positional changes, additional sequences or equipment are not
allowed. These variations or extra sequences are included within the original imaging request.
●● MRI lower extremity (joint or non-joint) is appropriate for imaging the hip joint. For imaging both hips, a MRI of the
pelvis may be sufficient to answer the diagnostic question. See CPT codes 72195-72197.
●● Conservative treatment includes 4-6 weeks of physical therapy, temporarily joint rest or immobilization and medications, such as non-steroidal anti-inflammatory drugs (NSAIDs), as directed by the patient’s Physician.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
183
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
IMAGING CONSIDERATIONS:
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI of the lumbar spine.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR LOWER EXTREMITY MRI:
The following diagnostic indications for Lower Extremity MRI are accompanied by pre-test considerations as well as supporting clinical data
and prerequisite information.
This section contains:
●● General Indications for Lower Extremity MRI
●● Additional Indications for the Hip Joint
●● Additional Indications for Knee Imaging
●● Additional Indications for Ankle and/or Foot Imaging
General Indications for Lower Extremity MRI:
SIGNIFICANT TRAUMA
●● Usually preceded by initial plain film radiographs
FRACTURE EVALUATION
●● To confirm a suspected (occult) fracture or
●● To define the extent of an acute fracture and position of fracture fragments
●● To assess fracture healing, for callous formation and solid bony union
OSTEONECROSIS [AVASCULAR NECROSIS (AVN); ASEPTIC NECROSIS]
●● Requires initial plain films, prior to advanced imaging
●● MRI is often the preferred imaging modality, particularly for evaluation during the early stages of Osteonecrosis
OSTEOCHONDRAL LESION
INFECTIOUS AND INFLAMMATORY PROCESSES
●● Including but not limited to the following:
184
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR LOWER EXTREMITY MRI:
–– Abscess
–– Inflammatory Myopathy
–– Myositis
–– Osteomyelitis
–– Septic Arthritis
INTRA-ARTICULAR LOOSE BODY, INCLUDING SYNOVIAL OSTEOCHONDROMATOSIS
HEMARTHROSIS (BLOODY JOINT EFFUSION), DOCUMENTED BY ARTHROCENTESIS
JOINT LOCKING
JOINT INSTABILITY (SENSATION OF JOINT GIVING WAY)
PALPABLE MASS ON PHYSICAL EXAM
●● Excluding a suspected Baker’s cysts (in popliteal regions), which should be imaged initially with Ultrasound
TUMOR EVALUATION
●● Involving the soft tissues and/or osseous structures
BONE SCINTIGRAPHY ABNORMALITY
PERSISTENT LOWER EXTREMITY PAIN – UNRESPONSIVE TO 4-6 WEEKS OF CONSERVATIVE TREATMENT
MRI ACCOMPANYING AN ARTHROGRAM (MR ARTHROGRAPHY)
PRE- AND POST-OPERATIVE EVALUATION
●● When ordered by an operating surgeon in pre-and post-op situations
Additional Indications for the Hip Joint:
OCCULT HIP FRACTURE
●● With high clinical suspicion and negative or inconclusive hip radiographs
LEGG-CALVÉ PERTHES DISEASE
●● Eponym for osteonecrosis (infarction) of bony epiphysis in femoral heads, usually in 4-8 year old age range
●● Requires initial radiographic evaluation
SLIPPED CAPITAL FEMORAL EPIPHYSIS
●● Atraumatic fracture through the physeal plate; affected population is often overweight teenagers
●● Requires initial radiographic evaluation
LABRAL TEAR
Additional Indications for Knee Imaging:
MENISCAL TEAR/INJURY
●● Suspected pre-operatively, based on physical exam findings which include but are not limited to:
–– McMurray test
–– Locking
–– Buckling sensation
–– Medial and/or lateral joint line tenderness
CRUCIATE (ANTERIOR AND/OR POSTERIOR) LIGAMENT TEAR
●● Suspected pre-operatively, based on physical exam findings which include but are not limited to:
–– Lachman test
–– Anterior and posterior drawer tests
COLLATERAL (MEDIAL AND LATERAL) LIGAMENTOUS TEAR
POSTEROLATERAL COMPLEX INJURY
185
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY MRI:
POST-OPERATIVE EVALUATION FOLLOWING REPAIR OF A LIGAMENTOUS OR TENDINOUS TEAR, WITH NEW
SYMPTOMS
CHONDROMALACIA PATELLA
OSTEOCHONDRITIS DISSECANS
Additional Indications for Hip, Knee, Ankle and/or Foot Imaging:
LIGAMENT AND TENDON INJURIES
●● If not responsive to four weeks of conservative therapy
●● Including but not limited to the following tendons:
–– Hamstring
–– Quadriceps
–– Achilles Tendon
–– Posterior Tibial Tendon
–– Anterior Tibial Tendon
–– Peroneus Tendons
TARSAL COALITION
●● Following foot radiographs
●● Coalition may be partial or complete, as well as bony, cartilaginous or fibrous
●● CT may be preferred for bony coalition
●● Calcaneonavicular and talocalcaneal are the most common locations
TARSAL TUNNEL
●● If not responsive to four weeks of conservative therapy
●● Neuropathy secondary to entrapment or compression of the posterior tibial nerve or its branches in the fibro-osseous
tunnel, deep to the flexor retinaculum
MORTON’S NEUROMA
NEUROPATHIC OSTEODYSTROPHY (CHARCOT JOINT)
●● Following foot radiographs, when there is need for additional diagnostic information from an MRI exam to direct treatment decisions (such as concern for an underlying infectious process)
DIABETIC FOOT DISEASE
●● For suspected osteomyelitis, radiographs should be performed prior to advanced imaging:
–– If findings are positive for osteomyelitis, the patient should be treated and advanced imaging may not be required
–– If radiographs are negative and the clinical probability for osteomyelitis is low, scintigraphy may be performed with
either a triple-phase Technetium-99m bone scan or Indium-111 leukocyte scan
–– If radiographs are negative and clinical suspicion for osteomyelitis is high, MRI should be performed. Use of intravenous contrast for MRI evaluation of the diabetic foot may be helpful, if not contraindicated.
SOFT TISSUE TUMORS
REFERENCE/LITERATURE REVIEW:
1.
Bencardino JT, Palmer WP. Imaging of Hip Disorders in Athletes. Radiol Clin N Am 2002;40:267-287.
2.
Carrino JA, Schweitzer ME. Imaging of Sports Related Knee Injuries. Radiol Clin N Am 2002;40:181-202.
3.
Chatha DS, Cunningham PM, Schweitzer ME. MR Imaging of the Diabetic Foot: Diagnostic Challenges. Radiol Clin N Am
2005;43:747-759.
4.
Chung CB, Lektrakul N, Resnick D. Straight and Rotational Instability Patterns of the Knee: Concepts and Magnetic Resonance
Imaging. Radiol Clin N Am 2002;40:203-216.
5.
Dunfee WR, Dalinka MK, Kneeland JB. Imaging of Athletic Injuries to the Ankle and Foot. Radiol Clin N Am 2002;40:289-312.
186
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
6.
Helms CA. The Meniscus: Recent Advances in MR Imaging of the Knee. AJR 2002;179:1115-112.
7.
Jackson JL, O’Malley PG, Kroenke K. Evaluation of Acute Knee Pain in Primary Care. Ann Intern Med. 2003; 575-588.
8.
Manaster BJ. Adult Chronic Hip Pain: Radiographic Evaluation. RadioGraphics 2000; 20: S3-S25.
9.
Stoller DW, Tirman PFJ, Bredella MA. Diagnostic Imaging: Orthopedics. Salt Lake City, Utah: Amirsys; 2004.
10. Yu WD, Shapiro MS. Cysts and Other Masses About the Knee. Phys Sport Med 1999;27(7):59-68.
187
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
CT Angiography (CTA) and
MR Angiography (MRA)
Lower Extremity
CPT CODES:
73706.................Computed tomographic angiography, lower extremity, with contrast material(s), including noncontrast
images, if performed, and image postprocessing
73725.................Magnetic resonance angiography, lower extremity, without and with contrast
STANDARD ANATOMIC COVERAGE:
●● Depends on the area of interest and may extend from the iliofemoral regions through the feet.
IMAGING CONSIDERATIONS:
●● Other generally available non-invasive arterial studies of the lower extremity circulation should be considered prior
to advanced diagnostic imaging with CTA or MRA. These may include segmental systolic pressure measurements,
plethysmographic analysis, Continuous wave Doppler and/or duplex ultrasonography of the lower extremity arterial or
venous circulations.
●● MRA should also be considered in patients with a history of either previous contrast reaction to intravascular administration of iodinated radiographic contrast material or atopy.
●● CT Angiography utilizes the data obtained from standard CT imaging. An authorization request for a CT exam in addition to a CT Angiography of the same anatomic area during the same imaging session is inappropriate.
●● A request for a CT lower extremity venogram is a request for a CTA of the lower extremity. A quick look at the vasculature of the lower extremity at the time of a CT or CTA of the chest for pulmonary embolism evaluation should not be
separately entered or reported.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR LOWER EXTREMITY CTA AND MRA:
The following diagnostic indications for Lower Extremity CTA and MRA are accompanied by pre-test considerations as well as supporting
clinical data and prerequisite information:
VASCULAR ASSESSMENT FOR LOWER EXTREMITY CLAUDICATION
●● CPT Coding for Abdominal Aortic and Run-Off evaluation, which involves image post-processing for three-dimensional
reconstructions, should follow:
–– For CTA: 75635 - CTA of Abdominal Aorta and Bilateral Iliofemoral Lower Extremity Run-Off without contrast, followed by re-imaging with contrast
–– For MRA: 74185 - Abdominal MRA and 73725 - Bilateral Lower Extremity MRAs
●● Either CTA or MRA is indicated in a patient with classic presenting symptoms of claudication from peripheral arterial
disease, such as diminished / absent peripheral pulses and cramping pain in the legs (particularly in the thighs and
calves) when walking, which disappears at rest.
●● In the absence of classic peripheral symptoms of claudication, then obtain a vascular surgical consultation and perform
lower extremity non-invasive arterial evaluation, which may include the following: segmental systolic pressure measurements, segmental limb plethysmography, Continuous wave Doppler and duplex ultrasonography. Ankle brachial
indices (ABI) of < 0.9 may undergo advanced imaging. Rest pain or severe occlusive disease typically occurs with ABI
< 0.5.
189
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR UPPER EXTREMITY CTA AND MRA:
PRE-OPERATIVE EVALUATION FOR KNOWN LOWER EXTREMITY PERIPHERAL ARTERIAL DISEASE
●● When conventional angiography is contraindicated and lower extremity ultrasound indicates significant disease, but is
insufficient for surgical planning
CRITICAL ISCHEMIA
●● For example, in diabetic vascular disease with ischemic ulcers or gangrene
PRE- AND POST-OPERATIVE OR INTERVENTIONAL VASCULAR PROCEDURE – FOR LUMINAL PATENCY VERSUS
RE-STENOSIS (DUE TO ATHEROSCLEROSIS, THROMBOEMBOLISM, INTIMAL HYPERPLASIA OR OTHER CAUSE)
AS WELL AS POST-PROCEDURAL COMPLICATIONS (SUCH AS PSEUDOANEURYSMS RELATED TO SURGICAL
BYPASS GRAFTS OR VASCULAR STENTS)
ANEURYSM
DISSECTION
INTRAMURAL HEMATOMA
VASCULITIS
ARTERIAL ENTRAPMENT SYNDROME
Venous Disorders:
VENOUS THROMBOSIS
VENOUS COMPRESSION, DUE TO SURROUNDING MASS EFFECT
Arterial and Venous Disorders:
ARTERIO-VENOUS MALFORMATION (AVM) OR FISTULA (AVF)
THROMBOEMBOLIC DISEASE – Arterial or Venous
VASCULAR INVASION OR COMPRESSION BY A MUSCULOSKELETAL NEOPLASM
REFERENCE/LITERATURE REVIEW:
1.
Bezooijen R, van den Bosch HCM, Tielbeek AV, et al. Peripheral Arterial Disease: Sensitivity-encoded Multiposition MR Angiography
Compared with Intraarterial Angiography and Conventional Multiposition MR Angiography. Radiology 2004; 231: 263-271.
2.
Chow LC, Rubin GD. CT Angiography of the Arterial System. Radiol Clin N Am 2002;40:729-749.
3.
Goyen M, Ruehm SG, Debatin JF. MR Angiography for Assessment of Peripheral Vascular Disease. Radiol Clin N Am 2002;40:835846.
4.
Hirsch AT, Criqui MH, Terat-Jacobson D, et al. Peripheral Arterial Disease Detection, Awareness, and Treatment in Primary Care.
JAMA 2001;286:1317-1324.
5.
Ho VB, Corse WR. MR Angiography of the Abdominal Aorta and Peripheral Vessels. Radiol Clin N Am 2003;41:115-144.
6.
Janka R, Fellner C, Wenkel E, et al. Contrast-enhanced MR Angiography of Peripheral Arteries including Pedal Vessels at 1.0T:
Feasibility Study with Dedicated Peripheral Angiography Coil. Radiology 2005; 235: 319-326.
7.
Karcaaltincaba M, Akata D, Aydingoz U, et al. Three Dimensional MDCT Angiography of the Extremities: Clinical Applications with
Emphasis on Musculoskeletal Uses. AJR 2004;183:113-117.
8.
Loewe C. Peripheral MR Angiography. Radiol Clin N Am 2004;12:479-499.
9.
Meissner OA, Reiger J, Weber C, et al. Critical Limb Ischemia: Hybrid MR Angiography Compared with DSA. Radiology
2005;235:308-318.
10. Nelemans PJ, Leiner T, de Vet HCW, van Engelshoven JMA. Peripheral Arterial Disease Meta-analysis of the Diagnostic Performance
190
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
of MR Angiography. Radiology 2000; 217: 105-114.
11. Rofsky NM, Adelman MA. MR Angiography in the Evaluation of Atherosclerotic Peripheral Vascular Disease. Radiology 2000; 214:
325-338.
12. Ruehm SG, Wiesner W, Debatin JF. Pelvic and Lower Extremity Veins: Contrast-enhanced Three-dimensional MR Venography with
a Dedicated Vascular Coil-Initial Experience. Radiology 2000; 215: 421-427.
13. Swan JS, Carroll TJ, Kennell TW, et al. Time-Resolved Three-Dimensional Contrast-Enhanced MR Angiography of the Peripheral
Vessels. Radiology 2002;225:43-52.
14. Zhang HL, Khilnani NM, Prince MR, et al. Diagnostic Accuracy of Time-Resolved 2D Projection MR Angiography for Symptomatic
Infrapopliteal Arterial Occlusive Disease. AJR 2005; 184: 938-947.
191
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Positron Emission Tomography (PET)
Other PET Applications, Including
Oncologic Tumor Imaging
CPT CODES:
DEDICATED PET IMAGING:
78811.................PET imaging, limited area
78812.................PET imaging, skull to mid-thigh
78813.................PET imaging, whole body
PET/CT IMAGING:
78814.................PET imaging, with concurrently acquired CT for attenuation correction and anatomic localization; limited
area
78815.................PET imaging, with concurrently acquired CT for attenuation correction and anatomic localization; skull base
to mid-thigh
78816.................PET imaging, with concurrently acquired CT for attenuation correction and anatomic localization; whole
body
COMMONLY USED RADIOPHARMACEUTICAL/SCANNER:
●● 2-(fluorine-18) fluoro-2-deoxy-d-glucose (FDG), performed on a dedicated PET or integrated (hybrid) PET/CT scanner.
IMAGING CONSIDERATIONS FOR TUMOR IMAGING:
For PET tumor imaging, AIM’s Guidelines will use the definitions for INITIAL TREATMENT STRATEGY (diagnosis, staging),
and SUBSEQUENT TREATMENT STRATEGY (restaging and treatment response monitoring) as provided in the CMS
National Coverage Determination for PET Scans. PET for tumor staging is covered subject to the conditions below.
COMMON DIAGNOSTIC INDICATIONS FOR ONCOLOGIC PET:
The following diagnostic indications for PET Tumor Imaging (which includes Dedicated PET and PET/CT Exams) are accompanied by pretest considerations as well as supporting clinical data and prerequisite information:
AIM’s Guidelines do not supersede the enrollee’s health plan specific medical policy for PET usage.
AIM’s Guidelines do not imply enrollee benefit coverage for all diagnoses and/or indications. Benefit coverage is
determined solely by the enrollee’s health plan.
PET or PET /CT is considered medically necessary when used for the following oncologic indications:
ONE INITIAL TREATMENT STRATEGY PET or PET/CT for a member with a biopsy-proven solid tumor listed below or
myeloma, or one of the tumors listed below which is strongly suspected based on other diagnostic testing AND imaging
results are required to determine at least one of the following:
●● Whether the patient is a candidate for an invasive diagnostic or therapeutic procedure, such as biopsy;
Or
●● The optimal anatomic location for an invasive procedure;
Or
●● The anatomic extent of malignancy when recommended therapy reasonably depends upon the extent of malignancy;
List of malignancies appropriate for Initial Treatment Strategy PET or PET/CT (with exceptions/special considerations noted
in parentheses for Melanoma, Breast, and Cervix):
●● Head and Neck, including:
–– Lip, Oral Cavity, and Pharynx 192
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ONCOLOGIC PET:
–– Nasal cavity, Ear, and Sinuses
–– Eye
–– Larynx
●● Brain and Spinal Cord
●● Digestive System, including:
–– Esophagus
–– Stomach
–– Small Intestine
–– Liver and Intrahepatic Bile Ducts
–– Gallbladder & Extrahepatic Bile Ducts
–– Pancreas
–– Retroperitoneum and Peritoneum
–– Colon and Rectum
–– Anus
●● Thorax, including:
–– Lung, Non-small Cell
–– Lung, Small Cell
–– Pleura
–– Thymus, Heart, Mediastinum
●● Bone/cartilage and Connective/other Soft Tissue
●● Skin, including:
–– Melanoma (PET or PET/CT is non-covered for initial staging of regional lymph nodes in patients with melanoma,
but is covered for detection of distant metastatic disease in high-risk patients with melanoma)
–– Non-melanoma skin (includes Basal Cell and Squamous Cell)
–– Kaposi’s Sarcoma
●● Female and male breast (PET or PET/CT is non-covered for “diagnosis” of breast cancer to evaluate a suspicious
breast mass or for initial staging of axillary lymph nodes in patients with breast cancer. However, PET or PET/CT is
covered for initial treatment strategy evaluation of a patient with axillary nodal metastasis of unknown primary origin,
in a patient with a paraneoplastic syndrome potentially caused by an occult breast cancer, and for detection of distant
metastatic disease in high-risk patients with known breast cancer)
●● Urogenital organs, including:
–– Uterus and Adnexa
–– Cervix (only if a prior CT or MRI has been negative for extrapelvic metastatic disease)
–– Placenta
–– Ovary
–– Other Female Genitalia
–– Testis
–– Penis and other Male Genitalia
–– Bladder
–– Kidney
●● Thyroid and other endocrine glands and related structures (includes Pituitary and Adrenal)
●● Cancer of unknown primary origin
●● Lymphoma (Hodgkins and Non-Hodgkins)
●● Myeloma
●● Neuroendocrine tumor
●● Other solid tumor not listed except Prostate and Leukemia which are not medically necessary
PET or PET/CT for SUBSEQUENT TREATMENT STRATEGY (to assist the physician in the determination of optimal
subsequent anti-tumor treatment strategies) is medically necessary only for the following malignancies
●● Head and Neck (non-CNS) including:
–– Lip, Oral Cavity, and Pharynx
193
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR ONCOLOGIC PET:
–– Nasal Cavity, Ear, and Sinuses
–– Larynx
●● Esophagus
●● Colon and Rectum
●● Lung, Non-Small Cell only
●● Melanoma
●● Female and Male Breast
●● Cervix
●● Ovary
●● Lymphoma
●● Myeloma
●● Thyroid (follicular cell origin only, having been previously treated by thyroidectomy and radioiodine ablation, with a current serum thyroglobulin > 10 ng/mL, and with a negative whole-body I-131 scan within the previous 60 days)
SURVEILLANCE OF ASYMPTOMATIC PATIENTS AFTER THERAPY FOR MALIGNANCY
PET or PET/CT is considered not medically necessary for patients who have completed therapy twelve (12) or more
months ago for lymphoma or six (6) or more months ago for all other malignancies unless the patient demonstrates signs,
symptoms, laboratory or other objective findings suggestive of recurrence or spread of the original malignancy
SCREENING: PET or PET/CT IS NOT COVERED AS A SCREENING TEST (I.E., FOR EVALUATION OF PATIENTS
WITHOUT SPECIFIC SIGNS AND SYMPTOMS OF DISEASE).
PET FOR SCREENING OR DIAGNOSIS OF BREAST CANCER IS NOT A COVERED BENEFIT BY CMS OR MULTIPLE
HEALTH PLANS.
COMMON DIAGNOSTIC INDICATIONS FOR PET IMAGING OF INFECTIOUS PROCESSES:
FOR DIAGNOSIS OF CHRONIC OSTEOMYELITIS INVOLVING THE AXIAL SKELETON
OTHER CONSIDERATIONS:
PET MAMMOGRAPHY IS AN EVOLVING TECHNOLOGY UNDER CLINICAL DEVELOMENT. THIS TECHNOLOGY
AND ITS IMPACT ON HEALTH OUTCOMES WILL CONTINUE TO UNDERGO REVIEW AS NEW EVIDENCE-BASED
STUDIES ARE PUBLISHED. INTERVAL ROUTINE COVERAGE FOR PET MAMMOGRAPHY IS NOT GENERALLY
AVAILABLE AND IS NOT CONSIDERED THE STANDARD OF CARE AT THIS TIME.
PET BONE SCANNING IS CURRENTLY ONLY A COVERED BENEFIT BY THE CENTERS FOR MEDICARE AND
MEDICAID SERVICES WITH CED. PET BONE SCANNING IS AN EVOLVING TECHNOLOGY UNDER CLINICAL
DEVELOPMENT. THIS TECHNOLOGY AND ITS IMPACT ON HEALTH OUTCOMES WILL CONTINUE TO UNDERGO
REVIEW AS NEW EVIDENCE-BASED STUDIES ARE PUBLISHED. INTERVAL ROUTINE COVERAGE FOR PET BONE
SCANNING IS NOT GENERALLY AVAILABLE AND IS NOT CONSIDERED THE STANDARD OF CARE AT THIS TIME.
REFERENCE/LITERATURE REVIEW:
1.
Aassar OS, Fischbein NJ, et al. Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors.
Rad. 1999; 210(1):177-181.
2.
Adams E, Asua J, Conde Olasagasti J, et al. Positron emission tomography: experience with PET and synthesis of the evidence
(INAHTA Joint Project). Boston, MA: U.S. Department of Veterans Affairs.1999: 41.
3.
Albernini JL, Belhocine T, Hustinx R, et al. Whole-body positron emission tomography using fluorodeoxyglucose in patients with
metastases of unknown primary tumors (CUP syndrome). Nuclear Medicine Communications. 2003; 24:1081-1086.
4.
Alavi A, Editor. PET Imaging I. Radiologic Clinics of North America; 42(6). Philadelphia: W.B. Saunders; 2004.
5.
Alavi A, Editor. PET Imaging II. Radiologic Clinics of North America; 43(1). Philadelphia: W.B. Saunders; 2005.
6.
Antoch G, Beyer T et al. PET/CT or CT/PET? A radiologist’s perspective. Electromedica. 2003; 71(1):64-69.
194
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
7.
Antoch J, Stattaus J, Nemat AT, et al. Non-Small Cell Lung Cancer: Dual-Modality PET/CT in Preoperative Staging. Radiology 2003;
229: 526-533.
8.
Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin N Am. 2005; 43:189-204.
9.
Bastiaannet E, Groen H, Jager PL, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and
bone sarcomas; a systematic review and meta-analysis. Cancer Treatment Reviews. 2004; 30:83-101.
10. Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer with F-18 fluorocholine and
F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008; 35:1766-1774.
11. Berberat P, Friess H, et al. Diagnosis and staging of pancreatic cancer by positron emission tomography. World J Surg. 1999;
23(9):882-887.
12. Bernal B, Altman NR. Evidence-based medicine: neuroimaging of seizures. Neuroimag Clin N Am. 2003; 13:211-224.
13. Beyer L. et al. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med. 2002 Mar; 46(1):24-34.
14. Bohuslavizki KH, Klutmann, Kroger S, et al. FDG PET detection of unknown primary tumors. J Nucl Med. 2000; 41(5): 816-822.
15. Brandt-Mainz K, Muller ST, et al. The value of flourine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nuc
Med. 2000; 27:490-496.
16. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. NEJM. 2007;357(22):2277-2284.
17. Bristow RE, Simpkins F, et al. Positron emission tomography for detecting clinically occult surgically resectable metastatic ovarian
cancer. Gynecologic Oncology. 2002; 85:196-200.
18. Bristow RE, et al. Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery using combined
PET/CT. Gynecol Oncol. 2003 Sep; 90(3):519-528.
19. Brucher BL. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography.
Ann Surg. 2001; 233(3):300-309.
20. Burcombe RJ, et al. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using F-18
flurodeoxyglucose positron emission tomography. Eur J Cancer. 2002: 38:375-379.
21. Camici PG. Positron emission tomography and myocardial imaging. Heart. 2000;83(4):475-480.
22. Caputo FM, Buquicchio GL. Esophageal cancer staging: the role of radiology. Rays. 2005; 30(4):309-314.
23. Castro P, Bourge R, Foster R. Evaluation of hibernating myocardium in patients with ischemic heart disease. Am J of Med. 1998;
104(1): 69-77.Chang CH, Shiau YC, Shen YY, et al. Differentiating solitary pulmonary metastases in patients with renal cell
carcinomas by 18F-Fluoro-2-Deoxyglucose positron emission tomography – a preliminary report. Urologia Int. 2003; 71:306-309.
24. Centers for Medicare & Medicaid Services (CMS) [website]. Publication # 06. Coverage Issues Manual. Part 50:
25. Centers for Medicare & Medicaid Services (CMS) [website]. Medicare Coverage Database. NCD for FDG PET for Breast Cancer
(220.6.10). Effective April 3, 2009. Available at: http://www.cms.hhs.gov/mcd/viewncd.asp? ncd_id=220.6.10&ncd_version=2&basket=
ncd%3A220%2E6%2E10%3A2%3AFDG+PET+for+Breast+Cancer.
26. Centers for Medicare & Medicaid Services (CMS) [website]. Medicare Coverage Database. National Coverage Documents [search:
PET for breast cancer]. February 7, 2010. Available at: http://www.cms.hhs.gov/mcd/search.asp. Accessed February 7, 2010.
27. Cermik T.F, Mavi A, Basu S, Alavi A. Impact of FDG PET on the preoperative staging of newly diagnosed breast cancer. Eur J Nuc
Med Mol Imaging. 2008;35(3):475-483.
28. Crymes WB, Demos H, Gordon L. Detection of musculoskeletal infection with 18F-FDG PET: review of the current literature. J Nucl
Med Technol. 2004; 32:12-15.
29. Delbeke D. Oncological applications of FDG PET imaging: Brain tumors, colorectal cancer lymphoma and melanoma. J Nucl Med.
1999; 40:591-603.
30. Delbeke D, Martin WH. Positron emission tomography imaging in oncology. Radiol Clin North Am. 2001; 39(5):883-917.
31. Delbeke D, Rose DM, et al. Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J
Nucl Med. 1999; 40(11):1784-1791.
32. de Leon MJ, McRae T, Rusinek H, et al. Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer’s
disease. J Clin Endocrinol Metab. 1997; 82(10):3251-3259.
33. Delgado-Bolton RC, Fernandez-Perez C, Gonzalez-Mate A, et al. Meta-analysis of the performance of 18-FFDG PET in primary tumor
195
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
detection in unknown primary tumors. J Nucl Med. 2003; 44:1301-1314.
34. De Winter F, Van de Wiele C, Vogelaers D, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography: a highly accurate
imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg. 2001; 83:651-660.
35. Di Carli M, Maddahi J, et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications
for the role of myocardial viability assessment in management decisions. J Thor Cardiovasc Surg. 1998; 116(6):997-1004.
36. Diagnostic Services. 50-36 Positron Emission Tomography (PET) Scans. Modified September 7, 2005. Available at: http://www.cms.
hhs.gov/manuals/downloads/Pub06_PART_50.pdf. Accessed February 7, 2010.
37. Doshi NK, Shao Y, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for breast cancer imaging. Med Phys.
2000;27(7):1535-1543.
38. Diehl M, Risse JH, Brandt-Mainz K, et al. Fourine-18 flurodeoxyglucose positron emission tomography in medullary thyroid cancer:
39. results of a multicenter study. Eur J Nuc Med. 2001; 28:1671-1676.
40. Eubank WB, et al. 18-Flurodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in
breast cancer. J Clin Oncol. 2001; 19:3516-3523.
41. Even-Sapir E, Metser U, Flusser G, et al. Assessment of malignant skeletal disease: initial experience with [F-18]fluoride PET/CT and
comparison between [f-18]fluoride PET and [F-18]fluoride PET/CT. J Nucl Med. 2004; 45(2):272-278.
42. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;
46:1356–1367.
43. Even-Sapir E, Metser U, Mishani E, Lievshitz G, and Leibovitch I. The detection of bone metastases in patients with high-risk prostate
cancer: Tc-99m-MDP planar bone scintigraphy, single and multi-field-of-view SPECT, F-18-fluoride PET, and F-18-fluoride PET/CT. J
Nucl Med. 2006; 47:287-297.
44. Flamen P, Stroobants S, et al. Additional value of whole-body positron emission tomography with Fluorine-18-2-fluoro-2-deoxy-Dglucose in recurrent colorectal cancer. J Clin Oncol. 1999: 17(3):894-901.
45. Flamen P, Lerut A, et al. The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J
Thorac Cardiovasc Surg. 2000; 120(6):1085-1092.
46. Frilling A, et al. Preoperative diagnostic value of F-18 Flurodeoxyglucose positron emission tomography in patients with radioiodinenegative recurrent well-differentiated thyroid carcinoma. Ann Surg. 2001; 234(6): 804-811.
47. Gill SS, Rochon PA, Guttman M, et al. The value of positron emission tomography in the clinical evaluation of dementia. J Am Geriatr
Soc. 2003; 51:258-264.
48. Goldstein D, Tan BS, Rossleigh M, et al. Gastrointestinal stromal tumors: correlation of F-FDG gamma camera-based coincidence
positron emission tomography with CT for the assessment of treatment response – an AGITG Study. Oncology. 2005; 69:326-332.
49. Gould MK, Maclean CC et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions. JAMA.
2001; 285(7):914-924.
50. Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18-F Fluoride: Applying new technology to an old tracer. J Nucl Med. 2008;
49(1):68-78.
51. Greco M, Crippa F, Agresti R, et al. Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-Dglucose-positron emission
tomography: clinical evaluation and alternative management. J Natl Cancer Inst. 2001; 93(8):630-635.
52. Greco M, Crippa F, Agresti R, et al. Axillary lymph node staging in breast cancer by 2-Fluoro-2-deoxy-D-glucose-positron emission
tomography: clinical evaluation and alternative management. J Natl Cancer Inst. 2001;93(8):630-635.
53. Gyorke T, Zajic T, Lange A, et al. Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl
Med Communications. 2006; 27:17-24.
54. Hartmann A, Eid K, Dora C, et al. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur
J Nucl Med Mol Imaging. 2006.
55. Heinisch M, Gallowitsch HJ, Mikosch P, et al. Comparison of FDG-PET and dynamic contrast-enhanced MRI in the evaluation of
suggestive breast lesions. Breast. 2003;12(1):17-22.
56. Hetzel M, Arslandemir C, Koenig H-H, et al. F-18 NaF-18 PET for detection of bone metastases in lung cancer: accuracy, costeffectiveness, and impact on patient management. J Bone and Min Res. 2003; 18(12):2206-2214.
196
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
57. Heusner TA, Kuemmel S, Umutlu L, et al. Breast cancer staging in a single session: whole-body PET-CT mammography. J Nucl Med.
2008;49(8):1215-1222.
58. Holder W, White R, et al. Effectiveness of positron emission tomography for the detection of melanoma metastases. Ann Surg. 1998;
227(5):764-771.
59. Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol
Clin N Am. 2005; 43:35-47.
60. Iagaru A, Mittra E, Yaghoubi SS, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of
malignancy: results of the pilot phase study. J Nucl Med. 2009; 50(4):501-505.
61. Ilknur A, Stokkel MPM, Pauwels EKJ. Positron emission tomography with 1-18-Fluro-2-deoxy-D-glucose in oncology: part II the clinical
value in detecting and staging primary tumors. J Cancer Res Clin Oncol. 2000; 126:560-574.
62. Imdahl A, Nitzsche E. et al. Evaluation of positron emission tomography with 2-[(18) F] fluoro-2-deoxy-Dglucose for the differentiation
of chronic pancreatitis and pancreatic cancer. The Br J Surg. 1999; 86(2):194-199.
63. Jeong YJ, Yi CA, Lee KS. Solitary Pulmonary Nodules: Detection, Characterization, and Guidance for Further Diagnostic Workup and
Treatment. AJR 2007; 188: 57-68.
64. Jerusalem G, Beguin Y, et al. Whole-body positron emission tomography using F-fluorodeoxyglucose for post -treatment evaluation
in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography
scan imaging. Blood. 1999: 94 (2):429-433.
65. Kaida H, Ishibashi M, Fuji T, et al. Improved breast cancer detection of prone breast fluorodeoxyglucose-PET in 118 patients. Nucl
Med Comm. 2008;29(10):885-893.
66. Kapoor V, Fukui M, McCook B. Role of 18FFDG PET/CT in the Treatment of Head and Neck Cancers: Post-therapy Evaluation and
Pitfalls. AJR 2005; 184: 589-597.
67. Johnson GR, Zhuang H, Khan J, et al. Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local
recurrent and distant metastatic sarcoma. Clinical Nuclear Medicine. 2003; 28:815- 820.
68. Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006; 354:496-507.
69. Kato H, Kuwana H, et al. Usefulness of positron emission tomography for assessing the responsiveness of neoadjuvant
chemoradiotherapy in patients with esophageal cancer. Am J Surg. 2002; 184(3).
70. Kattlove H, Winn RJ. Ongoing care of patients after primary treatment for their cancers. CA Cancer J Clin. 2003; 54:172-196.
71. Keogan MT, Lowe VJ, Baker ME, et al. Local recurrence of rectal cancer: Evaluation with F-18 flurodeoxyglucose PET imaging.
Abdom Imaging. 1997; 22:332-337.
72. Khalkhali I, Vargas HI. The role of nuclear medicine in breast cancer detection. Rad Clin North Am. 2001; 39(5):1053-1068.
73. Khandani AH, Wahl RL. Applications of PET in liver imaging. Radiol Clin N Am. 2005; 43:849-60.
74. Kim, EE, Lee M-C, Inoue T, et al, Editors. Clinical PET Principles and Applications. New York: Springer-Verlag; 2004.
75. Kim TS, Moon WK, Lee DS, Chung JK, Lee MC, Youn YK, Oh SK, Choe KJ, Noh DY. Fluorodeoxyglucose positron emission
tomography for detection of recurrent or metastatic breast cancer. World J Surg. 2001; 25(7):829-834.
76. Kipper MS. Clinical applications of positron emission tomography. Applied Radiology. November 2002. Available at: www.
appliedradiology.com. Accessed on March 31, 2009.
77. Kole AC, Wieweg OE, Pruim J, et al. Detection of unknown occult primary tumors using positron emission tomography. Cancer. 1998;
82(6) 1160-1166.Kostakoglu L, Leonard JP, et al. Comparison of flourine-18 fluorodeoxyglucose positron emission tomography and
GA-67 scintigraphy in evaluation of lymphoma. Cancer. 200
78. Kostakoglu L, Agress H, Goldsmith SJ. Clinical Role of FDG PET in Evaluation of Cancer Patients. RadioGraphics 2003; 23: 315340.
79. Kumar R, Maillard I, Schuster SJ, Alavi A. Utility of fluorodeoxyglucose-PET imaging in the management of patients with Hodgkin’s
and non-Hodgkin’s lymphomas. Radiol Clin N Am. 2004; 42:1083-1100.
80. Kumar R, Chauhan A, Zhuang H, et al. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer.
Breast Can Res Treat. 2006; 98:267-274.
81. Kumar R, Zhuang H, Schnall M, et al. FDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl Med
197
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
Comm. 2006;27(3):231-236.
82. Lardinois D, et al. Staging of Non-Small-Cell Lung Cancer with Integrated Positron Emission Tomography and Computed Tomography.
NEJM. 2003; 25(348); 2500-2507.
83. Lassen U, Daugaard G, et al. 18F-FDG whole body positron emission tomography in patients with unknown primary tumors (UPT).
Eur J Cancer. 1999; 35(7) 1076- 1085.
84. Leitch MA. What’s new in surgical oncology? Journal of the American College of Surgeons. 2001; 192:624-639.
85. Lerut T, Flamen P, et al. Histopathologic validation of lymph node staging with FDG-PET scans in cancer of the esophagus and
gastroesophageal junction: a prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg. 2000;
232(6):742-752.
86. Leung JWT. New modalities in breast imaging: Digital mammography, positron emission tomography, and sestamibi
scintimammography. Radiol Clin N Am. 2002; 40:467-482.
87. Line BR, Maragh MR, Ahamed T. Positron emission tomography imaging of lung and esophageal cancer. Applied Radiology. June
2002. Available at: www.appliedradiology.com. Accessed on March 31, 2009.
88. Lindell RM, Hartman TE, Swenson SJ, et al. Lung Cancer Screening Experience: A Retrospective Review of PET in 22 Non-Small
Cell Lung Carcinomas Detected on Screening Chest CT in a High-Risk Population. AJR 2005; 185: 126-131
89. Makhija S, Howden N, et al. Positron emission tomography/computed tomography imaging for the detection of recurrent ovarian and
fallopian tube carcinoma: a retrospective review. Gynecologic Oncology. 2003; 85:53-58.
90. Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin N Am. 2005; 43:153-167.
91. Mantaka P, Baum RP, Hertel A, et al. PET with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) in patients with cancer of unknown primary
(CUP): influence on patients’ diagnostic and therapeutic management. Cancer Biotherapy & Radiopharmaceuticals. 2003; 18:47-58.
92. Mavi A, Lakhani P, Zhuang H, et al. Fluorodeoxyglucose-PET in characterizing solitary pulmonary nodules, assessing pleural
diseases, and the initial staging, restaging, therapy planning and monitoring response of lung cancer. Radiol Clin N Am. 2005; 43:121.
93. Mavi A, Urhan M, Yu JQ, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well
with histologic subtypes. J Nucl Med. 2006;47(9):1440-1446.
94. McCarville MB, Christie R, Daw NC, et al. PET/CT in the evaluation of childhood sarcomas. Am J Rad. 2005; 184:1293-1304.
95. McDougall IR, Davidson J, Segall GM. Positron emissions tomography of the thyroid, with an emphasis on thyroid cancer. Nuclear
Med Comm. 2001; 22:485-492.
96. Meller J, Koster G, Liersch T, et al. Chronic bacterial osteomyelitis: prospective comparison of 18F-FDG imaging with a dual-head
coincidence camera and 111In-labeled autologous leucocyte scintigraphy. Eur J Nucl Med. 2002; 29:53-60.
97. Meltzer CC, Luketich JD, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer comparison
with computed tomography. Clin Nucl Med. 2000; 25(11): 882-887.
98. Mester U, Goor O, Lerman H, et al. PET-CT of Extranodal Lymphoma. AJR 2004; 182: 1579-1586.
99. Menzel C, Gratchen S, et al. Monitoring the efficacy of Iodine-131-MIBG therapy using Flourine-18-FDGPET. Acta Med Austriaca.
2003; 30:37-40.
100.Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med.
1999; 40(9):1407-1413.
101.Nakamoto Y, Higashi T. et al. Evaluation of pancreatic islet cell tumors by fluorine-18 fluorodeoxyglucose positron emission
tomography: comparison with other modalities. Clin Nuclear Med. 2000; 25(2):115-119.
102.National Institutes of Health, Division of Cancer Treatment and Diagnosis, Cancer Imaging Program. Sodium fluoride F-18 injection
investigator’s brochure. Bethesda, MD: July 2008. Available at: http://imaging.cancer.gov/images/Documents/bccff836-d508-4cebb22a-894f563cc352/NaF_IB_Edition1_072808..pdf.
103.Ost D, Fein AM, Feinsilver SH. The solitary pulmonary nodule. N Engl J Med. 2003; 348:2535-2542.
104.Ott K, Fink U, Becker K, et al. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results
of a prospective trial. J Clin Oncol. 2003; 21:4604-4610.
105.Papos M, et al. The possible role of F-18 FDG positron emission tomography in the differential diagnosis of focal pancreatic lesions.
198
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
Clin Nuclear Med. 2002; 27 (3):197-201.
106.Port JL, Kent MS, Korst RJ, et al. Positron emission tomography scanning poorly predicts response to preoperative chemotherapy in
non-small cell lung cancer. Ann Thorac Surg. 2004; 77:254-259.
107.Rajendran J. Positron emission tomography in head and neck cancer. Applied Radiology. June 2003. Available at: www.
appliedradiology.com. Accessed on March 31, 2009.
108.Reske SN, Kotzerke J. FDG-PET for clinical use: results of the 3rd German interdisciplinary consensus conference “Onko-PET III”, 21
July and 19 September 2001. Eur J Nuc Med. 2001; 28(11):1707-1723.
109.Rohren EM, Turkinton TG, Coleman RE. Clinical Applications of PET in Oncology. Radiology 2004; 231: 305-332.
110.Rohren EM, Provenzale JM, Barboriak DP, et al. Screening for Cerebral Metastases with FDG PET in Patients Undergoing WholeBody Staging of Non-Central Nervous System Malignancy. Radiology 2003; 226: 181-187.
111.Safa AA, Tran LM, Rege S, et al. The role of positron emission tomography in occult primary head and neck cancers. Cancer J Sci
Am. 1999; 5(4):214-218.
112.Schiesser M, Stumpe KDM, Trentz O, et al. Detection of metallic implant-associated infections with FDG PET in patients with trauma:
correlation with microbiologic results. Radiology. 2003; 226:391-398.
113.Schirrmeister H, Kuhn T, Guhlmann A, et al. Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer:
comparison with the standard staging procedures. Eur J Nucl Med. 2001; 28(3):351-358.
114.Schoder H, et al. PET/CT in Oncology: Integration into clinical management of lymphoma, melanoma, and gastrointestinal
malignancies. Journal of Nuclear Medicine. 2004; 45:72S-81S.
115.Schoder H., et al. Head and Neck Cancer: Clinical usefulness and accuracy of PET/CT image fusion. Radiology. 2004; 31(1):65-72.
116.Schuhmacher J, Kaul S, et al. Immunoscintigraphy with positron emission tomography: gallium-68 chelate imaging of breast cancer
pretargeted with bispecific anti-muci/anti-ga chelate antibodies. Cancer Research. 2001; 61:3712-3717.
117.Serafini AN, Klein JL, et al. Radioimmunoscintigraphy of recurrent, metastatic, or occult colorectal cancer with technetium 99m-labeled
totally human monoclonal antibody 88BV59: results of pivotal, phase III multicenter studies. JCO. 1998; 16(5):1777-1787.
118.Shiraki N, Hara M, Ogino H, et al. False-positive and true-negative hilar and mediastinal lymph nodes on FDG-PET: radiologicalpathological correlation. Annals of Nuclear Medicine. 2004; 18:23-28.
119.Shvarts O, Han K, et al. Positron emission tomography in urologic oncology. Cancer Control. 2002; 9(4):335-342.
120.Silverman DHS, Small GW, Chang CT, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and
long term outcome. JAMA. 2001; 2120-2127.
121.Smith GT, Habner KF, et al. Cost analysis of FDG PET for managing patients with ovarian cancer. Clinical Positron Imaging. 1999;
2(2):63-70.
122.Smith IC, Ogston KN, Whitford P, et al. Staging of the axilla in breast cancer. Ann Surg. 1998; 228(2):220-227.
123.Sperti C, et al. Value of 18-flurodeoxyglucose positron emission tomography in the management of patients with cystic tumors of the
pancreas. Ann Surg. 2001; 234(5):675-680.
124.Stokkel MP, Broek FW, et al. Preoperative evaluation of patients with primary head and neck cancer using dual-head
18fluorodeoxyglucose positron emission tomography. Ann of Surg. 2000; 231(2):229-234.
125.Sugawara Y, Zasadny K, et al. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET
and kinetic modeling. Radiology. 1999; 211(1):249-256.
126.Tai YF, Piccini P. Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry. 2004; 75:669-676.
127.Takeuchi O, Saito O, Koda K, et al. Clinical assessment of positron emission tomography for the diagnosis of local recurrence in
colorectal cancer. Br J Surg. 1999; 85:932-937.
128.Tamaki N, Kawamoto M, et al. Coronary heart disease/myocardial infarction: prediction of reversible ischemia after revascularization:
perfusion and metabolic studies with positron emission tomography. Circulation. 1995; 91(6):1697-1705.
129.Termaat MF, Raijmakers PGHM, Scholten HJ, et al. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis:
a systematic review and meta-analysis. J Bone Joint Surg. 2005; 87(11):2464-2471.
130.Thiel A, Pietrzyk U, et al. Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic
resonance imaging co-registration: technical case report. Neurosurg. 2000; 46(1):232-234.
199
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
131.Townsend DW, Beyer T, Blodgett T. PET/CT scanners: a hardware approach to image fusion. Seminars in Nuclear Medicine. 2003;
33(3):193-204.
132.Valk P, et al. Whole-body PET imaging with (18 F) fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg. 1999;
134(5):503-511.
133.Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of
lung cancer: systematic review. Lancet Oncol. 2004; 5:531-540.
134.Vansteenkiste JF, Stroobants SG. Positron emission tomography in the management of non-small cell lung cancer. Hematol Oncol
Clin N Am. 2004; 18:269-288.
135.Vitola JZ, Delbeke D, et al. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg.
1996; 171 (1):21-26.
136.Vranjesevic D, et al. Whole body F-18 FDG PET and conventional imaging for predicting outcome in previously treated breast cancer
patients. J Nucl Med. 2002; 43:325-329.
137.Wahl RL. Current Status of PET in breast cancer imaging, staging and therapy. Sem in Roentgenology. 2001; 36(3):250-260.
138.Wahl RL, Siegel BA, Coleman RE, et al. Prospective multicenter study of axillary nodal staging by positron emission tomography in
breast cancer: a report of the staging breast cancer with PET study group. J Clin Oncol. 2004; 22:277-285.
139.Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to
chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003; 21:2651-2657.
140.Whiteford MH, et al. Usefulness of FDG PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the
colon and rectum. Dis Colon Rectum. 2000; 43(6):759-770.
141.Yang SN, Liang JA, Lin FJ, et al. Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99m
methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol. 2002;
128(6):325-328.
142.Yen RF, Sun SS, Shen YY, et al. Whole body positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of
recurrent ovarian cancer. Anticancer Res. 2001; 21(5):3691-3694.
143.Yeo JS, et al. F-18 flurodeoxyglucose positron emissions tomography as a presurgical evaluation modality for 1-131 scan negative
thyroid carcinoma patients in cervical lymph nodes. Head Neck. 2001; 23:94-103.
144.Yoshida Y, Kurokawa T, Kawahara K, et al. Incremental benefits of FDG positron emission tomography over CT alone for the
preoperative staging of ovarian cancer. AJR. 2004; 182:227-233.
145.Zimny M, Siggelkow W, Schroder W, et al. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in the diagnosis of
recurrent ovarian cancer. Gynecol Oncol. 2001; 83(2):310-315.
146.Zhuang H, Kumar R, Mandel S, Alavi A. Investigation of thyroid, head and neck cancers with PET. Radiol Clin N Am. 2004; 42:11011111.
147.Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E. Dual time point FDG-PET-CT imaging... Potential tool for diagnosis of breast
cancer. Clin Radiol. 2008;63(11):1213-1227.
148.Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E, Ebied O. Breast cancer with low FDG uptake: characterization by means of
dual-time point FDG-PET-CT. Eur J Radiol. 2009;70(3):530-538.
200
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Spectroscopy
(MRS)
CPT CODES:
76390.................Magnetic Resonance Spectroscopy (MRS) STANDARD ANATOMIC COVERAGE:
●● Application of MRS has been described in multiple anatomic areas, to further evaluate the biochemical properties of
specific tissues.
BACKGROUND:
●● MR Spectroscopy is not currently a covered benefit by the Centers for Medicare and Medicaid Services, through a
National Coverage Determination.
●● MR spectroscopy provides a biochemical profile of different metabolic constituents in tissues. When MRS is performed, metabolites which may be measured include Choline (Cho), N-Acetyl Aspartate (NAA), Creatine (Cr), lactate
and lipid.
●● Certain ratios of metabolites have been described as suggestive of high grade malignancy. An example is a Choline/
Creatine ratio greater the 2:1, compared with the normal ratio from spectroscopic data of approximately 1.
●● When performed, MRS usually accompanies an MRI exam.
●● Potential uses of MRS that have been described include neuroimaging of brain tissue (for brain tumor differentiation
from non-tumor conditions such as necrosis and abscess; cerebrovascular accident; dementia; epilepsy; Parkinson’s
disease; mitochondrial disorders), breast lesion assessment and evaluation of lower extremity ischemia.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
MAGNETIC RESONANCE SPECTROSCOPY:
●● MR Spectroscopy is an evolving technology under clinical development. This technology and its impact on health outcomes will continue to undergo review, as new evidence-based studies are published. Interval routine coverage for MR
spectroscopy is not generally available and is not considered the standard of care at this time.
201
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Magnetic Resonance Imaging (MRI)
Bone Marrow Blood Supply
CPT CODES:
77084.................MRI of Bone Marrow Blood Supply
STANDARD ANATOMIC COVERAGE:
●● MRI of the Bone Marrow Blood Supply is used to image multiple anatomic areas in the axial and appendicular skeleton.
IMAGING CONSIDERATIONS:
●● In addition to MRI, several other imaging procedures are available to assess the bone marrow, including skeletal radiographic survey and nuclear scintigraphy.
●● To undertake extensive coverage of the skeleton with MRI of the bone marrow blood supply, phased array MR coils are
often used.
Patient Compatibility Issues:
●● Artifact due to patient motion may have a particularly significant impact on exam quality.
●● Metallic implants presence in spine and brain.
●● Eye and brain for metallic foreign bodies.
●● Breath hold requirements:
–– Some imaging sequences require breath holding and this may be difficult or impossible for some patients.
●● Claustrophobic patients:
–– Patients with claustrophobia may need to be premedicated in order to tolerate the imaging procedure. Rarely patients with severe claustrophobia will not be suitable candidates for imaging
Biosafety Issues:
●● Ordering and imaging providers are responsible for considering biosafety issues prior to MRI examination, to ensure
patient safety. Among the generally recognized contraindications to MRI exam performance are permanent pacemakers (some newer models are MRI compatible) or implantable cardioverter-defibrillators (ICD), intracranial aneurysm
surgical clips that are not compatible with MR imaging, as well as other devices considered unsafe in MRI scanners
(including certain implanted materials in the patient as well as external equipment, such as portable oxygen tanks).
●● Contrast utilization is at the discretion of the ordering and imaging providers.
Ordering Issues:
●● This guideline does not supersede the enrollee’s health plan medical policy specific to MRI Bone Marrow Blood Sparrow.
●● There are uncommon circumstances when both CT and MRI exams should be ordered for the same clinical presentation. The specific rationale for each study must be delineated at the time of request.
●● In general, follow-up CT and MRI exams should be performed only when there is a clinical change, with new signs or
symptoms.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
202
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
MRI OF THE BONE MARROW BLOOD SUPPLY:
Indications for MRI of the Bone Marrow:
HEMATOLOGICAL MALIGNANCIES ARISING IN THE BONE MARROW, INCLUDING MULTIPLE MYELOMA AND
LEUKEMIA
●● To evaluate initial tumor burden within the bone marrow, from neoplastic infiltration and marrow replacement
●● To assess post-treatment response to therapy
REFERENCE/LITERATURE REVIEW:
1.
Angtuaco EJC, Fasses ABT, Walker r, et al. Multiple Myeloma: Clinical Review and Diagnostic Imaging. Radiology 2004; 231 (1):
11-13.
2.
Lecouvet FE, Vande Berg BC, Michaux L, et al. Stage III Multiple Myeloma: Clinical and Prognostic Value of Spinal Bone Marrow MR
Imaging. Radiology 1998; 209 (3): 653-660.
3.
Rahmouni A, Montazel J-L, Divine M, et al. Bone Marrow with Diffuse Tumor Infiltration in Patients with Lymphoproliferative Diseases:
Dynamic Gadolinium-enhanced MR Imaging. Radiology 2003; 229 (3): 710-717.
4.
Vande Berg BC, Lecouvet FE, Michaux L, et al. Stage I Multiple Myeloma: Value of MR Imaging of the Bone Marrow in the
Determination of Prognosis. Radiology 1996; 201: 243-246.
203
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
Quantitative CT (QCT)
Bone Mineral Densitometry
CPT CODES:
77078.................Computed tomography, bone mineral density study, 1 or more sites; axial skeleton (e.g., hips, pelvis, spine)
77079.................Computed tomography, bone mineral density study, 1 or more sites; appendicular skeleton (peripheral)
(e.g., radius, wrist, heel)
STANDARD ANATOMIC COVERAGE:
●● For central QCT, spine and hip measurements are obtained
●● For peripheral QCT, forearm, wrist (distal radius and ulna) and/or heel measurements are usually acquired
IMAGING CONSIDERATIONS:
●● Bone mineral densitometry may be performed on the central axial skeleton (i.e., spine, femoral head, proximal femur)
or peripheral appendicular skeleton (i.e., forearm, wrist, heel). The axial measurements are considered more clinically
significant and represent the standard diagnostic assessment for bone densitometry.
●● Central dual x-ray absorptiometry (DXA), also referred to as dual-energy x-ray absorptiometry (DEXA), is the most
commonly used test to evaluate bone mineral density and is considered the technology of choice, when available.
●● QCT has a high sensitivity for detection of bone loss. However, when compared with DXA, QCT is often less readily
available, more expensive and incurs higher radiation exposure.
●● QCT is not covered as a screening exam in patients at low risk for osteoporosis.
●● Duplicative testing or repeat imaging of the same anatomic area with same or similar technology may be subject to
high-level review and may not be medically necessary unless there is a persistent diagnostic problem or there has
been a change in clinical status (e.g. deterioration) or there is a medical intervention which warrants interval reassessment.
●● Request for re-imaging due to technically limited exams is the responsibility of the imaging providers.
COMMON DIAGNOSTIC INDICATIONS FOR QUANTITATIVE CT FOR BONE MINERAL DENSITY:
The following diagnostic indications for Quantitative CT to assess Bone Mineral Density are accompanied by
pre-test considerations and supporting clinical data
Indications for Central (Axial) Quantitative CT (QCT) Evaluation of Bone Mineral Density:
INITIAL EXAMINATION – WHEN ANY ONE OF THE FOLLOWING CRITERIA ARE MET
●● Menopausal or post-menopausal women - as an initial examination to screen for osteoporosis
●● Men of 70 years age or older, regardless of risk factors
●● Anyone presenting with a fragility or pathologic fracture
●● Anyone with a disease or condition associated with development of osteoporosis.
●● Including but not limited to the following abnormalities:
–– Anorexia nervosa
–– Chronic liver disease
–– Chronic renal failure
–– Cushing’s syndrome
–– Delayed menarche or untreated premature menopause
–– Heavy alcohol consumption
–– Hypercalciuria
–– Hypogonadism
–– Inflammatory bowel disease
–– Low trauma fractures or vertebral fractures
204
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
COMMON DIAGNOSTIC INDICATIONS FOR QUANTITATIVE CT FOR BONE MINERAL DENSITY:
–– Malabsorption syndromes
–– Primary hyperparathyroidism
–– Prolonged immobilization
–– Radiographic evidence of osteopenia
–– Rheumatoid arthritis
–– Thyroid disease
●● Anyone on a medication associated with development of osteoporosis.
●● Including but not limited to the following medications:
–– Glucocorticoids (e.g., prednisone, prednisolone, decadron, dexamethosone) – treatment for > 3 months
–– Phenytoin (Dilantin) – treatment for > 3 months
–– Heparin – treatment for > 1 month
–– Depo-Provera injectable contraceptive – long-standing use (> 2 years)
–– Lithium treatment
–– Lupron therapy
–– Cytotoxic agents which affect bone density (e.g., adjuvant chemotherapy in many premenopausal females with
breast cancer)
–– Proton Pump Inhibitors (PPI) and Histamine-2 (H2) receptor blockers for Gastroesophageal Reflux Disease – in
patients over 50 years of age, under treatment for > 3 months
●● Anyone who is considering therapy for osteoporosis, if bone mineral densitometry would facilitate the decision
Indications for Central (Axial) Quantitative CT (QCT) Evaluation of Bone Mineral Density:
REPEAT EXAMINATION – WHEN ANY ONE OF THE FOLLOWING CRITERIA ARE MET:
●● Anyone under treatment for osteoporosis, to monitor the response to therapy for bone loss – at intervals of
every 2 to 3 years
●● Untreated individuals who met the criteria for initial evaluation, without significant osteopenia on prior bone
densitometry and without interval increased risk for accelerated bone loss – at intervals of every 3 to 5 years
Indications for Peripheral (Appendicular) Quantitative CT (pQCT)
EVALUATION OF BONE MINERAL DENSITY – WHEN THE FOLLOWING CRITERIA IS MET:
●● Evaluation of anyone with asymptomatic primary hyperparathyroidism
REFERENCE/LITERATURE REVIEW:
1.
Lentle BC, Prior JC. Prior Osteoporosis: What a Clinical Expects to learn from a Patient’s Bone Density Exam. Radiology 2000; 228:
620-628.
2.
Steiger P, Block JE, Steiger S, et al. Spinal Bone Mineral Density measured with Quantitative CT: Effect of Region of Interest,
Vertebral Level and Technique. Radiology 1990; 175: 537-543.
3.
American College of Radiology (ACR) Appropriateness Criteria. Expert Panel for Musculoskeletal Imaging. Osteoporosis and Bone
Mineral Density. As posted on ACR website: January, 2007.
4.
The International Society for Clinical Densitometry (ISCD). “Official Positions and Advocacy.” As posted on ISCD website: January,
2007.
5.
American Association of Clinical Endocrinologists. Medical Guidelines for Clinical Practice for Prevention and Treatment of
Postmenopausal Osteoporosis: 2001 Edition, with Selected Updates for 2003. Endocr Pract 2003; 9(6): 545-564.
6.
National Osteoporosis Foundation (NOF). Physician’s Guide to Prevention and Treatment of Osteoporosis. As posted on NOF
Website: January, 2007.
7.
Morris CA, Cabral D, Cheng H, et al. Patterns of Bone Mineral Density Testing. Current Guidelines, Testing Rates, and Interventions.
J Gen Intern Med 2004; 19: 783-790.
8.
U.S. Preventive Services Task Force. Screening for Osteoporosis in Postmenopausal Women: Recommendations and Rationale.
205
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.
REFERENCE/LITERATURE REVIEW:
Ann Intern Med 2002; 137: 526-528.
9.
Armstrong C. Practice Guidelines. NAMS Updates Recommendations on Diagnosis and Management of Osteoporosis in
Postmenopausal Women. Am Fam Physician 2006; 74 (9): 1630.
206
Copyright © 2010, American Imaging Management, Inc. All Rights Reserved.